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A system is more than the sum of its parts.

 Aristotle (384-322 BC)



New concepts

• Fit for purpose

– Water reuse

• Source separation and resource recovery

– Nutrient recovery

– Energy recovery

• Decentralization
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•Population: 5,600

•Flow Capacity: 1 MGD

•Legacy WWTP: CAS

•Upgraded WWTP: MLE 

biological treatment

MGD – Million gallons per day

WWTP – Wastewater Treatment Plant

CAS – Conventional Activated Sludge

MLE – Modified Ludzack-Ettinger

Bath NY Community & 

Wastewater Treatment
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Bath NY Community & 

Wastewater Treatment

– Bath wwtp

Food manufacturers

Beverage manufacturers
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•Comparative analysis of legacy and upgraded 

WWTPs

•Energy recovery potential and avoided product 

benefits of Anaerobic Digestion (AD) and land 

application of compost

– Effect of adding High Strength Organic Waste 

(HSOW)

•Calculate life cycle costs of upgraded system

Bath NY Community & Wastewater
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* SPDES – State Pollutant Discharge Elimination System

Influent & Effluent Characteristics

Characteristic 
Influent

Effluent

Legacy Upgraded

(mg/L)

Suspended Solids 437 7.9 5

Biological Oxygen Demand 323 8.5 2.3

Total Kjeldahl Nitrogen 56 16 4.4

Ammonia 32 6.7 3.6

Total Phosphorus 8 0.7 0.6

Nitrite <1 2.8 0.8

Nitrate <1 13 14

Organic Nitrogen 29 9 0.8

Total Nitrogen 61 31 20



Select LCI Calculations

• Electricity: calculated using a record of equipment 

use, horsepower, and run time

• Chemicals: via provided dosage rates

• Process GHGs

– N2O: based on TKN influent to secondary 

(Chandran 2012)

– Methane: based on BOD influent to secondary 

(IPCC 2006)

• Assigns methane correction factor for specific treatment units 

(Legacy – Czepiel 1993, Upgraded – Daelman et al. 2013)
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Select LCI Calculations continued…

• Biogas Production (Upgraded Plant)

– Based on Volatile Solids (VS) destruction assumption 

(ft3/day)

• Landfill Emissions (Legacy Plant)

– Regional and national average gas capture 

performance

– Degradation via a first-order decay model

• Composting Emissions (Upgraded Plant)

– Methane (0.11%, 0.82%, 2.5% of C)

– Nitrous Oxide (0.34%, 2.68%, 4.65% of N)

– Ammonia (1.2%, 6.7%, 12.74% of N)

– Carbon Monoxide (0.04% of C)11



Life Cycle Costing
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Total Costs = Ʃ (Annual Costs) + Ʃ (Amortized Capital Costs)

Total Capital Costs = Purchased Equipment Costs + Direct 

Costs + Indirect Costs

Total Annual Costs = Operation Costs + Replacement Labor 

Costs + Materials Costs + Chemical Costs + Energy Costs

Net Present Value=Σ(Costx/(1+i)x)



Anaerobic Digestion –

Feedstock Scenarios

• 3 feedstock scenarios analyzed to determine variation in 

environmental and cost performance (300,000 gal tanks)
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Waste Type

Base 

(gal/day)

Medium 

(gal/day) High (gal/day)

Primary Sludge 17,654 17,654 17,654

Waste Activated Sludge 75,557 75,557 75,557

Septic Waste 14,000 14,000 14,000

Slaughterhouse Waste - 1,000 4,000

Cheese Waste - 2,000 3,000

Winery Waste - 1,000 1,000

Portable Toilet Waste 2,000 2,000 2,000

Loading (lb VS/1000 ft3/day) 130 158 205



Anaerobic Digestion Operational 

Scenarios
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Parameter Name

Low Yield Base Yield High Yield

UnitsValue Value Value

Percent Volatile Solids 

Reduction 40 50 60 %

Biogas Yield

Base 12.0 15.0 24.5 ft3/lb VS destroyed

Medium 13.8 18.5 25.1 ft3/lb VS destroyed

High 15.7 22.2 27.3 ft3/lb VS destroyed

Methane Content of Biogas 55 60 65 % w/w

Biogas Heat Content (MJ/ft3) 0.59 0.64 0.68 MJ/ft3

Electrical Efficiency 33 36 40 %

Thermal Efficiency 46 51 56 %

Reactor Heat Loss Northern US Northern US Southern US n.a.

Anaerobic Digestion –

Performance Scenarios
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Compost Emission

Scenarios

Emission

Scenario

Emission 

Species Element

Loss of Incoming 

Element to GHGs Units

Low CH4 C 0.11% incoming C lost as CH4

Low N2O N 0.34% incoming N lost as N2O

Base CH4 C 0.48% incoming C lost as CH4

Base N2O N 2.68% incoming N lost as N2O

High CH4 C 1.70% incoming C lost as CH4

High N2O N 4.65% incoming N lost as N2O



Eutrophication Scenarios
Percent of Legacy System Impact
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Eutrophication Potential
Process Contribution
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Global Climate Change Potential 

Scenarios
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Global Climate Change Potential
Process Contribution
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Cumulative Energy Demand Scenarios
Percent of Legacy System Impact
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Cost Analysis
Upgraded System
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AD and Compost Payback

• Difficult to achieve with low acceptance of high strength 

organic waste.

Scenario (Feedstock

Scenario-Anaerobic 

Digester Scenario)

Low Cost Scenario

 

Base Cost Scenario High Cost Scenario

Anaerobic 

Digester

Composting 

Facility

Anaerobic 

Digester

Composting 

Facility

Anaerobic 

Digester

Composting 

Facility

Base Feed-Low AD None None None None None None

Base Feed-Base AD None None None None None None

Base Feed-High AD 72 None None None None None

Medium Feed-Low AD None 39 None None None None

Medium Feed-Base 

AD 271 82 None None None None

Medium Feed-High AD 32 440 177 None None None

22

High Feed-Low AD 219 11 None None None None

High Feed-Base AD 40 13 251 None None None

High Feed-High AD 16 18 41 None 45 None



Summary of Relative Scenario 

Impacts
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Conclusions

• Clear Environmental Benefit of HSOW Acceptance

–Maximize use of AD capacity

–Low AD performance (avoidable), can lead to increases in 

environmental impact

• Benefit to Climate Change Potential depends strongly on 

composting system selection and management

• Simple payback of AD is challenging to achieve at small-scale, 

but the trend is towards decreasing cost

• Many impact categories positively influenced by avoided 

electricity and natural gas consumption

• Appropriate use of AD has the potential to reduce environmental 

impacts of achieving increased nutrient removal
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