

Presentation to the International Society of Exposure Science 24th *Annual Meeting, October* 12-16, 2014

Community air monitoring and the Village Green Project

<u>Gayle Hagler¹</u>, Ron Williams¹, Wan Jiao¹, Bobby Sharpe², Bill Mitchell¹, Kelly Leovic¹, Lewis Weinstock³, Joann Rice³, Esteban Herrera⁴, Phil Dickerson³, John White³, Brad Johns³, Kristen Benedict³, Ron Evans³, Ann Brown¹, Peter Louie⁵

1. EPA Office of Research and Development, Research Triangle Park, NC 2. ARCADIS, Durham, NC

3. EPA Office of Air Quality Planning and Standards, Research Triangle Park, NC

- 4. EPA Office of Enforcement and Compliance Assurance, Denver, CO
- 5. Hong Kong Environmental Protection Department, Hong Kong SAR, China

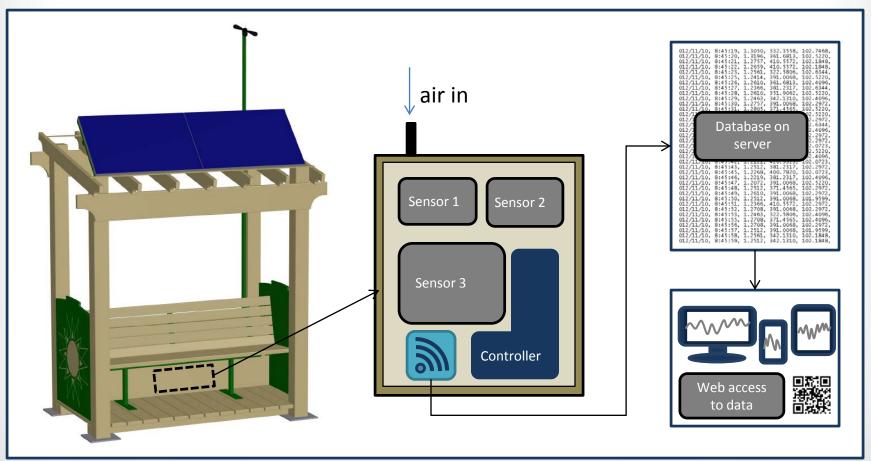
Goals of this talk

- Present on a new initiative at EPA to develop lower cost air measurement technology for long-term application in communities.
- Discuss the engineering challenges and design of the system.
- Review performance in terms of data collection completeness over a long-term timeframe and compare measurements against regulatory measurements nearby.

SEPA Background

- Technology development is needed to engage the community in understanding their local air quality
- Traditional / regulatory air monitoring stations are challenging to replicate in large number due to cost and siting limitations
- EPA's Village Green Project (VGP) seeks to address the technology gap by designing a proof-of-concept air monitor prototype

Village Green Project Vision



SEPA

- Lower cost to install and run: sustainable, self-powered, minimum maintenance
- Provides real-time data: one minute data rate, automated quality checks
- Engages the community: in a community environment
- Accessible data and information: publically available on a website

System design

Key constraints: physical footprint, power, instrumentation that can withstand no heating or A/C, minimize cost to the extent possible

	FEPA	ystem de
No.	Component (model)	Manufacturer
1	PM monitor (pDR-1500)	Thermo Scientific
2	Ozone monitor (OEM-106)	2B Technologies
3	Wind sensor (09101)	RM Young
4	Humidity and temperature sensor (HMP60)	Vaisala
5	Power controller (Sunsaver SS- 10L-12V)	Morningstar
6	AGM battery (WKDC12-80P, 12V, 80Ah)	Werker
7	Solar panel (SLP085-12MKCT, 85W, 12 VDC)	Solarland
8	Microprocessor (Arduino Mega 2560)	Arduino
9	Cellular router (Airlink Raven XE)	Sierra Wireless
10	Bench structure	Safeplay Systems

System design

Jan 20

Jan 22

Jan 24

SEPA

Public website updated minute-by-minute

https://villagegreen.epa.gov/

Jan 26

Jan 28

Jan 30

Partnership with local library

Bench installed outside of a library in Durham, North Carolina in June, 2013. Still operating 16+ months later...

Partnership with local library

Sign next to station with information on the air monitoring project, explanation of the Air Quality Index, QR code for smartphones to easily connect to website

SEPA

\$EPA

Does it actually work?

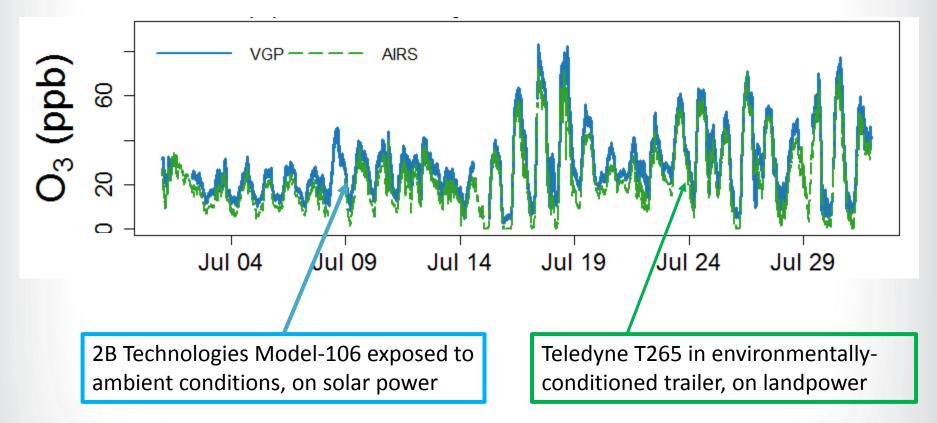
Continuous, round-the-clock logging of 1 minute data...

	Missing data (%) per month due to				Overall completeness ^a (%)			
	Quality checks or maintenance		Low solar power	Comm. interruptions				
Month	Ozone	PM _{2.5}			Ozone	PM _{2.5}	Wind	Temp/RH
2013/06	0	0	0	4	96	96	96	96
2013/07	0	0	0	7	93	93	93	93
2013/08	0	0	0	0	100	100	100	100
2013/09	0	1	0	0	100	99	100	100
2013/10	0	59 ^b	17	0	83	24	83	83
2013/11	0	1	3	31	66	65	66	66
2013/12	43 ^b	1	11	10	36	79	79	79
2014/01	28 ^b	2	1	2	70	96	97	97
2014/02	9	8	9	0	82	83	91	91
2014/03	8	4	3	6	83	87	91	91

Solar panels provided sufficient power to operate ~94.5% of the time

Comparison with nearby benchmark instruments

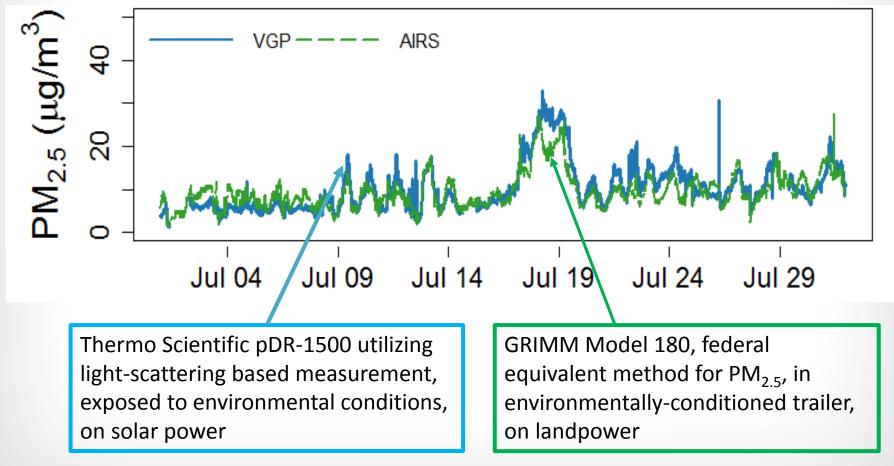
EPA-RTP AIRS site (~1 mile away)



₿EPA

Comparison with nearby benchmark instruments

5-minute ozone measurements compared between sites located 1 mile apart

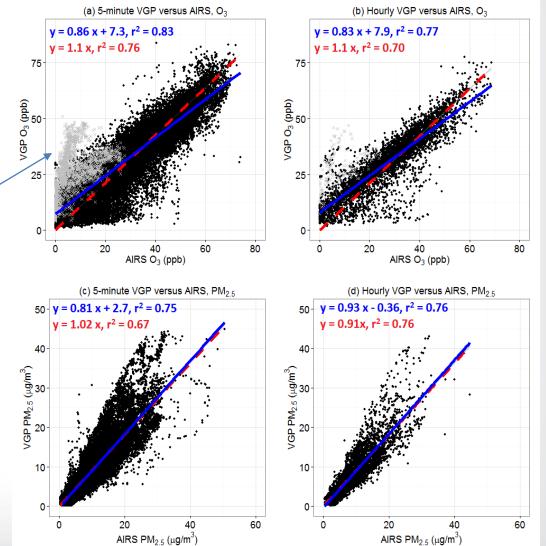

€ FPA

Comparison with nearby benchmark instruments

5-minute PM_{2.5} measurements compared between sites located 1 mile apart

EPA

*0.32% of pDR-1500 data flagged and removed for apparent local exhaust ($|\Delta PM_{2.5}|>15 \ \mu g/m^3$ in 1 min)


Comparison with nearby benchmark instruments

Overall good agreement for ozone and PM_{2.5} data over a 10 month timeframe (r²>0.7)

SEPA

One week period of notable deviation, under investigation; removing this period leads to $r^2 > 0.8$

Overall: VGP station reports about 3.6 ppbv or 14% higher ozone; 0.86 µg/m³ or 8.5% lower PM_{2.5} readings

Set EPA

New effort:Village Green 2

Moving from "prototype" to "pilot" in the United States with state partners

Village Green II Goals:

- Expand on prototype for increased system capability and additional sensors
- Partner with states and communities
- Increase transparency through public access to real time data from multiple data sets
- Utilize AirNow and share IT services with increased data capacity
- Flexibility for long term expansion platform design with capability to supplement and flexible to allow for interchangeable parts

SEPA New effort: Hong Kong collaboration

Collaboration between EPA and HKEPD to pilot-test of rooftop version of system in Hong Kong – interest to see performance for long-term monitoring under higher pollution levels

Summary

- EPA scientists continue to utilize, test, and develop air monitoring technologies for a wide variety of applications – ranging from regulatory applications to emerging research questions.
- Village Green Project emerged out of an identified technology gap for non-regulatory air monitoring technology to apply in a community area and provide engagement/awareness.
- System design will be publically available and is designed to be flexible.
- Ideally, future versions will expand list of pollutant measures while maintaining goals of renewable power and small footprint.

EPA Acknowledgements

- EPA OECA: David Hindin
- EPA ORD: Lindsay Stanek, Vasu Kilaru, Carlos Nunez, Eben Thoma, Bob Wright, Paul Groff, Richard Shores, Doug McKinney, Peter Preuss, Stacey Katz, Gail Robarge, Dan Costa, Tim Watkins, Emily Snyder, Scott Moore
- EPA OAR: Michael Papp, Richard Wayland