Increased Mortality Odds Ratio of Male Liver Cancer in a Community Contaminated by Chlorinated Hydrocarbons in Groundwater

Lukas J-H Lee, C-W Chung, Y-C Ma, G-S Wang, P-C Chen, Y-H Hwang, and J-D Wang.

Occupational & Environmental Medicine 2003;60:364–369

Jung-Der Wang

College of Public Health, National Taiwan University, Taipei, Taiwan.

透過品質

区信心

 In 1994, the Taiwan EPA declared it as a hazardous waste site because of soil & groundwater contamination.

Disposal of waste solvents

- Chlorinated solvents as degreasers, including trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-TCA.
- Dense non-aqueous phase liquids (DNAPL)

Major contaminants in the groundwater downstream of the R factory

Tetrachloroethylene (PCE)

CH₂=CHCl

1,1,1-Trichloroethane (1,1, 1-TCA)

CH3CCI3

1,1-Dichloroethane (1,1-DCA)

CH₃CHCl₂

Pit dug for washing underground soil and water

Clean up action

Objective

 to investigate the association between cancer mortality risk and exposure to chlorinated hydrocarbons in groundwater of a downstream community near the R factory

Methods: Epi Investigation

- Death certificates collected from two adjacent villages for 1966-97
 - Linkage with National Cancer Registry using identification number
- Underlying cause of death was coded without knowledge of exposure by nosologists using ICD-9
- Cancer as the diseases of interest cardiovascular-cerebrovascular (CV-CB) diseases as the reference diseases

Concentrations & distribution of chlorinated hydrocarbons

Downstream area (to the north of the Route No. 1 and

Upstream area

the factory)

Well water concentration (N=44)

Well water concentration (N=2)

	IARC	Median (range)	Percentage I	Median (range)	Percentage
Chemicals	Group	(µg/L)	above MCL	$(\mu g/L)$	above MCL
Vinyl chloride	1	0.003 (ND-72.3)	29.5%	ND	0
Tetrachloroethylene	2A	2.95 (ND-5228.3)	45.5%	0.05 (ND-0.1)	0
Trichloroethylene	2A	28.43 (ND-1790.7)	65.9%	0.1 (0.1-0.1)	0
1,1-Dichloroethylene	3	1.35 (ND-1240.4)	27.3%	ND	0
1,1,1-Trichloroethane	3	0.67 (ND-1504.4)	11.4%	ND	0
c-1,2-Dichloroethylene	NA	3.05 (ND-1376.0)	15.9%	ND	0
1,1-Dichloroethane	NA	1.81 (ND-227.9)	NA	0.05 (ND-0.1)	NA

Exposure classification

- Groundwater flow direction
 - Towards the north & northeast in the first aquifer
- Classified as exposed (downstream) and unexposed (upstream)
- Verified with contaminant concentrations in 49 residential wells
- Location of residence on the death certificate – exposure status of each decedent

Mortality Odds Ratio (MOR): a special case of case-control study

	Exposure (+)	Exposure (-)
Disease of interest	a	b
Reference disease	С	d

Person-years N1

NΟ

- MOR = ad/(bc)
- Assumption: c/N1=d/N0

MOR design

- Appropriate reference diseases
 - No causal association with exposure
 - Comparable mortality between exposed and unexposed populations
 - Select CV-CB diseases, excluding arrhythmia related deaths
 - All non-cancer diseases as alternative choices

Methods

- MORs for various kinds of cancers after stratified by gender, age, and calendar period
 - Period: 1966-75 (historical control), 1976-85, 1986-97, test for time trend
 - Age: <30, 30-49, 50-69, >70
- Summary Odds Ratio controlling for age with Mantel-Haenszel method
- Multiple logistic regressions adjusted for age and period

MOR for liver cancer vs. CV-CB or Non-cancer diseases

		1966-79		1980-89			1990–97			
Gender	Cause of death	E(+)	E (-)	MOR‡ (95% CI)	E(+)	E(-)	MOR (95% CI)	E(+)	E (-)	MOR (95% CI)
Male†	Liver cancer	3	3	0.82 (0.15 to 4.44)	13	6	3.19 (0.99 to 10.32)	10	7	3.34 (1.00 to 11.13)
'	CV-CB diseases*	30	22	,	25	36	, ,	19	34	, ,
	Non-cancer diseases	104	56	0.59 (0.12 to 2.88)	104	86	1.78 (0.64 to 4.94)	67	97	2.33 (0.84 to 6.50)
Female	Liver cancer	0	1	-	1	2	1.02	3	2	2.09 (0.35 to 12.59)
	CV-CB diseases*	25	18		28	21		13	15	
	Non-cancer diseases	53	40	-	62	41	0.64 (0.06 to 6.56)	45	45	1.96 (0.33 to 11.50)

Increased MOR of male liver cancer

Adjusted MOR (95% CI) for cancer in men by residential area and time period

	Reside	ntial area	Period of death			
Cause of death (ICD-9)	Upstream village	Downstream village	1966-79	1980-89	1990-97	
All cancer 1 (140-208)		2.07 (1.31-3.27)	1	1.93 (1.08-3.46)	2.26 (1.24-4.13)	
Liver cancer (155)	1	2.57 (1.21-5.46)	1	3.96 (1.36-11.51)	4.17 (1.41-12.38)	
Stomach cancer (151)	1	2.18 (0.97-4.89)	1	1.43 (0.52-6.87)	1.66 (0.59-4.69)	
Colorectal cancer (153-154)	1	0.83 (0.24-2.89)	1	0.64 (0.12-3.28)	1.24 (0.29-5.30)	
Lung cancer (162)	1	1.75 (0.79-3.89)	1	3.66 (1.12-11.96)	3.01 (0.87-10.46)	

Discussion (1): Main findings

- Significant period effect in the downstream village
- Neighboring communities: similar socioeconomic characteristics
 - -% high education & white collar workers-downstream > upstream (less likely to be exposed to occupational carcinogens)
- BUT not all potential confounders could be controlled, because
 - Limited data on death certificates

Discussion (2): Biological plausibility

- Supportive evidence from health risk assessment: (Lee et al., J Toxicol Environ Health 2002;65:219-35)
- Corroborated evidence from animal study on ICR mice exposed to mixture of halogenated hydrocarbons:
 - Hepatocellular neoplasm in male Mammary adenocarcinoma in female (Wang FI, et al., J Toxicol Environ Health 2002;65:279-91)

Estimates of Exposure and Cancer Risk

Called Nish							
Route	Chemicals	Lifetime intake	Slope factor		Cancer risk		
		(mg/kg-day)	(mg/kg-day) ⁻¹	Source			
Dermal	VC	2.67E-06	7.20E-01	IRIS (2000)	1.92E-06		
absorption	PCE	2.05E-03	5.20E-02	NCEA (1995)	1.07E-04		
ausoi puon	TCE	3.11E-04	7.33E-02	NCEA (1995)	2.28E-05		
	VC	4.19E-04	1.54E-02	IRIS (2000)	6.45E-06		
Inhalation	PCE	4.25E-02	2.00E-03	NCEA (1995)	8.50E-05		
	TCE	1.93E-02	6.00E-03	NCEA (1995)	1.16E-04		
		VC (IARC 1)					
Risk estimates			PCE (IA)	RC 2A)	1.9E-04		

TCE(IARC 2A)

1.4E-04

Discussion (3)

- Chemical hepatocarcinogens may cause synergisitc effect on hepatitis B carriers
 - Alchocol, Aflatoxins
 - Mixtures of chlorinated hydrocarbons?
- Persistent DNAPL pollution
 - Difficult to clean up
 - Proper precaution: life-cycle of a product's manufacturing

Conclusion

- Significant association between residence at a groundwater contaminated community and male liver cancer
- But limited by lack of individual information on groundwater exposure and potential confounders
- Biologically plausible from other evidence

THANK YOU FOR YOUR ATTENTION

