# **Test Report**

# InStove 60-Liter Institutional Stove with Wood Fuel

Air Pollutant Emissions and Fuel Efficiency



Prepared by: James J. Jetter, P.E. Seth Ebersviller, Ph.D.

### **U.S. Environmental Protection Agency**



Cookstove Testing Facility operated by: Craig Williams Jerroll Faircloth

**ARCADIS U.S., Inc.** A contractor to the U.S. Environmental Protection Agency

Research Triangle Park, North Carolina, USA

#### Notice

The U.S. Environmental Protection Agency (EPA), through its Office of Research and Development, has financially supported the testing described here. This document has been reviewed by the Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation by the EPA for use.

Prepared by:

James J. Jetter, P.E., Principal Investigator

Seth Ebersviller, Ph.D., Post-Doctoral Fellow

Air Pollution Prevention and Control Division National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency

#### **Executive Summary**

The U.S. Environmental Protection Agency's (EPA's) cookstove testing program was first developed to assist the EPA-led Partnership for Clean Indoor Air (1) and is now part of the U.S. Government's commitment to the Global Alliance for Clean Cookstoves (the Alliance) (2). Goals of the testing program are to:

- Support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions (3).
- 2. Support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards (4).
- 3. Provide an independent source of data to Alliance partners.

This work supports EPA's mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year (5), and emissions of black carbon and other pollutants from cookstoves affect regional and global climate (6). An Alliance-coordinated multi-national multi-disciplinary approach, including the development of standards and testing, is designed to improve global health and the environment through clean cooking solutions (7).

This report provides testing results for a cookstove system consisting of the stove, cooking pot, fuel, and operating procedure. A detailed description of the system is provided in the body of the report. During testing, the stove was operated as intended by the manufacturer. Actual performance of a cookstove used in the field may vary if the system is different (e.g., a different fuel is used) or is not operated as intended.

The cookstove system was tested using the Water Boiling Test (WBT) Version 4.2.3 (8) and following the ISO IWA (International Workshop Agreement) 11-2012, Guidelines for Evaluating Cookstove Performance (9) (10), unanimously affirmed by more than 90 stakeholders at the ISO International Workshop on Cookstoves on February 28-29, 2012, in The Hague, Netherlands. IWA 11:2012 provides guidelines for rating cookstoves on tiers of performance for four important indicators: [1] Efficiency/fuel use, [2] Total Emissions, [3] Indoor Emissions, and [4] Safety; and the guidelines are being used while further development of testing protocols and standards is underway through ISO Technical Committee 285 (3). For measuring air pollutant emissions, the "total capture" method (also known as the "hood" method) was used, as described on Pages 60-61 of the WBT protocol (8) and similar to EPA Method 5G (11). The protocol specifies that the stove be tested at high power (cold- and hot-start phases) and low power (simmer phase). The cold-start phase begins with the stove at ambient temperature, and the hot-start phase begins with the stove at operating temperature. During both phases, the stove is operated at high power to heat water in the pot from ambient to boiling temperature. During the simmer phase, the stove is operated at low power to maintain the target water temperature at 3 °C below the boiling point. Fuel burning rates determine the power levels. During testing, variation in fuel

burning rates between test replications is minimized. Actual performance of a cookstove used in the field may vary if the stove is operated at different fuel burning rates and hence at different power levels.

Test results summarized on Page iv were obtained in accordance with IWA 11:2012 guidelines, and tier ratings range from 0 (baseline) to 4 (best). Tier 0 represents the performance of typical traditional open three-stone fires used for cooking, and Tier 4 represents aspirational goals for solid-fuel cookstoves. Efficiency/fuel use, total emissions, and indoor emissions are tested at high- and low-power operating conditions, and sub-tier values and ratings are reported for the two power levels, while the overall rating is the lowest sub-tier rating, as specified in the IWA. Sub-tier values and ratings for many different stove types are compared in Figures 4 and 6-9 of this report. Following are brief descriptions of performance indicators specified in the IWA.

**Efficiency/fuel use** is an important indicator, especially for cookstoves used in areas where fuel is scarce or expensive or where forest degradation is an issue due to unsustainable harvesting of wood for fuel. Greater fuel efficiency is desirable, but increased efficiency does not always correlate with reduced emissions of air pollutants. Efficiency/fuel use tier levels are based on thermal efficiency at high power and specific energy use at low power, per the IWA.

**Total emissions** of air pollutants from cookstoves have potential impact on human health and climate change. CO (carbon monoxide) and PM<sub>2.5</sub> (fine particulate matter) are indicator pollutants specified in IWA 11:2012, and emissions of additional pollutants are quantified in this report, including gaseous pollutants CO<sub>2</sub> (carbon dioxide), THC (total hydrocarbons), CH<sub>4</sub> (methane), and NO<sub>x</sub> (nitrogen oxides), as well as particulate OC (organic carbon), EC (elemental carbon), and BC (black carbon). Total emission tier levels are based on the mass of pollutant emitted per unit of useful energy delivered at high power and the specific emission rate at low power, per the IWA.

**Indoor emissions** have a potential direct impact on human health, and emissions may be reduced by stoves with cleaner combustion and/or with chimneys (flues). Stoves without chimneys are tested for total emissions into the indoor space, and stoves with chimneys are tested for fugitive emissions from the stove. Indoor emissions tier levels are based on emission rates, per the IWA.

**Safety** is also an important indicator included in IWA 11:2012 for evaluation of stoves for protection from risk of burns and other injuries, but safety is not evaluated in this report.

**Cooking power** is not an IWA performance indicator, but it is reported in the summary because it can be important for meeting user needs.

**Fuel burning rates** are reported to define the test conditions.

IWA tier ratings are based on the performance of the stove system operated as intended with lowmoisture fuel. Additional test results are provided in this report for energy efficiency, fuel use, and air pollutant emissions for both low- and high-moisture fuel. Discussion of results, observations, and quality assurance are also included in the report.

| Stove Manufacturer<br>& Model | InStove Cottage Grove, OR, USA<br>60-Liter Institutional Stove Serial No. 1079 |
|-------------------------------|--------------------------------------------------------------------------------|
| Testing Center                | EPA-Research Triangle Park, North Carolina, USA                                |
| Test Protocol                 | WBT Version 4.2.3, EPA Rev. 4 [see Reference (8)]                              |
| Fuel Used                     | Red oak wood, 7.2% moisture (wet basis), 2 x 2 x 36 cm                         |
| Pot Used                      | Flat-bottomed pot supplied with stove, tested with 40 liters of water          |

#### Test results were obtained in accordance with ISO (International Organization for Standardization) IWA (International Workshop Agreement) 11:2012. See previous page for brief description.

|            |          | Metric                        | Value | Unit                         | Sub-Tier |
|------------|----------|-------------------------------|-------|------------------------------|----------|
| Efficiency | / Fuel   | Jse                           |       |                              |          |
| Tion       | ier 4    | High Power Thermal Efficiency | 56    | %                            | 4        |
| Her        | 4        | Low Power Specific Energy Use | 0.005 | MJ / (min L)                 | 4        |
| Total Emi  | ssions   | -                             |       |                              |          |
| Tion       |          | High Power CO                 | 2.9   | g / MJ <sub>delivered</sub>  | 4        |
|            | 3        | Low Power CO                  | 0.02  | g / (min L)                  | 4        |
| ner        |          | High Power PM <sub>2.5</sub>  | 155   | mg / MJ <sub>delivered</sub> | 3        |
|            |          | Low Power PM <sub>2.5</sub>   | 0.3   | mg / (min L)                 | 4        |
| Indoor En  | nissions |                               |       |                              |          |
|            |          | High Power CO                 | 0.01  | g / min                      | 4        |
| Tion       | Л        | Low Power CO                  | 0.009 | g / min                      | 4        |
| ner        | 4        | High Power PM <sub>2.5</sub>  | 1.0   | mg / min                     | 4        |
|            |          | Low Power PM <sub>2.5</sub>   | 0.3   | mg / min                     | 4        |

# Tiers $0 \rightarrow 4$ (best)

| $Hers 0 \rightarrow 4 (best)$                                                     | Value | Unit    |
|-----------------------------------------------------------------------------------|-------|---------|
| Cooking Power (average of Cold Start and Hot Start phases)                        | 3,703 | W       |
| Fuel burning rate (average for Cold Start, based on equivalent dry fuel consumed) | 22.2  | g / min |
| Fuel burning rate (average for Hot Start, based on equivalent dry fuel consumed)  | 22.7  | g / min |
| Fuel burning rate (average for Simmer, based on equivalent dry fuel consumed)     | 11.3  | g / min |

1

## Acronyms and Abbreviations

| Alliance                | Global Alliance for Clean Cookstoves                                         |
|-------------------------|------------------------------------------------------------------------------|
| ASTM                    | American Society for Testing and Materials (now known as ASTM International) |
| BC                      | black carbon                                                                 |
| С                       | carbon                                                                       |
| $C_3H_8$                | propane                                                                      |
| CH <sub>4</sub>         | methane                                                                      |
| cm                      | centimeter                                                                   |
| СО                      | carbon monoxide                                                              |
| CO <sub>2</sub>         | carbon dioxide                                                               |
| EC                      | elemental carbon                                                             |
| EPA                     | U.S. Environmental Protection Agency                                         |
| g                       | gram(s)                                                                      |
| HEPA                    | high-efficiency particulate air                                              |
| ISO                     | International Organization for Standardization                               |
| IWA                     | International Workshop Agreement                                             |
| kg                      | kilogram(s)                                                                  |
| kJ                      | kilojoule(s)                                                                 |
| L                       | liter(s)                                                                     |
| MCE                     | modified combustion efficiency                                               |
| Met Lab                 | Metrology Laboratory                                                         |
| mg                      | milligram(s)                                                                 |
| min                     | minute(s)                                                                    |
| MJ                      | megajoule(s)                                                                 |
| MJ <sub>delivered</sub> | megajoule(s) of useful energy delivered                                      |
| mm                      | millimeter(s)                                                                |
| n.a.                    | not applicable                                                               |
| NIOSH                   | National Institute for Occupational Safety and Health                        |
| NOx                     | nitrogen oxides                                                              |
| OC                      | organic carbon                                                               |
| PM <sub>2.5</sub>       | particulate matter with an aerodynamic diameter ≤ 2.5 micrometers            |
| PTFE                    | polytretrafluoroethylene                                                     |
| QA                      | quality assurance                                                            |
| RTP                     | Research Triangle Park                                                       |
| SD                      | standard deviation                                                           |
| SOP                     | Standard Operating Procedure                                                 |
| тс                      | Technical Committee                                                          |
| тс                      | total carbon                                                                 |
| THC                     | total hydrocarbon                                                            |
| W                       | Watt(s)                                                                      |
| WBT                     | Water Boiling Test                                                           |

### Contents

| Notice                                 | i   |
|----------------------------------------|-----|
| Executive Summary                      | ii  |
| Acronyms and Abbreviations             | v   |
| List of Figures                        | vi  |
| List of Tables                         | vii |
| Cookstove Testing Program              | 1   |
| Description of Cookstove System Tested | 1   |
| Test Protocol                          | 3   |
| Test Results                           | 4   |
| Test Results for High-Moisture Fuel    | 6   |
| Test Results for Indoor Emissions      | 6   |
| Discussion of Results and Observations | 10  |
| Quality Assurance/Quality Control      | 12  |
| Tables                                 | 13  |
| Acknowledgments                        |     |
| References                             |     |

## List of Figures

| Figure 1. Side-view cross-section diagram showing internal design. Credit: InStove                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. InStove 60-Liter Institutional Stove                                                                                                                       |
| Figure 3. Cooking power versus fire power during high-power7                                                                                                         |
| Figure 4. Specific energy use during low-power versus thermal efficiency during high-power7                                                                          |
| Figure 5. Modified combustion efficiency, low-power versus high-power                                                                                                |
| Figure 6. CO versus PM <sub>2.5</sub> emissions per useful energy delivered to water in the cooking pot during high-                                                 |
|                                                                                                                                                                      |
| power                                                                                                                                                                |
| power                                                                                                                                                                |
| power8Figure 7. CO versus PM2.5 emissions per liter of water simmered per minute during low-power9Figure 8. CO versus PM2.5 indoor emission rates during high-power9 |
| power                                                                                                                                                                |
| power                                                                                                                                                                |

#### **List of Tables**

| Table 1. Low-moisture fuel, high-power cold-start – WBT, PM2.5, and gaseous pollutant parameters14              |
|-----------------------------------------------------------------------------------------------------------------|
| Table 2. Low-moisture fuel, high-power hot-start – WBT, PM2.5, and gaseous pollutant parameters 16              |
| Table 3. Low-moisture fuel, low-power (30-min simmer) – WBT and pollutant emission parameters18                 |
| Table 4. Low-moisture fuel – emissions of OC (organic carbon) and EC (elemental carbon) in PM <sub>2.5</sub> 20 |
| Table 5. Low-moisture fuel – $PM_{2.5}$ mass fractions of organic carbon to total carbon (OC/TC) and            |
| elemental carbon to total carbon (EC/TC)21                                                                      |
| Table 6. Low-moisture fuel – emissions of BC (black carbon) measured with aethalometer                          |
| Table 7. High-moisture fuel, high-power cold-start – WBT, PM2.5, and gaseous pollutant parameters23             |
| Table 8. High-moisture fuel, high-power hot-start – WBT, PM2.5, and gaseous pollutant parameters 24             |
| Table 9. High-moisture fuel, low-power (30-min simmer) – WBT and pollutant emission parameters 25               |
| Table 10. High-moisture fuel – emissions of PM2.5 OC (organic carbon) and EC (elemental carbon)                 |
| Table 11. High-moisture fuel – PM2.5 mass fractions of organic carbon to total carbon (OC/TC) and               |
| elemental carbon to total carbon (EC/TC)26                                                                      |
| Table 12. High-moisture fuel – emissions of BC (black carbon) measured with aethalometer                        |
| Table 13. Comparison of low- and high-moisture fuel – WBT, $PM_{2.5}$ and gaseous pollutant parameters. 28      |
| Table 14. Comparison of low- and high-moisture fuel – PM2.5 organic and elemental carbon emissions. 29          |
| Table 15. Comparison of low- and high-moisture fuel – emissions of black carbon (aethalometer)                  |
| Table 16. Results from indoor (fugitive) emissions tests                                                        |
| Table 17. Carbon balance, percent difference based on fuel carbon         30                                    |
| Table 18. Measurement quality objectives for critical measurements                                              |
|                                                                                                                 |

#### **Cookstove Testing Program**

The U.S. Environmental Protection Agency's (EPA's) cookstove testing program was first developed to assist the EPA-led Partnership for Clean Indoor Air (1) and is now part of the U.S. Government's commitment to the Global Alliance for Clean Cookstoves (the Alliance) (2). Goals of the testing program are to:

- Support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions (3).
- 2. Support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards (4).
- 3. Provide an independent source of data to Alliance partners.

This work supports EPA's mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year (5), and emissions of black carbon and other pollutants from cookstoves affect regional and global climate (6). An Alliance-coordinated multi-national multi-disciplinary approach, including the development of standards and testing, is designed to improve global health and the environment through clean cooking solutions (7).

#### **Description of Cookstove System Tested**

A cookstove system consists of the stove, cooking pot, fuel, and operating procedure. The default operating procedure used for testing is the written instructions provided by the manufacturer, or operation as intended by the manufacturer. Actual performance of a cookstove used in the field may vary if the system is not operated as intended.

**Development and dissemination.** Damon Ogle and Fred Colgan developed the 60-liter Institutional Stove while associated with Aprovecho Research Center in Cottage Grove, Oregon, USA. In 2012, Colgan and Ogle founded Institutional Stove Solutions (InStove) to further develop and disseminate the technology. InStove manufactures stoves in Cottage Grove and has established a factory in Afikpo, Nigeria. InStove institutional stoves are designed for use in developing-world institutional settings, primarily refugee camps, schools, clinics, hospitals, and orphanages. More than 1,000 stoves have been disseminated in 20 countries, according to InStove (12).

**Type of stove.** The InStove 60-Liter Institutional Stove is a natural-draft type of cookstove designed for wood or other biomass fuel. Electrical power is not required for natural-draft stoves (power is required for some forced-draft stoves). As shown in Figure 1, a chimney provides draft and may be used to vent emissions to outside the cooking space. A rocket-type combustion chamber is located under the cooking pot. A "sunken-pot" design provides an integral pot skirt to enhance heat transfer to the sides, as well as the bottom, of the pot. The stove is designed to burn fuel sticks of wood or other biomass (e.g., biomass briquettes) that are manually fed into an opening in the lower front of the stove. Cooking power is controlled by the amount of fuel fed into the combustion chamber. A cap on top of the

chimney prevents rain from entering the stove. The stove is designed to be manufactured in a small factory. InStove has developed drinking-water pasteurization and hospital-grade autoclave systems for use with the stove, but EPA tested the stove with only the cooking pot.



#### Figure 1. Side-view cross-section diagram showing internal design. Credit: InStove

**Construction materials.** The InStove body is built from a 55-gallon steel drum that is coated to prevent corrosion. The combustion chamber is constructed from high-temperature 310 stainless steel and 601 nickel alloys. Chimney and rain cap are galvanized steel, and the pot and lid are aluminum. Weight of the stove without the pot is 33 kg.



#### Dimensions.

Stove height: 88 cm Stove body diameter: 59 cm Combustion chamber internal diameter: 14 cm Combustion chamber internal height: 22 cm Chimney internal diameter: 15 cm Chimney length: 152 cm Height of chimney top from floor: 198 cm Fuel opening: 16.5 cm x 6.5 cm Height of fuel opening from floor: 20 cm Pot dimensions: see below

Figure 2. InStove 60-Liter Institutional Stove

Accessories. The stove was supplied with a cooking pot, pot lid, chimney, and rain cap.

**Cooking pot.** The flat-bottomed pot supplied with the stove was used for the tests. Weight of the pot is 4.1 kg, and weight of the pot lid is 0.6 kg. Full capacity is approximately 55 liters, and the pot was used with 40 liters of water for the tests – the water was level with the top of the stove body, as shown in Figure 1. The stove system was tested without the lid on the pot, per the test protocol (described below). The pot material is aluminum. Outside diameter is 41.3 cm, and inside diameter is 40.5 cm at the top of the pot. Outside diameter at the bottom is 40 cm. Height is 45 cm. The pot and stove are designed to function together, and performance may vary if the stove is used with a different cooking pot.

**Fuel.** A hardwood, Red Oak (*Quercus rubra*), was obtained from a local supplier. Bark was removed, and the wood was saw-cut to dimensions of 2 cm x 2 cm x 36 cm. Wood was air dried, and high-moisture fuel was preserved in air-sealed containers in a freezer. Moisture content is reported on a wet basis in Tables 1-3 for low-moisture fuel and in Tables 7-9 for high-moisture fuel. Performance may vary if the stove is used with a different type of fuel.

**Operating procedure.** Operating and safety instructions were supplied with the stove, and the instructions were followed during testing.

**Cost.** According to InStove information (12), retail cost is approximately US\$850 for the 60-liter institutional stove.

**Quantity disseminated.** According to InStove information (12), more than 1,000 stoves have been disseminated.

**Lifetime.** Estimated typical lifetime is approximately five years, but lifetime may vary depending on hours of use, fuel quality, environmental conditions, and other factors. In the future, a durability testing protocol may be developed through ISO TC 285, and durability testing may provide more comparable and quantitative results than the estimated lifetime.

#### **Test Protocol**

The cookstove system was tested using the Water Boiling Test (WBT) Version 4.2.3 (8) and following the ISO IWA (International Workshop Agreement) Guidelines for Evaluating Cookstove Performance (9) (10). Further development of testing protocols and standards is underway through ISO Technical Committee 285 (3). For measuring air pollutant emissions, the "total capture" method (also known as the "hood" method) was used, as described on Pages 60-61 of the WBT protocol (8) and similar to EPA Method 5G (11). Emissions were captured in a fume hood and were drawn under negative pressure through a primary dilution tunnel and then through a secondary tunnel with additional high-efficiency particulate air (HEPA)-filtered dilution air. Total emissions were measured per the ISO IWA by capturing both chimney emissions and fugitive emissions from the stove body with a fume hood. Indoor emissions were measured per the ISO IWA by capturing only fugitive emissions from the stove body with a fume hood. For quantification of total emissions, gaseous air pollutants were sampled from the primary dilution tunnel. For quantification of indoor emissions, both gaseous and particulate pollutants were sampled from the primary dilution tunnel.

The WBT protocol specifies that the stove be tested at high power (cold- and hot-start phases) and low power (simmer phase). The cold-start phase begins with the stove at ambient temperature, and the hot-start phase begins with the stove at operating temperature. During both phases, the stove is operated at high power to heat water in the pot from ambient to boiling temperature. During the simmer phase, the stove is operated at low power to maintain the target water temperature at 3 °C below the boiling point. Fuel burning rates determine the power levels. During testing, variation in fuel burning rates between test replications is minimized. Actual performance of a cookstove used in the field may vary if the stove is operated at different fuel burning rates and hence at different power levels.

During each of the three separate phases of the test protocol,  $PM_{2.5}$  (particulate matter with an aerodynamic diameter  $\leq 2.5$  micrometers) was isokinetically sampled and collected on polytretrafluoroethylene (PTFE)-membrane filters for gravimetric analysis and on quartz-fiber filters for OC (organic carbon) and EC (elemental carbon) analyses. Gravimetric analysis was performed with a microbalance in a temperature- and humidity-controlled room. OC and EC analyses was performed using National Institute for Occupational Safety and Health (NIOSH) Method 5040 (13), including analysis of gas-phase samples collected on quartz fiber filters downstream of PTFE membrane filters to account for the gas-phase absorption artifact (14). BC (black carbon) concentrations were measured in real-time with a microAeth<sup>®</sup> Model AE51 (AethLabs, San Francisco, CA, USA) aethalometer. Gaseous pollutant concentrations were measured in real-time with continuous emission monitors. CO (carbon monoxide) and CO<sub>2</sub> (carbon dioxide) were measured with non-dispersive infrared analyzers, THC (total hydrocarbons) and CH<sub>4</sub> (methane) were measured with flame-ionization detection analyzers, and nitrogen oxides (NO<sub>x</sub>) were measured with a chemiluminescence analyzer.

Fuel moisture content was measured using the oven-drying method (15), and fuel heat of combustion was measured using the calorimeter method (16).

#### **Test Results**

A summary of results is presented in accordance with ISO IWA 11:2012 (9) on Page iv of this report. IWA tier ratings are based on the performance of the stove system operated as intended with low-moisture wood fuel.

InStove test results are compared with previously published results (17) in Figures 3-9. Key indicators of performance shown in the figures are described in Jetter et al. 2012 (17). Error bars on the data points for the InStove stove indicate standard deviations or 95% confidence intervals (using the t-distribution), as specified in the figures. For reference, data points for the 3-stone fire are indicated by red-colored X markers. Two data points are shown on each graph for a carefully-tended and a minimally-tended 3-stone fire. The carefully-tended fire performed better than the minimally-tended fire in all measures (17). Data points (blue diamonds indicated by the letter "P") are indicated for comparison with the Philips Model HD4012 – a well-known and relatively high-performing forced-draft solid-fuel household stove. Data points for other stoves with previously published results are not identified in Figures 3-9, but stoves are identified in the journal article (17). All data shown in the figures are for stoves tested with low-moisture solid fuels, as described in the published results (17).

**Cooking power versus fire power** (in measurement units of Watts) data are shown in Figure 3 for highpower (average of cold-start and hot-start phases of the WBT). Cooking power is the rate of useful energy delivered to the contents of the cooking pot, while fire power is the rate of fuel energy used. Adequate cooking power is important for user acceptability, and cooking power is correlated with "timeto-boil" (17). The ratio of cooking power to fire power is thermal efficiency – shown in Figure 4.

**Specific energy use during low-power** (simmer phase of the WBT) **versus thermal efficiency during high-power** (average of cold-start and hot-start phases of the WBT) data are shown in Figure 4. These metrics are used to determine IWA Tier ratings, and the IWA Sub-Tiers are indicated in the figure.

**Low-power versus high-power MCE** (modified combustion efficiency) data are shown in Figure 5. MCE is defined as  $[CO_2/(CO_2 + CO)]$  on a molar basis and is considered a reasonable proxy for true combustion efficiency. MCE is not used to determine IWA Tier ratings, but stoves with higher MCEs tend to have lower emissions of air pollutants. Best performance is indicated in the upper right corner of the graph.

**CO versus PM<sub>2.5</sub> emissions per useful energy delivered** (MJ<sub>delivered</sub>) to the water in the cooking pot during high-power phases of the WBT data are shown in Figure 6. Pollutant emissions per useful energy delivered and thermal efficiency are key IWA metrics because they are based on the fundamental desired output – cooking energy – that enables valid comparisons between all stoves and fuels.

**CO versus PM<sub>2.5</sub> emissions per minute per liter of water simmered** during the low-power phase of the WBT data are shown in Figure 7. Useful cooking energy is not accurately measured during the low-power test phase of the WBT (17), therefore the specific emission rate is used as the metric, per the IWA.

**CO versus PM<sub>2.5</sub> indoor emission rates during high-power** phases of the WBT data are shown in Figure 8.

CO versus PM<sub>2.5</sub> indoor emission rates during low-power data are shown in Figure 9.

**Tabulated data** for the InStove with low-moisture wood fuel, including data for test replicates, are shown in Tables 1-3 for parameters of the Water Boiling Test (8) and emissions of PM<sub>2.5</sub> and gaseous air pollutants, as described in Jetter et al. 2012 (17). Test Numbers shown in the column headings may not be sequential, because tests were rejected if quality assurance requirements were not met (see Quality Assurance/Quality Control section, below). The number of acceptable test replicates performed was seven for low-power, nine for high-power hot-start, and ten for high-power cold-start test phases. A sufficient number of replicates was performed to reduce 95% confidence intervals for ISO IWA tier ratings (Figures 4, 6, and 7).

**OC** and **EC** particulate emissions data are reported for low-moisture fuel in Table 4. Mass fractions of organic and elemental carbon to total carbon in particulate matter are reported in Table 5.

BC emissions data are reported for low-moisture fuel in Table 6.

#### **Test Results for High-Moisture Fuel**

Tabulated data for the InStove 60-Liter Institutional Stove with high-moisture fuel are shown in Tables 7-12 in the same format as Tables 1-6, as described in the previous section for low-moisture fuel. Four test replicates were performed to enable the calculation of standard deviations as an indicator of test variability. A side-by-side comparison of data for low- and high-moisture fuels is provided in Tables 13-15. Results for high-moisture "green" wood fuel are indicated by the green background color in the tables, while results for low-moisture (dry) fuel are indicated by the tan color. Moisture content was approximately 30 percent (wet basis) for high-moisture wood fuel, but some low-moisture fuel was required for starting the fire and maintaining combustion. Fuel moisture content is reported as the average (on a mass basis) of low- and high-moisture fuels, as described in Jetter et al. – see Supporting Information (17).

#### **Test Results for Indoor Emissions**

Data for indoor (fugitive) emissions tests per the ISO IWA with low-moisture fuel are shown in Table 16. The chimney effectively vented most of the emissions, and no visible smoke was emitted from the stove body during the tests. One test was performed to confirm and quantify the low level of fugitive emissions, and results are reported in the table.



Figure 3. Cooking power versus fire power during high-power



Figure 4. Specific energy use during low-power versus thermal efficiency during high-power



Figure 5. Modified combustion efficiency, low-power versus high-power



*Figure 6.* CO versus PM<sub>2.5</sub> emissions per useful energy delivered to water in the cooking pot during high-power



Figure 7. CO versus PM<sub>2.5</sub> emissions per liter of water simmered per minute during low-power



Figure 8. CO versus PM<sub>2.5</sub> indoor emission rates during high-power





#### **Discussion of Results and Observations**

As shown in the Results Summary, the InStove's cooking power was approximately 3,700 W (average of cold-start and hot-start test phases of the WBT). As shown in Figure 3, cooking power for the institutional stove was much greater than household stoves previously tested. The InStove is rated at Tier 4 for Efficiency/Fuel Use, as shown in Figure 4. MCE for the InStove was in the same range as other natural draft stoves at high power and somewhat less at low power, as shown in Figure 5.

The InStove is rated at Tier 3 for Total Emissions, as shown in the Results Summary. CO emissions are rated at Sub-Tier 4, and PM<sub>2.5</sub> emissions are rated at Sub-Tiers 3 and 4 for high- and low-power, respectively. The overall Tier rating is based on the lowest Sub-Tier rating, per the IWA. As shown in Figures 6 and 7, many previously tested forced-draft and natural-draft stoves were rated at Sub-Tier 4 for CO emissions, but fewer stoves were rated at Sub-Tiers 3 or 4 for PM<sub>2.5</sub> emissions. The InStove is rated at the same Sub-Tiers for Total Emissions as the previously tested Philips HD4012 stove.

As shown in the Results Summary, the InStove is rated at Tier 4 for Indoor Emissions. Indoor Emissions Tiers are based on emission rates (pollutant mass per time) into the household space, as shown in Figures 8 and 9. Since the InStove has an effective chimney, fugitive emissions from the stove body are very low. Fugitive emissions of CO and PM<sub>2.5</sub> (Table 16) were approximately 1-3% of total emissions (Tables 1-3).

The fraction of organic to total carbon in  $PM_{2.5}$  was greater at low-power than at high-power with lowmoisture fuel, as shown in Table 5. Elemental carbon is generally considered a reasonable proxy for black carbon, but black carbon is not scientifically well defined yet. Black carbon emissions can be operationally defined by an aethalometer instrument, as presented in Table 6. Discrepancies in mass between EC and BC and between TC and  $PM_{2.5}$  may sometimes be observed due to the different methods and measurement uncertainties.

A comparison of performance with low- and high-moisture fuel, as shown in Tables 13-15, indicated mixed results. Thermal efficiency was nearly the same with low- and high-moisture fuels, but specific energy use was better with low-moisture fuel. During the high-power test phases, fire power and emission rates for PM<sub>2.5</sub> and CO were higher with low-moisture fuel, but during the low-power phase, fire power and the PM<sub>2.5</sub> emission rate were lower with low-moisture fuel. Emission rates of THC and CH<sub>4</sub> were generally lower with low-moisture fuel. Emissions of OC, EC, and BC were less during the low-power than during the high-power test phases for both low- and high-moisture fuel (Tables 14 and 15).

Real-time data for total emissions for a typical test sequence are shown in Figure 10. Data are shown for pollutant concentrations measured in the dilution tunnel, and pot water temperature indicates the three phases of WBT test sequence. Concentrations fluctuated over time as fuel was fed into the stove.  $CO_2$  concentration indicates the rate of fuel consumption. CO, THC, CH<sub>4</sub>, and NO<sub>x</sub> concentrations were clearly above background levels (measured before and after the test. THC concentrations were reported as  $C_3H_8$  (propane).

Real-time data for indoor (fugitive) emissions are shown in Figure 11. CO concentrations were clearly above background levels, and fluctuating emissions occurred over the entire test cycle – not just during start-up. Occasionally, THC peak concentrations were above background levels, but concentrations averaged over the test phases were not significantly above background levels.  $CH_4$  and  $NO_X$  concentrations were not above background levels and are not shown in the figure.

The InStove performed without any problems during testing. The InStove is simple to operate – similar to typical rocket stoves. With its relatively lightweight metal components, the InStove is portable. Stoves are manufactured in small factories, and the InStove has a good-quality manufactured appearance. For more information, see the InStove web site (12).



Figure 10. Real-time data for total emissions for a typical test sequence



Figure 11. Real-time data for indoor (fugitive) emissions

#### **Quality Assurance/Quality Control**

A Quality Assurance Project Plan (QAPP) meeting EPA requirements (18) was prepared and was reviewed by an EPA Quality Manager. Specifically, work was in compliance with Category II Quality Assurance Project Plan requirements "...for important, highly visible Agency projects involving areas such as supporting the development of environmental regulations and standards" (19).

In February 2014, EPA QA staff conducted a technical systems audit (TSA) of this project. The purpose of this TSA was to conduct an independent and objective assessment of on-site activities through an indepth evaluation of technical system documents, on-site laboratory work, equipment, procedures, and record keeping activities to ensure (1) that environmental data collection activities and the resulting data comply with the project's QAPP; (2) that these activities are implemented effectively; and (3) that these activities are suitable to achieve the project's data quality goals.

The TSA was conducted in accordance with principles described in *Guidance on Technical Audits and Related Assessments for Environmental Data Operations* (20). The technical basis of the TSA was the

QAPP entitled *Cookstove Testing for Air Pollutant Emissions, Energy Efficiency, and Fuel Use, Revision 1,* September 2013.

In general, the audit findings were positive in nature and indicated that the project was implemented as described in the QAPP. Note that the term "findings" as used in this document was consistent with the QA/G-7 definition and does not necessarily imply non-conformance. There were no findings that indicated a quality problem requiring corrective action. All phases of the implementation were found to be acceptable and to be performed in a manner consistent with the QAPP and with EPA quality assurance requirements.

An important indicator of overall data quality for cookstove performance testing is the carbon mass balance. Carbon measured in the emissions is compared with carbon measured in the fuel consumed. A percent difference based on carbon in the fuel is calculated for each test phase. A positive result indicates that more carbon was measured in the fuel than in the emissions, and a negative result indicates that less carbon was measured in fuel than in emissions. The absolute value of the percent difference is used as a quality indicator and is considered to be excellent when  $\leq$  10%, good when  $\leq$  15%, acceptable when  $\leq$  20%, and unacceptable when > 20%. A continuous improvement process is used in pursuit of excellent results, and tests are rejected when the carbon balance is > 20%. Carbon-balance results are shown in Table 17. Measurement uncertainties for both emissions and fuel are reflected in the carbon-balance results. Negative values in Table 17 indicate potential positive bias for carbon measured in emissions and/or negative bias for carbon measured in fuel. Test replicates were rejected if the carbon balance was unacceptable, and data were rejected if measurement quality objectives (described below) were unacceptable.

The carbon balance is an overall indicator of many of the critical measurements included as measurement quality objectives listed in Table 18. Test results included in this report were based on measurements that met or exceeded these quality objectives. Data were rejected if measurements did not meet acceptance criteria.

#### **Tables**

Following are tabulated data and information, as described above.

| Parameter                                          | Units    | Average | SD   | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | Test 8 | Test 9 | Test 10 |
|----------------------------------------------------|----------|---------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| Fuel moisture (wet basis)                          | %        | 7.2     | 0.7  | 8.0    | 7.3    | 6.6    | 6.4    | 6.5    | 6.2    | 7.5    | 7.8    | 7.9    | 7.4     |
| Fuel consumed (raw)                                | g        | 1817    | 62   | 1812   | 1840   | 1763   | 1860   | 1925   | 1821   | 1689   | 1854   | 1808   | 1801    |
| Equivalent dry fuel consumed                       | g        | 1607    | 99   | 1435   | 1671   | 1613   | 1691   | 1768   | 1671   | 1522   | 1620   | 1544   | 1529    |
| Time to boil 40 liters of water, 25 to 100°C       | min      | 72.71   | 6.01 | 62.97  | 76.30  | 67.18  | 75.33  | 78.68  | 77.22  | 72.68  | 80.63  | 71.00  | 65.05   |
| Thermal efficiency                                 | %        | 55.0    | 1.6  | 57.6   | 54.4   | 54.9   | 53.4   | 53.4   | 54.4   | 53.7   | 54.3   | 57.1   | 57.0    |
| Fuel burning rate                                  | g/min    | 22.2    | 1.2  | 22.8   | 21.9   | 24.0   | 22.5   | 22.5   | 21.6   | 20.9   | 20.1   | 21.7   | 23.5    |
| Temperature-corrected specific fuel consumption    | g/liter  | 40.3    | 1.9  | 36.5   | 40.9   | 40.2   | 41.2   | 41.8   | 40.6   | 43.5   | 41.2   | 38.8   | 38.6    |
| Temperature-corrected specific energy use          | kJ/liter | 718     | 34   | 673    | 722    | 709    | 726    | 738    | 716    | 785    | 745    | 684    | 681     |
| Fire power                                         | W        | 6574    | 329  | 6995   | 6442   | 7062   | 6603   | 6609   | 6363   | 6305   | 6047   | 6396   | 6914    |
| Cooking power                                      | W        | 3620    | 249  | 4026   | 3507   | 3880   | 3523   | 3530   | 3464   | 3387   | 3286   | 3653   | 3940    |
| Modified combustion efficiency                     | %        | 97.6    | 0.9  | 98.6   | 96.0   | 97.4   | 97.0   | 96.8   | 97.9   | 97.8   | 97.0   | 98.6   | 98.7    |
| PM <sub>2.5</sub> temperature-corrected total mass | mg       | 2295    | 211  | 2305   | 2357   | 2501   | 2254   | 2333   | 1877   | 2275   | 2680   | 2145   | 2221    |
| mass per effective volume of water boiled          | mg/liter | 60.1    | 6.0  | 58.7   | 60.8   | 64.9   | 58.2   | 60.3   | 48.8   | 66.9   | 69.6   | 55.4   | 57.2    |
| mass per fuel mass (raw)                           | mg/kg    | 1316    | 114  | 1274   | 1351   | 1477   | 1286   | 1325   | 1105   | 1387   | 1474   | 1219   | 1259    |
| mass per equivalent dry fuel mass                  | mg/kg    | 1491    | 135  | 1608   | 1487   | 1614   | 1415   | 1442   | 1204   | 1538   | 1688   | 1428   | 1482    |
| mass per fuel energy                               | mg/MJ    | 83.7    | 6.9  | 87.3   | 84.3   | 91.5   | 80.2   | 81.7   | 68.2   | 85.2   | 93.4   | 80.9   | 84.0    |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 152.1   | 12.9 | 151.7  | 154.8  | 166.5  | 150.2  | 153.0  | 125.3  | 158.5  | 171.9  | 141.6  | 147.4   |
| mass per time                                      | mg/hour  | 1982    | 205  | 2199   | 1955   | 2326   | 1906   | 1945   | 1563   | 1933   | 2034   | 1863   | 2091    |
| CO temperature-corrected total mass                | g        | 45.0    | 16.9 | 20.0   | 70.8   | 44.4   | 54.9   | 56.8   | 36.3   | 38.8   | 59.3   | n.a.1  | 23.8    |
| mass per effective volume of water boiled          | g/liter  | 1.18    | 0.44 | 0.51   | 1.83   | 1.15   | 1.42   | 1.47   | 0.94   | 1.14   | 1.54   | n.a.1  | 0.61    |
| mass per fuel mass (raw)                           | g/kg     | 25.8    | 9.6  | 11.1   | 40.6   | 26.3   | 31.3   | 32.3   | 21.4   | 23.6   | 32.6   | n.a.1  | 13.5    |
| mass per equivalent dry fuel mass                  | g/kg     | 28.8    | 10.1 | 14.0   | 44.7   | 28.7   | 34.4   | 35.1   | 23.3   | 26.2   | 37.3   | n.a.1  | 15.9    |
| mass per fuel energy                               | g/MJ     | 1.62    | 0.58 | 0.76   | 2.53   | 1.63   | 1.95   | 1.99   | 1.32   | 1.45   | 2.07   | n.a.1  | 0.90    |
| mass per useful energy delivered (to water in pot) | g/MJ     | 2.98    | 1.10 | 1.32   | 4.65   | 2.96   | 3.66   | 3.73   | 2.42   | 2.70   | 3.80   | n.a.1  | 1.58    |
| mass per time                                      | g/hour   | 38.2    | 12.9 | 19.1   | 58.7   | 41.3   | 46.4   | 47.4   | 30.2   | 32.9   | 45.0   | n.a.1  | 22.4    |
| CO2 temperature-corrected total mass               | g        | 2685    | 219  | 2167   | 2636   | 2567   | 2747   | 2716   | 2633   | 2728   | 2992   | 2850   | 2818    |
| mass per effective volume of water boiled          | g/liter  | 70.4    | 6.8  | 55.2   | 68.0   | 66.6   | 70.9   | 70.2   | 68.5   | 80.2   | 77.7   | 73.6   | 72.6    |
| mass per fuel mass (raw)                           | g/kg     | 1541    | 131  | 1198   | 1510   | 1516   | 1567   | 1543   | 1550   | 1663   | 1646   | 1620   | 1597    |
| mass per equivalent dry fuel mass                  | g/kg     | 1743    | 128  | 1511   | 1663   | 1657   | 1723   | 1679   | 1689   | 1844   | 1884   | 1897   | 1881    |
| mass per fuel energy                               | g/MJ     | 97.9    | 7.6  | 82.1   | 94.3   | 93.9   | 97.7   | 95.2   | 95.7   | 102.1  | 104.3  | 107.5  | 106.6   |
| mass per useful energy delivered (to water in pot) | g/MJ     | 178     | 14   | 143    | 173    | 171    | 183    | 178    | 176    | 190    | 192    | 188    | 187     |
| mass per time                                      | g/hour   | 2314    | 164  | 2067   | 2186   | 2388   | 2322   | 2264   | 2193   | 2318   | 2271   | 2476   | 2653    |

#### *Table 1.* Low-moisture fuel, high-power cold-start – WBT, PM<sub>2.5</sub>, and gaseous pollutant parameters

Table 1 continued on next page

#### Table 1 continued from previous page

| Parameter                                          | Units   | Average | SD    | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7            | Test 8            | Test 9            | Test 10           |
|----------------------------------------------------|---------|---------|-------|--------|--------|--------|--------|--------|--------|-------------------|-------------------|-------------------|-------------------|
| THC (as C3H8) temperature-corrected total mass     | g       | 0.82    | 0.42  | 0.86   | 0.70   | 0.58   | 0.36   | 0.69   | 0.49   | 1.21              | 1.65              | n.a. <sup>2</sup> | n.a. <sup>2</sup> |
| mass per effective volume of water boiled          | g/liter | 0.02    | 0.01  | 0.02   | 0.02   | 0.02   | 0.01   | 0.02   | 0.01   | 0.04              | 0.04              | n.a. <sup>2</sup> | n.a. <sup>2</sup> |
| mass per fuel mass (raw)                           | g/kg    | 0.47    | 0.24  | 0.47   | 0.40   | 0.34   | 0.21   | 0.39   | 0.29   | 0.74              | 0.91              | n.a. <sup>2</sup> | n.a. <sup>2</sup> |
| mass per equivalent dry fuel mass                  | g/kg    | 0.53    | 0.27  | 0.60   | 0.44   | 0.38   | 0.23   | 0.42   | 0.31   | 0.82              | 1.04              | n.a. <sup>2</sup> | n.a. <sup>2</sup> |
| mass per fuel energy                               | g/MJ    | 0.03    | 0.02  | 0.03   | 0.02   | 0.02   | 0.01   | 0.02   | 0.02   | 0.05              | 0.06              | n.a. <sup>2</sup> | n.a. <sup>2</sup> |
| mass per useful energy delivered (to water in pot) | g/MJ    | 0.05    | 0.03  | 0.06   | 0.05   | 0.04   | 0.02   | 0.04   | 0.03   | 0.08              | 0.11              | n.a. <sup>2</sup> | n.a.²             |
| mass per time                                      | g/hour  | 0.69    | 0.32  | 0.82   | 0.58   | 0.54   | 0.31   | 0.57   | 0.40   | 1.03              | 1.25              | n.a. <sup>2</sup> | n.a. <sup>2</sup> |
| CH₄ temperature-corrected total mass               | g       | 0.21    | 0.06  | 0.12   | 0.26   | 0.19   | 0.16   | 0.23   | 0.18   | n.a. <sup>3</sup> | n.a. <sup>3</sup> | 0.31              | n.a. <sup>3</sup> |
| mass per effective volume of water boiled          | g/liter | 0.005   | 0.002 | 0.003  | 0.007  | 0.005  | 0.004  | 0.006  | 0.005  | n.a. <sup>3</sup> | n.a. <sup>3</sup> | 0.008             | n.a. <sup>3</sup> |
| mass per fuel mass (raw)                           | g/kg    | 0.12    | 0.04  | 0.07   | 0.15   | 0.11   | 0.09   | 0.13   | 0.11   | n.a. <sup>3</sup> | n.a. <sup>3</sup> | 0.18              | n.a. <sup>3</sup> |
| mass per equivalent dry fuel mass                  | g/kg    | 0.13    | 0.04  | 0.09   | 0.16   | 0.12   | 0.10   | 0.14   | 0.12   | n.a. <sup>3</sup> | n.a. <sup>3</sup> | 0.21              | n.a. <sup>3</sup> |
| mass per fuel energy                               | g/MJ    | 0.008   | 0.002 | 0.005  | 0.009  | 0.007  | 0.006  | 0.008  | 0.007  | n.a. <sup>3</sup> | n.a. <sup>3</sup> | 0.012             | n.a. <sup>3</sup> |
| mass per useful energy delivered (to water in pot) | g/MJ    | 0.014   | 0.004 | 0.008  | 0.017  | 0.012  | 0.011  | 0.015  | 0.012  | n.a. <sup>3</sup> | n.a. <sup>3</sup> | 0.020             | n.a. <sup>3</sup> |
| mass per time                                      | g/hour  | 0.18    | 0.05  | 0.12   | 0.21   | 0.17   | 0.14   | 0.19   | 0.15   | n.a. <sup>3</sup> | n.a. <sup>3</sup> | 0.27              | n.a. <sup>3</sup> |
| NO <sub>x</sub> temperature-corrected total mass   | g       | 1.26    | 0.17  | 0.86   | 1.34   | 1.29   | 1.19   | 1.23   | n.a.4  | 1.24              | 1.42              | 1.38              | 1.37              |
| mass per effective volume of water boiled          | g/liter | 0.033   | 0.005 | 0.022  | 0.035  | 0.034  | 0.031  | 0.032  | n.a.4  | 0.036             | 0.037             | 0.036             | 0.035             |
| mass per fuel mass (raw)                           | g/kg    | 0.72    | 0.10  | 0.47   | 0.77   | 0.76   | 0.68   | 0.70   | n.a.4  | 0.76              | 0.78              | 0.79              | 0.77              |
| mass per equivalent dry fuel mass                  | g/kg    | 0.82    | 0.10  | 0.60   | 0.85   | 0.83   | 0.75   | 0.76   | n.a.4  | 0.84              | 0.89              | 0.92              | 0.91              |
| mass per fuel energy                               | g/MJ    | 0.05    | 0.01  | 0.03   | 0.05   | 0.05   | 0.04   | 0.04   | n.a.4  | 0.05              | 0.05              | 0.05              | 0.05              |
| mass per useful energy delivered (to water in pot) | g/MJ    | 0.08    | 0.01  | 0.06   | 0.09   | 0.09   | 0.08   | 0.08   | n.a.4  | 0.09              | 0.09              | 0.09              | 0.09              |
| mass per time                                      | g/hour  | 1.09    | 0.14  | 0.82   | 1.11   | 1.20   | 1.01   | 1.02   | n.a.4  | 1.05              | 1.08              | 1.20              | 1.29              |

<sup>1</sup> CO concentration measurement failed acceptance criteria

<sup>2</sup> THC analyzer malfunctioned

<sup>3</sup> CH<sub>4</sub> analyzer malfunctioned

<sup>4</sup> NOx analyzer malfunctioned

| Parameter                                          | Units    | Average | SD   | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 7 <sup>1</sup> | Test 8 | Test 9 | Test 10 |
|----------------------------------------------------|----------|---------|------|--------|--------|--------|--------|--------|---------------------|--------|--------|---------|
| Fuel moisture (wet basis)                          | %        | 7.3     | 0.7  | 8.0    | 7.3    | 6.6    | 6.4    | 6.5    | 7.5                 | 8.1    | 7.9    | 7.4     |
| Fuel consumed (raw)                                | g        | 1724    | 73   | 1782   | 1743   | 1725   | 1643   | 1801   | 1583                | 1691   | 1761   | 1785    |
| Equivalent dry fuel consumed                       | g        | 1513    | 78   | 1409   | 1580   | 1577   | 1486   | 1651   | 1425                | 1475   | 1500   | 1515    |
| Time to boil 40 liters of water, 25 to 100°C       | min      | 66.81   | 5.25 | 59.20  | 69.48  | 72.83  | 61.42  | 73.22  | 60.43               | 69.45  | 67.95  | 67.33   |
| Thermal efficiency                                 | %        | 56.0    | 1.1  | 55.5   | 55.9   | 55.5   | 57.2   | 55.1   | 54.2                | 56.3   | 56.3   | 57.7    |
| Fuel burning rate                                  | g/min    | 22.7    | 1.0  | 23.8   | 22.7   | 21.7   | 24.2   | 22.6   | 23.6                | 21.2   | 22.1   | 22.5    |
| Temperature-corrected specific fuel consumption    | g/liter  | 39.4    | 1.3  | 38.1   | 39.6   | 39.1   | 37.5   | 39.7   | 42.0                | 38.6   | 39.3   | 40.5    |
| Temperature-corrected specific energy use          | kJ/liter | 700     | 27   | 702    | 699    | 690    | 661    | 700    | 759                 | 681    | 693    | 714     |
| Fire power                                         | W        | 6729    | 363  | 7301   | 6688   | 6368   | 7117   | 6633   | 7098                | 6247   | 6494   | 6615    |
| Cooking power                                      | W        | 3765    | 201  | 4055   | 3737   | 3537   | 4070   | 3655   | 3846                | 3519   | 3653   | 3815    |
| Modified combustion efficiency                     | %        | 97.6    | 0.8  | 98.6   | 96.3   | 97.1   | 97.7   | 97.3   | 96.9                | 98.2   | 98.4   | 98.1    |
| PM <sub>2.5</sub> temperature-corrected total mass | mg       | 2359    | 316  | 2265   | 2018   | 2391   | 2483   | 2501   | 2982                | 2446   | 2265   | 1877    |
| mass per effective volume of water boiled          | mg/liter | 62.0    | 10.8 | 57.9   | 52.7   | 61.6   | 64.2   | 64.5   | 87.2                | 63.0   | 58.2   | 48.9    |
| mass per fuel mass (raw)                           | mg/kg    | 1385    | 247  | 1200   | 1205   | 1442   | 1550   | 1490   | 1869                | 1424   | 1263   | 1025    |
| mass per equivalent dry fuel mass                  | mg/kg    | 1573    | 246  | 1518   | 1330   | 1577   | 1713   | 1625   | 2076                | 1632   | 1482   | 1208    |
| mass per fuel energy                               | mg/MJ    | 88.2    | 13.3 | 82.5   | 75.4   | 89.4   | 97.1   | 92.1   | 115.0               | 90.3   | 84.0   | 68.5    |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 158.4   | 26.1 | 148.5  | 134.9  | 160.9  | 169.8  | 167.2  | 212.2               | 164.2  | 149.3  | 118.7   |
| mass per time                                      | mg/hour  | 2148    | 382  | 2167   | 1814   | 2049   | 2488   | 2200   | 2937                | 2080   | 1963   | 1630    |
| CO temperature-corrected total mass                | gg       | 40.9    | 13.1 | 19.3   | 60.8   | 48.1   | 37.5   | 45.0   | 50.7                | n.a.²  | 29.2   | 36.6    |
| mass per effective volume of water boiled          | g/liter  | 1.08    | 0.37 | 0.49   | 1.59   | 1.24   | 0.97   | 1.16   | 1.48                | n.a.²  | 0.75   | 0.95    |
| mass per fuel mass (raw)                           | g/kg     | 24.2    | 8.5  | 10.2   | 36.3   | 29.0   | 23.4   | 26.8   | 31.8                | n.a.²  | 16.3   | 20.0    |
| mass per equivalent dry fuel mass                  | g/kg     | 27.2    | 8.8  | 12.9   | 40.1   | 31.7   | 25.8   | 29.2   | 35.3                | n.a.²  | 19.1   | 23.5    |
| mass per fuel energy                               | g/MJ     | 1.53    | 0.50 | 0.70   | 2.27   | 1.80   | 1.46   | 1.66   | 1.95                | n.a.²  | 1.08   | 1.33    |
| mass per useful energy delivered (to water in pot) | g/MJ     | 2.75    | 0.92 | 1.26   | 4.06   | 3.23   | 2.56   | 3.01   | 3.61                | n.a.²  | 1.93   | 2.31    |
| mass per time                                      | g/hour   | 37.3    | 12.0 | 18.4   | 54.6   | 41.2   | 37.5   | 39.6   | 50.0                | n.a.²  | 25.3   | 31.8    |
| CO2 temperature-corrected total mass               | gg       | 2602    | 224  | 2203   | 2514   | 2543   | 2511   | 2592   | 2499                | 2752   | 2841   | 2963    |
| mass per effective volume of water boiled          | g/liter  | 68.1    | 6.2  | 56.3   | 65.6   | 65.5   | 64.9   | 66.9   | 73.1                | 70.9   | 72.9   | 77.2    |
| mass per fuel mass (raw)                           | g/kg     | 1520    | 137  | 1167   | 1502   | 1533   | 1567   | 1545   | 1566                | 1602   | 1583   | 1618    |
| mass per equivalent dry fuel mass                  | g/kg     | 1730    | 129  | 1476   | 1657   | 1677   | 1732   | 1684   | 1740                | 1836   | 1858   | 1907    |
| mass per fuel energy                               | g/MJ     | 97.1    | 8.0  | 80.2   | 93.9   | 95.0   | 98.2   | 95.5   | 96.3                | 101.6  | 105.3  | 108.1   |
| mass per useful energy delivered (to water in pot) | g/MJ     | 174     | 13   | 144    | 168    | 171    | 172    | 173    | 178                 | 185    | 187    | 187     |
| mass per time                                      | g/hour   | 2353    | 159  | 2107   | 2261   | 2179   | 2515   | 2280   | 2461                | 2339   | 2462   | 2574    |

#### *Table 2.* Low-moisture fuel, high-power hot-start – WBT, PM<sub>2.5</sub>, and gaseous pollutant parameters

Table 2 continued on next page

#### Table 2 continued from previous page

| Parameter                                          | Units   | Average | SD    | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 7 <sup>1</sup> | Test 8            | Test 9 | Test 10           |
|----------------------------------------------------|---------|---------|-------|--------|--------|--------|--------|--------|---------------------|-------------------|--------|-------------------|
| THC (as C3H8) temperature-corrected total mass     | g       | 1.15    | 1.02  | 0.64   | 0.41   | 0.64   | 0.44   | 0.74   | 2.33                | n.a. <sup>3</sup> | 2.90   | n.a. <sup>3</sup> |
| mass per effective volume of water boiled          | g/liter | 0.03    | 0.03  | 0.02   | 0.01   | 0.02   | 0.01   | 0.02   | 0.07                | n.a. <sup>3</sup> | 0.07   | n.a. <sup>3</sup> |
| mass per fuel mass (raw)                           | g/kg    | 0.68    | 0.59  | 0.34   | 0.24   | 0.38   | 0.27   | 0.44   | 1.46                | n.a. <sup>3</sup> | 1.62   | n.a. <sup>3</sup> |
| mass per equivalent dry fuel mass                  | g/kg    | 0.77    | 0.68  | 0.43   | 0.27   | 0.42   | 0.30   | 0.48   | 1.62                | n.a. <sup>3</sup> | 1.90   | n.a. <sup>3</sup> |
| mass per fuel energy                               | g/MJ    | 0.04    | 0.04  | 0.02   | 0.02   | 0.02   | 0.02   | 0.03   | 0.09                | n.a. <sup>3</sup> | 0.11   | n.a. <sup>3</sup> |
| mass per useful energy delivered (to water in pot) | g/MJ    | 0.08    | 0.07  | 0.04   | 0.03   | 0.04   | 0.03   | 0.05   | 0.17                | n.a. <sup>3</sup> | 0.19   | n.a. <sup>3</sup> |
| mass per time                                      | g/hour  | 1.06    | 0.93  | 0.61   | 0.37   | 0.54   | 0.44   | 0.65   | 2.29                | n.a. <sup>3</sup> | 2.51   | n.a. <sup>3</sup> |
| CH <sub>4</sub> temperature-corrected total mass   | g       | 0.26    | 0.16  | 0.05   | 0.18   | 0.30   | 0.20   | 0.28   | n.a.4               | n.a.4             | 0.53   | n.a.4             |
| mass per effective volume of water boiled          | g/liter | 0.007   | 0.004 | 0.001  | 0.005  | 0.008  | 0.005  | 0.007  | n.a.4               | n.a.4             | 0.014  | n.a.4             |
| mass per fuel mass (raw)                           | g/kg    | 0.15    | 0.09  | 0.03   | 0.11   | 0.18   | 0.12   | 0.17   | n.a.4               | n.a.4             | 0.29   | n.a.4             |
| mass per equivalent dry fuel mass                  | g/kg    | 0.17    | 0.10  | 0.03   | 0.12   | 0.19   | 0.14   | 0.18   | n.a.4               | n.a.4             | 0.34   | n.a.4             |
| mass per fuel energy                               | g/MJ    | 0.01    | 0.01  | 0.00   | 0.01   | 0.01   | 0.01   | 0.01   | n.a.4               | n.a.4             | 0.02   | n.a.4             |
| mass per useful energy delivered (to water in pot) | g/MJ    | 0.02    | 0.01  | 0.00   | 0.01   | 0.02   | 0.01   | 0.02   | n.a.4               | n.a.4             | 0.03   | n.a.4             |
| mass per time                                      | g/hour  | 0.23    | 0.13  | 0.05   | 0.17   | 0.25   | 0.20   | 0.25   | n.a.4               | n.a.4             | 0.46   | n.a.4             |
| NO <sub>x</sub> temperature-corrected total mass   | g       | 1.15    | 0.14  | 0.88   | 1.10   | 1.09   | 1.09   | 1.17   | 1.20                | 1.20              | 1.30   | 1.36              |
| mass per effective volume of water boiled          | g/liter | 0.030   | 0.004 | 0.023  | 0.029  | 0.028  | 0.028  | 0.030  | 0.035               | 0.031             | 0.033  | 0.035             |
| mass per fuel mass (raw)                           | g/kg    | 0.68    | 0.08  | 0.47   | 0.66   | 0.66   | 0.68   | 0.70   | 0.75                | 0.70              | 0.72   | 0.74              |
| mass per equivalent dry fuel mass                  | g/kg    | 0.77    | 0.09  | 0.59   | 0.73   | 0.72   | 0.75   | 0.76   | 0.83                | 0.80              | 0.85   | 0.87              |
| mass per fuel energy                               | g/MJ    | 0.04    | 0.01  | 0.03   | 0.04   | 0.04   | 0.04   | 0.04   | 0.05                | 0.04              | 0.05   | 0.05              |
| mass per useful energy delivered (to water in pot) | g/MJ    | 0.08    | 0.01  | 0.06   | 0.07   | 0.07   | 0.07   | 0.08   | 0.09                | 0.08              | 0.09   | 0.09              |
| mass per time                                      | g/hour  | 1.04    | 0.11  | 0.84   | 0.99   | 0.93   | 1.09   | 1.03   | 1.18                | 1.02              | 1.12   | 1.18              |

<sup>1</sup> Test 6 discontinued after the cold-start phase

<sup>2</sup> CO concentration measurement failed acceptance criteria

<sup>3</sup> THC analyzer malfunctioned

<sup>4</sup> CH<sub>4</sub> analyzer malfunctioned

| Parameter                          | Units    | Average | SD   | Test 2 <sup>1</sup> | Test 3 | Test 4 | Test 5 | Test 7 <sup>2</sup> | Test 8 | Test 9 <sup>3</sup> |
|------------------------------------|----------|---------|------|---------------------|--------|--------|--------|---------------------|--------|---------------------|
| Fuel moisture (wet basis)          | %        | 7.2     | 0.7  | 7.3                 | 6.6    | 6.4    | 6.5    | 7.5                 | 8.1    | 7.9                 |
| Fuel consumed (raw)                | g        | 286     | 14   | 288                 | 296    | 294    | 266    | 276                 | 279    | 306                 |
| Equivalent dry fuel consumed       | g        | 338     | 40   | 322                 | 328    | 350    | 316    | 292                 | 338    | 419                 |
| Fuel burning rate                  | g/min    | 11.3    | 1.3  | 10.7                | 10.9   | 11.7   | 10.5   | 9.7                 | 11.2   | 14.0                |
| Specific fuel consumption          | g/liter  | 9.2     | 0.9  | 8.7                 | 8.7    | 9.3    | 8.4    | 8.9                 | 9.0    | 11.2                |
| Specific energy use                | kJ/liter | 162     | 16   | 153                 | 153    | 164    | 149    | 161                 | 159    | 197                 |
| Fire power                         | W        | 3318    | 381  | 3157                | 3215   | 3435   | 3100   | 2929                | 3286   | 4105                |
| Modified combustion efficiency     | %        | 93.7    | 0.6  | 94.2                | 93.7   | 93.6   | 94.6   | 92.8                | 93.8   | 93.5                |
| PM <sub>2.5</sub> total mass       | mg       | 309     | 100  | 252                 | 255    | 193    | 311    | 504                 | 354    | 295                 |
| mass per volume of water remaining | mg/liter | 8.5     | 3.3  | 6.8                 | 6.8    | 5.1    | 8.3    | 15.4                | 9.5    | 7.9                 |
| mass per fuel mass (raw)           | mg/kg    | 1089    | 384  | 874                 | 863    | 658    | 1169   | 1828                | 1269   | 964                 |
| mass per equivalent dry fuel mass  | mg/kg    | 939     | 385  | 782                 | 778    | 552    | 984    | 1727                | 1049   | 704                 |
| mass per fuel energy               | mg/MJ    | 52.7    | 21.0 | 44.3                | 44.1   | 31.3   | 55.7   | 95.6                | 58.1   | 39.9                |
| mass per time                      | mg/hour  | 618     | 199  | 503                 | 510    | 387    | 622    | 1008                | 703    | 590                 |
| CO total mass                      | g        | 20.9    | 3.2  | 18.6                | 20.8   | 21.4   | 17.8   | 19.7                | n.a.4  | 26.8                |
| mass per volume of water remaining | g/liter  | 0.57    | 0.09 | 0.50                | 0.55   | 0.57   | 0.47   | 0.60                | n.a.4  | 0.72                |
| mass per fuel mass (raw)           | g/kg     | 72.4    | 8.1  | 64.6                | 70.5   | 72.7   | 67.0   | 71.6                | n.a.4  | 87.7                |
| mass per equivalent dry fuel mass  | g/kg     | 61.7    | 4.2  | 57.7                | 63.6   | 61.0   | 56.4   | 67.6                | n.a.4  | 64.1                |
| mass per fuel energy               | g/MJ     | 3.48    | 0.21 | 3.27                | 3.60   | 3.46   | 3.20   | 3.74                | n.a.4  | 3.63                |
| mass per time                      | g/hour   | 41.7    | 6.4  | 37.2                | 41.7   | 42.8   | 35.7   | 39.4                | n.a.4  | 53.7                |
| CO <sub>2</sub> total mass         | g        | 505     | 70   | 478                 | 486    | 496    | 489    | 397                 | 583    | 607                 |
| mass per volume of water remaining | g/liter  | 13.7    | 1.5  | 12.9                | 12.9   | 13.2   | 13.0   | 12.1                | 15.6   | 16.2                |
| mass per fuel mass (raw)           | g/kg     | 1763    | 222  | 1660                | 1644   | 1685   | 1838   | 1441                | 2090   | 1983                |
| mass per equivalent dry fuel mass  | g/kg     | 1494    | 118  | 1484                | 1481   | 1415   | 1547   | 1361                | 1726   | 1448                |
| mass per fuel energy               | g/MJ     | 84.1    | 6.3  | 84.1                | 84.0   | 80.2   | 87.7   | 75.3                | 95.6   | 82.1                |
| mass per time                      | g/hour   | 1009    | 139  | 956                 | 972    | 991    | 978    | 794                 | 1157   | 1213                |
| THC (as C3H8) total mass           | g        | 0.72    | 0.36 | 0.58                | 0.35   | 0.48   | 0.62   | 1.36                | 1.05   | 0.57                |
| mass per volume of water remaining | g/liter  | 0.02    | 0.01 | 0.02                | 0.01   | 0.01   | 0.02   | 0.04                | 0.03   | 0.02                |
| mass per fuel mass (raw)           | g/kg     | 2.53    | 1.34 | 2.00                | 1.18   | 1.62   | 2.34   | 4.94                | 3.77   | 1.88                |
| mass per equivalent dry fuel mass  | g/kg     | 2.19    | 1.28 | 1.79                | 1.07   | 1.36   | 1.97   | 4.66                | 3.11   | 1.37                |
| mass per fuel energy               | g/MJ     | 0.12    | 0.07 | 0.10                | 0.06   | 0.08   | 0.11   | 0.26                | 0.17   | 0.08                |
| mass per time                      | g/hour   | 1.43    | 0.71 | 1.15                | 0.70   | 0.95   | 1.24   | 2.72                | 2.09   | 1.15                |

#### **Table 3.** Low-moisture fuel, low-power (30-min simmer) – WBT and pollutant emission parameters

Table 3 continued on next page

#### Table 3 continued from previous page

| Parameter                          | Units   | Average | SD    | Test 2 <sup>1</sup> | Test 3 | Test 4 | Test 5 | Test 7 <sup>2</sup> | Test 8            | Test 9 <sup>3</sup> |
|------------------------------------|---------|---------|-------|---------------------|--------|--------|--------|---------------------|-------------------|---------------------|
| CH₄ total mass                     | g       | 0.30    | 0.08  | 0.37                | 0.24   | 0.36   | 0.36   | n.a.5               | n.a.5             | 0.20                |
| mass per volume of water remaining | g/liter | 0.008   | 0.002 | 0.010               | 0.006  | 0.009  | 0.009  | n.a. <sup>5</sup>   | n.a. <sup>5</sup> | 0.005               |
| mass per fuel mass (raw)           | g/kg    | 1.06    | 0.30  | 1.28                | 0.83   | 1.21   | 1.34   | n.a.⁵               | n.a.⁵             | 0.65                |
| mass per equivalent dry fuel mass  | g/kg    | 0.90    | 0.29  | 1.14                | 0.75   | 1.02   | 1.13   | n.a.⁵               | n.a.⁵             | 0.48                |
| mass per fuel energy               | g/MJ    | 0.05    | 0.02  | 0.06                | 0.04   | 0.06   | 0.06   | n.a.⁵               | n.a.⁵             | 0.03                |
| mass per time                      | g/hour  | 0.61    | 0.15  | 0.73                | 0.49   | 0.71   | 0.71   | n.a.⁵               | n.a.⁵             | 0.40                |
| NO <sub>x</sub> total mass         | gg      | 0.17    | 0.04  | 0.14                | 0.16   | 0.14   | 0.16   | 0.15                | 0.20              | 0.24                |
| mass per volume of water remaining | g/liter | 0.005   | 0.001 | 0.004               | 0.004  | 0.004  | 0.004  | 0.005               | 0.005             | 0.006               |
| mass per fuel mass (raw)           | g/kg    | 0.59    | 0.11  | 0.50                | 0.53   | 0.48   | 0.59   | 0.55                | 0.72              | 0.78                |
| mass per equivalent dry fuel mass  | g/kg    | 0.50    | 0.07  | 0.45                | 0.48   | 0.40   | 0.50   | 0.52                | 0.59              | 0.57                |
| mass per fuel energy               | g/MJ    | 0.028   | 0.004 | 0.025               | 0.027  | 0.023  | 0.028  | 0.029               | 0.033             | 0.032               |
| mass per time                      | g/hour  | 0.34    | 0.07  | 0.29                | 0.31   | 0.28   | 0.31   | 0.30                | 0.40              | 0.48                |

<sup>1</sup> Test 1 rejected due to carbon balance out of limits

<sup>2</sup> Test 6 discontinued after the cold-start phase

<sup>3</sup> Test 10 rejected due to carbon balance out of limits

<sup>4</sup> CO concentration measurement failed acceptance criteria

<sup>5</sup> CH<sub>4</sub> analyzer malfunctioned

| Parameter                                          | Units    | Average | SD   | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | Test 8 | Test 9 | Test 10 |
|----------------------------------------------------|----------|---------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| High-power cold-start                              | •        |         |      |        |        |        |        |        |        |        |        |        |         |
| OC temperature-corrected total mass                | mg       | 539     | 134  | 384    | 604    | 619    | 555    | 622    | 275    | 534    | 760    | 491    | 549     |
| mass per effective volume of water boiled          | mg/liter | 14.1    | 3.5  | 9.8    | 15.6   | 16.1   | 14.3   | 16.1   | 7.2    | 15.7   | 19.7   | 12.7   | 14.2    |
| mass per fuel mass (raw)                           | mg/kg    | 309     | 75   | 212    | 346    | 365    | 317    | 353    | 162    | 326    | 418    | 279    | 311     |
| mass per equivalent dry fuel mass                  | mg/kg    | 349     | 81   | 268    | 381    | 399    | 348    | 384    | 177    | 361    | 479    | 327    | 367     |
| mass per fuel energy                               | mg/MJ    | 19.6    | 4.5  | 14.6   | 21.6   | 22.6   | 19.7   | 21.8   | 10.0   | 20.0   | 26.5   | 18.5   | 20.8    |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 35.7    | 8.6  | 25.3   | 39.7   | 41.2   | 37.0   | 40.8   | 18.4   | 37.2   | 48.7   | 32.4   | 36.5    |
| mass per time                                      | mg/hour  | 463     | 105  | 367    | 501    | 575    | 469    | 518    | 229    | 454    | 577    | 427    | 517     |
| EC temperature-corrected total mass                | mg       | 1205    | 76   | 1247   | 1126   | 1152   | 1167   | 1201   | 1145   | 1131   | 1307   | 1225   | 1346    |
| mass per effective volume of water boiled          | mg/liter | 31.5    | 1.9  | 31.8   | 29.1   | 29.9   | 30.1   | 31.1   | 29.8   | 33.3   | 33.9   | 31.6   | 34.7    |
| mass per fuel mass (raw)                           | mg/kg    | 691     | 32   | 689    | 646    | 680    | 666    | 682    | 674    | 690    | 719    | 697    | 763     |
| mass per equivalent dry fuel mass                  | mg/kg    | 784     | 64   | 870    | 711    | 743    | 732    | 743    | 735    | 765    | 823    | 816    | 899     |
| mass per fuel energy                               | mg/MJ    | 44.0    | 3.4  | 47.2   | 40.3   | 42.1   | 41.5   | 42.1   | 41.6   | 42.4   | 45.6   | 46.2   | 50.9    |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 79.9    | 4.4  | 82.1   | 74.0   | 76.7   | 77.7   | 78.8   | 76.45  | 78.8   | 83.8   | 80.9   | 89.3    |
| mass per time                                      | mg/hour  | 1042    | 109  | 1190   | 934    | 1071   | 986    | 1002   | 954    | 961    | 992    | 1064   | 1268    |
| High-power hot-start                               |          |         |      |        |        |        |        |        |        |        |        |        |         |
| OC temperature-corrected total mass                | mg       | 582     | 262  | 340    | 206    | 594    | 722    | 684    | n.a.1  | 1110   | 575    | 625    | 387     |
| mass per effective volume of water boiled          | mg/liter | 15.5    | 7.8  | 8.7    | 5.4    | 15.3   | 18.7   | 17.6   | n.a.1  | 32.5   | 14.8   | 16.0   | 10.1    |
| mass per fuel mass (raw)                           | mg/kg    | 345     | 170  | 180    | 123    | 358    | 451    | 407    | n.a.1  | 695    | 334    | 348    | 211     |
| mass per equivalent dry fuel mass                  | mg/kg    | 390     | 184  | 228    | 136    | 392    | 498    | 444    | n.a.1  | 772    | 383    | 409    | 249     |
| mass per fuel energy                               | mg/MJ    | 21.9    | 10.3 | 12.4   | 7.7    | 22.2   | 28.2   | 25.2   | n.a.1  | 42.8   | 21.2   | 23.2   | 14.1    |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 39.4    | 19.0 | 22.3   | 13.8   | 40.0   | 49.4   | 45.7   | n.a.1  | 78.9   | 38.6   | 41.2   | 24.5    |
| mass per time                                      | mg/hour  | 534     | 264  | 326    | 185    | 509    | 724    | 601    | n.a.1  | 1093   | 489    | 541    | 336     |
| EC temperature-corrected total mass                | mg       | 1297    | 61   | 1369   | 1270   | 1261   | 1279   | 1316   | n.a.1  | 1278   | 1392   | 1320   | 1188    |
| mass per effective volume of water boiled          | mg/liter | 34.0    | 1.9  | 35.0   | 33.1   | 32.5   | 33.1   | 34.0   | n.a.1  | 37.4   | 35.9   | 33.9   | 30.9    |
| mass per fuel mass (raw)                           | mg/kg    | 758     | 51   | 725    | 759    | 760    | 798    | 784    | n.a.1  | 801    | 810    | 735    | 648     |
| mass per equivalent dry fuel mass                  | mg/kg    | 863     | 50   | 918    | 837    | 832    | 883    | 855    | n.a.1  | 890    | 928    | 863    | 764     |
| mass per fuel energy                               | mg/MJ    | 48.4    | 2.3  | 49.8   | 47.4   | 47.1   | 50.0   | 48.5   | n.a.1  | 49.3   | 51.4   | 48.9   | 43.3    |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 86.8    | 5.2  | 89.7   | 84.9   | 84.8   | 87.5   | 88.0   | n.a.1  | 90.9   | 93.4   | 87.0   | 75.1    |
| mass per time                                      | mg/hour  | 1176    | 93   | 1310   | 1142   | 1080   | 1282   | 1158   | n.a.1  | 1259   | 1183   | 1144   | 1032    |

#### Table 4. Low-moisture fuel – emissions of OC (organic carbon) and EC (elemental carbon) in PM<sub>2.5</sub>

Table 4 continued on next page

#### Table 4 continued from previous page

| Parameter                          | Units    | Average | SD    | Test 1            | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | Test 8 | Test 9 | Test 10           |
|------------------------------------|----------|---------|-------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------|
| Low-power (30-minute simmer)       |          |         |       |                   |        |        |        |        |        |        |        |        |                   |
| OC total mass                      | mg       | 93.5    | 66.7  | n.a.²             | 84.0   | 68.2   | 58.0   | 60.6   | n.a.1  | 240.4  | 95.0   | 48.1   | n.a. <sup>3</sup> |
| mass per volume of water remaining | mg/liter | 2.6     | 2.1   | n.a.²             | 2.3    | 1.8    | 1.5    | 1.6    | n.a.1  | 7.3    | 2.5    | 1.3    | n.a. <sup>3</sup> |
| mass per fuel mass (raw)           | mg/kg    | 331     | 246   | n.a.²             | 292    | 231    | 197    | 228    | n.a.1  | 872    | 340    | 157    | n.a. <sup>3</sup> |
| mass per equivalent dry fuel mass  | mg/kg    | 292.2   | 240.9 | n.a.²             | 260.9  | 208.1  | 165.5  | 191.6  | n.a.1  | 823.5  | 281.0  | 115.0  | n.a. <sup>3</sup> |
| mass per fuel energy               | mg/MJ    | 16.4    | 13.3  | n.a.²             | 14.8   | 11.8   | 9.4    | 10.9   | n.a.1  | 45.6   | 15.6   | 6.5    | n.a. <sup>3</sup> |
| mass per time                      | mg/hour  | 187     | 133   | n.a. <sup>2</sup> | 168    | 136    | 116    | 121    | n.a.1  | 481    | 188    | 96     | n.a. <sup>3</sup> |
| EC total mass                      | mg       | 105     | 52    | n.a.²             | 66     | 80     | 42     | 179    | n.a.1  | 71     | 148    | 149    | n.a. <sup>3</sup> |
| mass per volume of water remaining | mg/liter | 2.8     | 1.4   | n.a. <sup>2</sup> | 1.8    | 2.1    | 1.1    | 4.8    | n.a.1  | 2.2    | 4.0    | 4.0    | n.a. <sup>3</sup> |
| mass per fuel mass (raw)           | mg/kg    | 370     | 193   | n.a.²             | 230    | 269    | 143    | 672    | n.a.1  | 258    | 530    | 486    | n.a. <sup>3</sup> |
| mass per equivalent dry fuel mass  | mg/kg    | 310     | 152   | n.a.²             | 206    | 243    | 120    | 565    | n.a.1  | 243    | 438    | 355    | n.a. <sup>3</sup> |
| mass per fuel energy               | mg/MJ    | 17.4    | 8.6   | n.a.²             | 11.7   | 13.7   | 6.8    | 32.0   | n.a.1  | 13.5   | 24.2   | 20.1   | n.a. <sup>3</sup> |
| mass per time                      | mg/hour  | 209     | 104   | n.a.²             | 132    | 159    | 84     | 357    | n.a.1  | 142    | 294    | 297    | n.a. <sup>3</sup> |

<sup>1</sup> Test 6 discontinued after the cold-start phase

<sup>2</sup> Test 1 rejected due to carbon balance out of limits

<sup>3</sup> Test 10 rejected due to carbon balance out of limits

# **Table 5.** Low-moisture fuel – $PM_{2.5}$ mass fractions of organic carbon to total carbon (OC/TC) and elemental carbon to total carbon (EC/TC)

|                        | High-Power Cold-Start | High-Power Hot-Start | Low-Power (Simmer) |
|------------------------|-----------------------|----------------------|--------------------|
| Mass fraction of OC/TC | 0.309                 | 0.310                | 0.471              |
| Mass fraction of EC/TC | 0.691                 | 0.690                | 0.529              |

| Parameter                                          | Units    | Average | SD   | Test 1            | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | Test 7 | Test 8 | Test 9 | Test 10           |
|----------------------------------------------------|----------|---------|------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------|
| High-power cold-start                              |          |         |      |                   |        |        |        |        |        |        |        |        |                   |
| BC temperature-corrected total mass                | mg       | 1138    | 125  | 1382              | 1029   | 1129   | 1080   | 1158   | 972    | 1075   | 1320   | 1119   | 1118              |
| mass per effective volume of water boiled          | mg/liter | 29.8    | 3.1  | 35.2              | 26.6   | 29.3   | 27.9   | 29.9   | 25.3   | 31.6   | 34.3   | 28.9   | 28.8              |
| mass per fuel mass (raw)                           | mg/kg    | 652     | 58   | 764               | 590    | 667    | 616    | 658    | 572    | 656    | 726    | 636    | 634               |
| mass per equivalent dry fuel mass                  | mg/kg    | 741     | 97   | 964               | 649    | 729    | 678    | 716    | 624    | 727    | 831    | 745    | 746               |
| mass per fuel energy                               | mg/MJ    | 41.6    | 4.8  | 52.3              | 36.8   | 41.3   | 38.4   | 40.6   | 35.4   | 40.3   | 46.0   | 42.2   | 42.3              |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 75.4    | 7.6  | 90.9              | 67.6   | 75.2   | 72.0   | 75.9   | 64.9   | 74.9   | 84.6   | 73.9   | 74.2              |
| mass per time                                      | mg/hour  | 985     | 141  | 1318              | 854    | 1050   | 913    | 965    | 810    | 914    | 1001   | 972    | 1053              |
| High-power hot-start                               |          |         |      |                   |        |        |        |        |        |        |        |        |                   |
| BC temperature-corrected total mass                | mg       | 1082    | 282  | 1149              | 532    | 1172   | 1237   | 744    | n.a.1  | 1446   | 1222   | 1230   | 1002              |
| mass per effective volume of water boiled          | mg/liter | 28.5    | 8.1  | 29.4              | 13.9   | 30.2   | 32.0   | 19.2   | n.a.1  | 42.3   | 31.5   | 31.6   | 26.1              |
| mass per fuel mass (raw)                           | mg/kg    | 633     | 177  | 609               | 318    | 706    | 772    | 444    | n.a.1  | 906    | 711    | 686    | 547               |
| mass per equivalent dry fuel mass                  | mg/kg    | 722     | 200  | 770               | 351    | 773    | 854    | 484    | n.a.1  | 1007   | 815    | 805    | 645               |
| mass per fuel energy                               | mg/MJ    | 40.5    | 11.0 | 41.8              | 19.9   | 43.8   | 48.4   | 27.4   | n.a.1  | 55.8   | 45.1   | 45.6   | 36.5              |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 72.6    | 20.1 | 75.3              | 35.6   | 78.8   | 84.6   | 49.8   | n.a.1  | 102.9  | 82.0   | 81.1   | 63.4              |
| mass per time                                      | mg/hour  | 986     | 287  | 1100              | 478    | 1004   | 1239   | 655    | n.a.1  | 1425   | 1039   | 1066   | 870               |
| Low-power (30-minute simmer)                       |          |         |      |                   |        |        |        |        |        |        |        |        |                   |
| BC total mass                                      | mg       | 74.5    | 49.4 | n.a.²             | 28.4   | 44.2   | 24.9   | 62.1   | n.a.1  | 79.7   | 148.8  | 133.1  | n.a. <sup>3</sup> |
| mass per volume of water remaining                 | mg/liter | 2.0     | 1.3  | n.a. <sup>2</sup> | 0.8    | 1.2    | 0.7    | 1.7    | n.a.1  | 2.4    | 4.0    | 3.5    | n.a. <sup>3</sup> |
| mass per fuel mass (raw)                           | mg/kg    | 261     | 171  | n.a.²             | 99     | 150    | 85     | 233    | n.a.1  | 289    | 533    | 435    | n.a. <sup>3</sup> |
| mass per equivalent dry fuel mass                  | mg/kg    | 217     | 134  | n.a.²             | 88     | 135    | 71     | 196    | n.a.1  | 273    | 440    | 318    | n.a. <sup>3</sup> |
| mass per fuel energy                               | mg/MJ    | 12.2    | 7.4  | n.a. <sup>2</sup> | 5.0    | 7.6    | 4.0    | 11.1   | n.a.1  | 15.1   | 24.4   | 18.0   | n.a. <sup>3</sup> |
| mass per time                                      | mg/hour  | 149     | 98   | n.a. <sup>2</sup> | 57     | 88     | 50     | 124    | n.a.1  | 159    | 295    | 266    | n.a. <sup>3</sup> |

#### Table 6. Low-moisture fuel – emissions of BC (black carbon) measured with aethalometer

<sup>1</sup> Test 6 discontinued after the cold-start phase

<sup>2</sup> Test 1 rejected due to carbon balance out of limits

<sup>3</sup> Test 10 rejected due to carbon balance out of limits

| Parameter                                                                       | Units    | Average | SD    | Test 1 | Test 2 | Test 3 | Test 4 |
|---------------------------------------------------------------------------------|----------|---------|-------|--------|--------|--------|--------|
| Fuel moisture (wet basis)                                                       | %        | 17.1    | 1.1   | 16.0   | 18.1   | 18.0   | 16.3   |
| Fuel consumed (raw)                                                             | g        | 2172    | 19    | 2173   | 2182   | 2190   | 2145   |
| Equivalent dry fuel consumed                                                    | g        | 1650    | 20    | 1678   | 1647   | 1636   | 1637   |
| Time to boil 40 liters of water, 25 to 100°C                                    | min      | 79.60   | 9.99  | 80.45  | 77.63  | 92.28  | 68.02  |
| Thermal efficiency                                                              | %        | 53.9    | 0.5   | 53.4   | 53.9   | 54.5   | 53.8   |
| Fuel burning rate                                                               | g/min    | 21.0    | 2.6   | 20.9   | 21.2   | 17.7   | 24.1   |
| Temperature-corrected specific fuel consumption                                 | g/liter  | 42.0    | 0.3   | 42.3   | 42.3   | 41.9   | 41.6   |
| Temperature-corrected specific energy use                                       | kJ/liter | 753     | 7     | 759    | 759    | 749    | 745    |
| Fire power                                                                      | W        | 6264    | 775   | 6247   | 6346   | 5285   | 7179   |
| Cooking power                                                                   | W        | 3376    | 403   | 3335   | 3422   | 2882   | 3865   |
| Modified combustion efficiency                                                  | %        | 98.4    | 0.0   | 98.4   | 98.4   | 98.4   | 98.5   |
| PM <sub>2.5</sub> temperature-corrected total mass                              | mg       | 2384    | 255   | 2549   | 2237   | 2645   | 2105   |
| mass per effective volume of water boiled                                       | mg/liter | 61.9    | 6.7   | 66.1   | 58.3   | 68.7   | 54.4   |
| mass per fuel mass (raw)                                                        | mg/kg    | 1118    | 116   | 1209   | 1040   | 1226   | 998    |
| mass per equivalent dry fuel mass                                               | mg/kg    | 1473    | 156   | 1565   | 1378   | 1640   | 1308   |
| mass per fuel energy                                                            | mg/MJ    | 81.0    | 7.6   | 85.4   | 75.2   | 89.5   | 74.1   |
| mass per useful energy delivered (to water in pot)                              | mg/MJ    | 152     | 16    | 163    | 142    | 168    | 136    |
| mass per time                                                                   | mg/hour  | 1837    | 105   | 1959   | 1754   | 1745   | 1889   |
| CO temperature-corrected total mass                                             | g        | 30.2    | 2.1   | 30.6   | 30.5   | 32.3   | 27.4   |
| mass per effective volume of water boiled                                       | g/liter  | 0.78    | 0.06  | 0.79   | 0.80   | 0.84   | 0.71   |
| mass per fuel mass (raw)                                                        | g/kg     | 14.2    | 0.9   | 14.5   | 14.2   | 15.0   | 13.0   |
| mass per equivalent dry fuel mass                                               | g/kg     | 18.7    | 1.3   | 18.8   | 18.8   | 20.1   | 17.0   |
| mass per fuel energy                                                            | g/MJ     | 1.03    | 0.05  | 1.03   | 1.03   | 1.09   | 0.96   |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 1.93    | 0.12  | 1.96   | 1.94   | 2.06   | 1.76   |
| mass per time                                                                   | g/hour   | 23.3    | 1.4   | 23.5   | 24.0   | 21.3   | 24.6   |
| CO <sub>2</sub> temperature-corrected total mass                                | g        | 2935    | 124   | 2972   | 2977   | 3037   | 2755   |
| mass per effective volume of water boiled                                       | g/liter  | 76      | 3     | 77     | 78     | 79     | 71     |
| mass per fuel mass (raw)                                                        | g/kg     | 1377    | 48    | 1410   | 1385   | 1408   | 1306   |
| mass per equivalent dry fuel mass                                               | g/kg     | 1814    | 73    | 1825   | 1834   | 1884   | 1712   |
| mass per fuel energy                                                            | g/MJ     | 100     | 2     | 100    | 100    | 103    | 97     |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 188     | 7     | 190    | 189    | 193    | 178    |
| mass per time                                                                   | g/hour   | 2274    | 197   | 2284   | 2335   | 2004   | 2472   |
| <b>THC</b> (as C <sub>3</sub> H <sub>8</sub> ) temperature-corrected total mass | g        | 3.14    | 0.27  | 3.14   | 3.39   | 3.29   | 2.77   |
| mass per effective volume of water boiled                                       | g/liter  | 0.08    | 0.01  | 0.08   | 0.09   | 0.09   | 0.07   |
| mass per fuel mass (raw)                                                        | g/kg     | 1.47    | 0.11  | 1.49   | 1.57   | 1.52   | 1.31   |
| mass per equivalent dry fuel mass                                               | g/kg     | 1.94    | 0.16  | 1.93   | 2.09   | 2.04   | 1.72   |
| mass per fuel energy                                                            | g/MJ     | 0.11    | 0.01  | 0.11   | 0.11   | 0.11   | 0.10   |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.20    | 0.02  | 0.20   | 0.22   | 0.21   | 0.18   |
| mass per time                                                                   | g/hour   | 2.43    | 0.20  | 2.41   | 2.65   | 2.17   | 2.48   |
| CH <sub>4</sub> temperature-corrected total mass                                | g        | 0.78    | 0.03  | 0.75   | 0.80   | 0.76   | 0.81   |
| mass per effective volume of water boiled                                       | g/liter  | 0.020   | 0.001 | 0.020  | 0.021  | 0.020  | 0.021  |
| mass per fuel mass (raw)                                                        | g/kg     | 0.37    | 0.01  | 0.36   | 0.37   | 0.35   | 0.38   |
| mass per equivalent dry fuel mass                                               | g/kg     | 0.48    | 0.02  | 0.46   | 0.50   | 0.47   | 0.50   |
| mass per fuel energy                                                            | g/MJ     | 0.027   | 0.001 | 0.025  | 0.027  | 0.026  | 0.028  |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.050   | 0.002 | 0.048  | 0.051  | 0.049  | 0.052  |
| mass per time                                                                   | g/hour   | 0.61    | 0.09  | 0.58   | 0.63   | 0.50   | 0.72   |
| NO <sub>x</sub> temperature-corrected total mass                                | g        | 1.35    | 0.15  | 1.31   | 1.40   | 1.53   | 1.17   |
| mass per effective volume of water boiled                                       | g/liter  | 0.035   | 0.004 | 0.034  | 0.037  | 0.040  | 0.030  |
| mass per fuel mass (raw)                                                        | g/kg     | 0.63    | 0.06  | 0.62   | 0.65   | 0.71   | 0.55   |
| mass per equivalent dry fuel mass                                               | g/kg     | 0.83    | 0.09  | 0.80   | 0.86   | 0.95   | 0.73   |
| mass per fuel energy                                                            | g/MJ     | 0.046   | 0.005 | 0.044  | 0.047  | 0.052  | 0.041  |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.09    | 0.01  | 0.08   | 0.09   | 0.10   | 0.08   |
| mass per time                                                                   | g/hour   | 1.04    | 0.04  | 1.00   | 1.10   | 1.01   | 1.05   |

#### *Table 7.* High-moisture fuel, high-power cold-start – WBT, PM<sub>2.5</sub>, and gaseous pollutant parameters

| Parameter                                                                       | Units    | Average | SD    | Test 1 | Test 2 | Test 3 | Test 4 |
|---------------------------------------------------------------------------------|----------|---------|-------|--------|--------|--------|--------|
| Fuel moisture (wet basis)                                                       | %        | 16.6    | 1.5   | 15.7   | 15.8   | 18.8   | 16.0   |
| Fuel consumed (raw)                                                             | g        | 2026    | 43    | 1971   | 2074   | 2018   | 2040   |
| Equivalent dry fuel consumed                                                    | g        | 1562    | 66    | 1538   | 1618   | 1479   | 1613   |
| Time to boil 5 liters of water, 25 to 100°C                                     | min      | 72.68   | 8.59  | 68.10  | 84.58  | 73.02  | 65.03  |
| Thermal efficiency                                                              | %        | 55.6    | 2.5   | 56.6   | 53.8   | 58.6   | 53.3   |
| Fuel burning rate                                                               | g/min    | 21.7    | 2.5   | 22.6   | 19.1   | 20.3   | 24.8   |
| Temperature-corrected specific fuel consumption                                 | g/liter  | 41.1    | 1.7   | 40.3   | 43.0   | 39.2   | 41.8   |
| Temperature-corrected specific energy use                                       | kJ/liter | 736     | 29    | 724    | 769    | 702    | 748    |
| Fire power                                                                      | Ŵ        | 6475    | 758   | 6757   | 5700   | 6043   | 7400   |
| Cooking power                                                                   | w        | 3594    | 389   | 3822   | 3067   | 3544   | 3944   |
| Modified combustion efficiency                                                  | %        | 98.4    | 0.3   | 98.4   | 98.7   | 97.9   | 98.5   |
| PM <sub>2.5</sub> temperature-corrected total mass                              | mg       | 2083    | 585   | 1920   | 1644   | 2943   | 1824   |
| mass per effective volume of water boiled                                       | mg/liter | 54.0    | 15.3  | 49.8   | 42.7   | 76.6   | 47.1   |
| mass per fuel mass (raw)                                                        | mg/kg    | 1015    | 288   | 964    | 775    | 1431   | 891    |
| mass per equivalent dry fuel mass                                               | mg/kg    | 1327    | 429   | 1235   | 993    | 1953   | 1127   |
| mass per fuel energy                                                            | mg/MJ    | 73.0    | 23.1  | 67.4   | 54.2   | 106.5  | 63.8   |
| mass per useful energy delivered (to water in pot)                              | mg/MJ    | 132     | 37    | 122    | 103    | 186    | 118    |
| mass per time                                                                   | mg/hour  | 1716    | 506   | 1674   | 1140   | 2374   | 1677   |
| <b>CO</b> temperature-corrected total mass                                      | g        | 30.7    | 6.4   | 30.9   | 25.6   | 39.7   | 26.5   |
| mass per effective volume of water boiled                                       | g/liter  | 0.80    | 0.17  | 0.80   | 0.66   | 1.03   | 0.69   |
| mass per fuel mass (raw)                                                        | g/kg     | 15.0    | 3.2   | 15.5   | 12.1   | 19.3   | 13.0   |
| mass per equivalent dry fuel mass                                               | g/kg     | 19.5    | 4.9   | 19.9   | 15.5   | 26.3   | 16.4   |
| mass per fuel energy                                                            | g/MJ     | 1.07    | 0.26  | 1.08   | 0.84   | 1.44   | 0.93   |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 1.95    | 0.40  | 1.96   | 1.61   | 2.51   | 1.72   |
| mass per time                                                                   | g/hour   | 25.3    | 5.9   | 26.9   | 17.7   | 32.0   | 24.4   |
| <b>CO</b> <sub>2</sub> temperature-corrected total mass                         | g g      | 2896    | 146   | 2944   | 3012   | 2948   | 2682   |
| mass per effective volume of water boiled                                       | g/liter  | 75      | 4     | 76     | 78     | 77     | 69     |
| mass per fuel mass (raw)                                                        | g/kg     | 1410    | 71    | 1478   | 1419   | 1433   | 1309   |
| mass per equivalent dry fuel mass                                               | g/kg     | 1831    | 130   | 1895   | 1819   | 1956   | 1656   |
| mass per fuel energy                                                            | g/MJ     | 101     | 6     | 103    | 99     | 107    | 94     |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 184     | 7     | 187    | 189    | 186    | 174    |
| mass per time                                                                   | g/hour   | 2374    | 206   | 2566   | 2088   | 2377   | 2464   |
| <b>THC</b> (as C <sub>3</sub> H <sub>8</sub> ) temperature-corrected total mass | g        | 2.68    | 0.40  | 2.53   | 2.60   | 3.26   | 2.34   |
| mass per effective volume of water boiled                                       | g/liter  | 0.07    | 0.01  | 0.07   | 0.07   | 0.08   | 0.06   |
| mass per fuel mass (raw)                                                        | g/kg     | 1.31    | 0.19  | 1.27   | 1.22   | 1.59   | 1.14   |
| mass per equivalent dry fuel mass                                               | g/kg     | 1.70    | 0.32  | 1.63   | 1.57   | 2.17   | 1.44   |
| mass per fuel energy                                                            | g/MJ     | 0.09    | 0.02  | 0.09   | 0.09   | 0.12   | 0.08   |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.17    | 0.02  | 0.16   | 0.16   | 0.21   | 0.15   |
| mass per time                                                                   | g/hour   | 2.20    | 0.34  | 2.20   | 1.80   | 2.63   | 2.15   |
| CH <sub>4</sub> temperature-corrected total mass                                | g        | 0.69    | 0.13  | 0.60   | 0.57   | 0.83   | 0.75   |
| mass per effective volume of water boiled                                       | g/liter  | 0.018   | 0.003 | 0.015  | 0.015  | 0.022  | 0.019  |
| mass per fuel mass (raw)                                                        | g/kg     | 0.33    | 0.06  | 0.30   | 0.27   | 0.41   | 0.37   |
| mass per equivalent dry fuel mass                                               | g/kg     | 0.44    | 0.09  | 0.38   | 0.34   | 0.55   | 0.47   |
| mass per fuel energy                                                            | g/MJ     | 0.02    | 0.01  | 0.02   | 0.02   | 0.03   | 0.03   |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.04    | 0.01  | 0.04   | 0.04   | 0.05   | 0.05   |
| mass per time                                                                   | g/hour   | 0.57    | 0.14  | 0.52   | 0.39   | 0.67   | 0.69   |
| NO <sub>x</sub> temperature-corrected total mass                                | g        | 1.27    | 0.07  | 1.30   | 1.30   | 1.31   | 1.16   |
| mass per effective volume of water boiled                                       | g/liter  | 0.033   | 0.002 | 0.034  | 0.034  | 0.034  | 0.030  |
| mass per fuel mass (raw)                                                        | g/kg     | 0.62    | 0.04  | 0.65   | 0.61   | 0.64   | 0.56   |
| mass per equivalent dry fuel mass                                               | g/kg     | 0.80    | 0.07  | 0.84   | 0.79   | 0.87   | 0.71   |
| mass per fuel energy                                                            | g/MJ     | 0.044   | 0.003 | 0.046  | 0.043  | 0.047  | 0.040  |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.080   | 0.004 | 0.082  | 0.082  | 0.083  | 0.075  |
| mass per time                                                                   | g/hour   | 1.04    | 0.10  | 1.13   | 0.90   | 1.06   | 1.06   |

#### *Table 8.* High-moisture fuel, high-power hot-start – WBT, PM<sub>2.5</sub>, and gaseous pollutant parameters

| Parameter                                                 | Units    | Average | SD     | Test 1 | Test 2 | Test 3 | Test 4 |
|-----------------------------------------------------------|----------|---------|--------|--------|--------|--------|--------|
| Fuel moisture (wet basis)                                 | %        | 17.4    | 3.8    | 14.2   | 17.1   | 22.8   | 15.4   |
| Fuel consumed (raw)                                       | g        | 421     | 29     | 378    | 426    | 442    | 439    |
| Equivalent dry fuel consumed                              | g        | 427     | 16     | 416    | 447    | 433    | 412    |
| Fuel burning rate                                         | g/min    | 14.2    | 0.6    | 13.8   | 14.9   | 14.4   | 13.7   |
| Specific fuel consumption                                 | g/liter  | 11.5    | 0.5    | 11.2   | 12.1   | 11.8   | 11.1   |
| Specific energy use                                       | kJ/liter | 207     | 9      | 200    | 217    | 212    | 199    |
| Fire power                                                | W        | 4254    | 170    | 4127   | 4454   | 4335   | 4100   |
| Modified combustion efficiency                            | %        | 95.7    | 0.8    | 96.5   | 94.7   | 95.5   | 96.2   |
| PM <sub>2.5</sub> total mass                              | mg       | 573     | 92     | 568    | 663    | 615    | 448    |
| mass per volume of water remaining                        | mg/liter | 15.5    | 2.5    | 15.3   | 17.9   | 16.7   | 12.1   |
| mass per fuel mass (raw)                                  | mg/kg    | 1367    | 241    | 1500   | 1557   | 1392   | 1021   |
| mass per equivalent dry fuel mass                         | mg/kg    | 1338    | 174    | 1363   | 1482   | 1419   | 1087   |
| mass per fuel energy                                      | mg/MJ    | 73.6    | 8.4    | 74.4   | 80.9   | 77.4   | 61.6   |
| mass per time                                             | mg/hour  | 1146    | 185    | 1132   | 1326   | 1230   | 896    |
| CO total mass                                             | g        | 19.2    | 5.3    | 14.3   | 25.4   | 21.7   | 15.4   |
| mass per volume of water remaining                        | g/liter  | 0.52    | 0.14   | 0.38   | 0.69   | 0.59   | 0.42   |
| mass per fuel mass (raw)                                  | g/kg     | 45.4    | 11.3   | 37.7   | 59.7   | 49.2   | 35.1   |
| mass per equivalent dry fuel mass                         | g/kg     | 44.7    | 10.6   | 34.3   | 56.9   | 50.1   | 37.4   |
| mass per fuel energy                                      | g/MJ     | 2.46    | 0.56   | 1.87   | 3.10   | 2.73   | 2.12   |
| mass per time                                             | g/hour   | 38.4    | 10.6   | 28.5   | 50.9   | 43.4   | 30.8   |
| CO <sub>2</sub> total mass                                | g        | 664     | 57     | 614    | 707    | 719    | 616    |
| mass per volume of water remaining                        | g/liter  | 18.0    | 1.6    | 16.5   | 19.1   | 19.5   | 16.6   |
| mass per fuel mass (raw)                                  | g/kg     | 1579    | 118    | 1624   | 1661   | 1628   | 1403   |
| mass per equivalent dry fuel mass                         | g/kg     | 1553    | 85     | 1475   | 1581   | 1659   | 1494   |
| mass per fuel energy                                      | g/MJ     | 85.5    | 4.1    | 80.5   | 86.3   | 90.5   | 84.7   |
| mass per time                                             | g/hour   | 1327    | 115    | 1225   | 1415   | 1438   | 1231   |
| <b>THC</b> (as C <sub>3</sub> H <sub>8</sub> ) total mass | g        | 1.30    | 0.14   | 1.42   | 1.37   | 1.10   | 1.31   |
| mass per volume of water remaining                        | g/liter  | 0.035   | 0.004  | 0.038  | 0.037  | 0.030  | 0.035  |
| mass per fuel mass (raw)                                  | g/kg     | 3.11    | 0.52   | 3.74   | 3.22   | 2.50   | 2.98   |
| mass per equivalent dry fuel mass                         | g/kg     | 3.05    | 0.36   | 3.40   | 3.07   | 2.54   | 3.18   |
| mass per fuel energy                                      | g/MJ     | 0.17    | 0.02   | 0.19   | 0.17   | 0.14   | 0.18   |
| mass per time                                             | g/hour   | 2.60    | 0.27   | 2.82   | 2.74   | 2.21   | 2.62   |
| CH₄ total mass                                            | g        | 0.35    | 0.01   | 0.35   | 0.34   | 0.34   | 0.37   |
| mass per volume of water remaining                        | g/liter  | 0.0094  | 0.0004 | 0.0095 | 0.0091 | 0.0092 | 0.0099 |
| mass per fuel mass (raw)                                  | g/kg     | 0.83    | 0.07   | 0.93   | 0.79   | 0.76   | 0.83   |
| mass per equivalent dry fuel mass                         | g/kg     | 0.82    | 0.06   | 0.85   | 0.75   | 0.78   | 0.89   |
| mass per fuel energy                                      | g/MJ     | 0.045   | 0.004  | 0.046  | 0.041  | 0.042  | 0.050  |
| mass per time                                             | g/hour   | 0.70    | 0.03   | 0.70   | 0.67   | 0.67   | 0.73   |
| NO <sub>x</sub> total mass                                | g        | 0.27    | 0.03   | 0.26   | 0.27   | 0.31   | 0.25   |
| mass per volume of water remaining                        | g/liter  | 0.007   | 0.001  | 0.007  | 0.007  | 0.008  | 0.007  |
| mass per fuel mass (raw)                                  | g/kg     | 0.64    | 0.06   | 0.69   | 0.63   | 0.69   | 0.56   |
| mass per equivalent dry fuel mass                         | g/kg     | 0.63    | 0.05   | 0.63   | 0.60   | 0.71   | 0.60   |
| mass per fuel energy                                      | g/MJ     | 0.035   | 0.003  | 0.034  | 0.033  | 0.039  | 0.034  |
| mass per time                                             | g/hour   | 0.54    | 0.05   | 0.52   | 0.54   | 0.61   | 0.49   |

#### **Table 9.** High-moisture fuel, low-power (30-min simmer) – WBT and pollutant emission parameters

| Parameter                                          | Units    | Average | SD   | Test 1 | Test 2 | Test 3 | Test 4 |
|----------------------------------------------------|----------|---------|------|--------|--------|--------|--------|
| High-power cold-start                              | •        |         | •    | •      | •      | •      | •      |
| OC temperature-corrected total mass                | mg       | 716     | 167  | 734    | 694    | 921    | 514    |
| mass per effective volume of water boiled          | mg/liter | 18.6    | 4.4  | 19.1   | 18.1   | 23.9   | 13.3   |
| mass per fuel mass (raw)                           | mg/kg    | 335     | 76   | 348    | 323    | 427    | 244    |
| mass per equivalent dry fuel mass                  | mg/kg    | 442     | 103  | 451    | 427    | 571    | 319    |
| mass per fuel energy                               | mg/MJ    | 24.3    | 5.4  | 24.6   | 23.3   | 31.2   | 18.1   |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 45.7    | 10.4 | 47.0   | 44.1   | 58.5   | 33.1   |
| mass per time                                      | mg/hour  | 544     | 61   | 564    | 544    | 608    | 461    |
| EC temperature-corrected total mass                | mg       | 1163    | 107  | 1309   | 1076   | 1177   | 1091   |
| mass per effective volume of water boiled          | mg/liter | 30.2    | 2.8  | 34.0   | 28.0   | 30.6   | 28.2   |
| mass per fuel mass (raw)                           | mg/kg    | 546     | 53   | 621    | 500    | 546    | 517    |
| mass per equivalent dry fuel mass                  | mg/kg    | 719     | 64   | 804    | 663    | 730    | 678    |
| mass per fuel energy                               | mg/MJ    | 39.6    | 3.2  | 43.8   | 36.2   | 39.8   | 38.4   |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 74.4    | 6.8  | 83.8   | 68.5   | 74.8   | 70.3   |
| mass per time                                      | mg/hour  | 901     | 109  | 1006   | 844    | 777    | 979    |
| High-power hot-start                               |          |         |      |        |        |        |        |
| OC temperature-corrected total mass                | mg       | 449     | 284  | 314    | 298    | 875    | 310    |
| mass per effective volume of water boiled          | mg/liter | 11.7    | 7.4  | 8.1    | 7.7    | 22.8   | 8.0    |
| mass per fuel mass (raw)                           | mg/kg    | 219     | 138  | 158    | 140    | 426    | 151    |
| mass per equivalent dry fuel mass                  | mg/kg    | 288     | 195  | 202    | 180    | 581    | 191    |
| mass per fuel energy                               | mg/MJ    | 15.8    | 10.6 | 11.0   | 9.8    | 31.7   | 10.8   |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 28.5    | 17.9 | 19.9   | 18.7   | 55.3   | 20.1   |
| mass per time                                      | mg/hour  | 368     | 228  | 274    | 206    | 706    | 285    |
| EC temperature-corrected total mass                | mg       | 1144    | 149  | 1154   | 996    | 1345   | 1081   |
| mass per effective volume of water boiled          | mg/liter | 29.7    | 3.9  | 29.9   | 25.9   | 35.0   | 27.9   |
| mass per fuel mass (raw)                           | mg/kg    | 557     | 78   | 579    | 469    | 654    | 528    |
| mass per equivalent dry fuel mass                  | mg/kg    | 726     | 125  | 743    | 601    | 892    | 668    |
| mass per fuel energy                               | mg/MJ    | 40.0    | 6.6  | 40.5   | 32.8   | 48.7   | 37.8   |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 72.6    | 9.4  | 73.1   | 62.5   | 85.0   | 70.0   |
| mass per time                                      | mg/hour  | 943     | 174  | 1006   | 690    | 1084   | 993    |
| Low-power (30-minute simmer)                       |          |         |      |        |        | -      | -      |
| OC total mass                                      | mg       | 198     | 46   | 260    | 203    | 156    | 173    |
| mass per volume of water remaining                 | mg/liter | 5.35    | 1.22 | 7.00   | 5.50   | 4.24   | 4.68   |
| mass per fuel mass (raw)                           | mg/kg    | 478     | 149  | 688    | 477    | 353    | 395    |
| mass per equivalent dry fuel mass                  | mg/kg    | 465     | 114  | 625    | 454    | 360    | 420    |
| mass per fuel energy                               | mg/MJ    | 25.6    | 6.1  | 34.1   | 24.8   | 19.6   | 23.8   |
| mass per time                                      | mg/hour  | 396     | 91   | 519    | 407    | 312    | 346    |
| EC total mass                                      | mg       | 175     | 93   | 80     | 227    | 278    | 113    |
| mass per volume of water remaining                 | mg/liter | 4.73    | 2.54 | 2.16   | 6.13   | 7.55   | 3.06   |
| mass per fuel mass (raw)                           | mg/kg    | 408     | 204  | 212    | 532    | 630    | 258    |
| mass per equivalent dry fuel mass                  | mg/kg    | 404     | 207  | 193    | 507    | 642    | 275    |
| mass per fuel energy                               | mg/MJ    | 22.2    | 11.2 | 10.5   | 27.6   | 35.0   | 15.6   |
| mass per time                                      | mg/hour  | 349     | 187  | 160    | 453    | 556    | 227    |

#### *Table 10.* High-moisture fuel – emissions of PM<sub>2.5</sub> OC (organic carbon) and EC (elemental carbon)

# **Table 11.** High-moisture fuel – $PM_{2.5}$ mass fractions of organic carbon to total carbon (OC/TC) and elemental carbon to total carbon (EC/TC)

|                        | High-Power Cold-Start | High-Power Hot-Start | Low-Power (Simmer) |
|------------------------|-----------------------|----------------------|--------------------|
| Mass fraction of OC/TC | 0.381                 | 0.282                | 0.532              |
| Mass fraction of EC/TC | 0.619                 | 0.718                | 0.468              |

| Parameter                                          | Units    | Average | SD   | Test 1 | Test 2 | Test 3 | Test 4 |
|----------------------------------------------------|----------|---------|------|--------|--------|--------|--------|
| High-power cold-start                              | 1        | 0       | 1    |        |        |        |        |
| BC temperature-corrected total mass                | mg       | 1137    | 100  | 1203   | 1088   | 1235   | 1020   |
| mass per effective volume of water boiled          | mg/liter | 29.5    | 2.6  | 31.2   | 28.4   | 32.1   | 26.4   |
| mass per fuel mass (raw)                           | mg/kg    | 533     | 45   | 570    | 506    | 572    | 484    |
| mass per equivalent dry fuel mass                  | mg/kg    | 702     | 61   | 739    | 671    | 766    | 634    |
| mass per fuel energy                               | mg/MJ    | 38.6    | 2.8  | 40.3   | 36.6   | 41.8   | 35.9   |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 72.6    | 6.1  | 77.0   | 69.3   | 78.5   | 65.8   |
| mass per time                                      | mg/hour  | 877     | 52   | 924    | 854    | 815    | 916    |
| High-power hot-start                               |          |         |      |        |        |        |        |
| BC temperature-corrected total mass                | mg       | 970     | 227  | 916    | 764    | 1294   | 907    |
| mass per effective volume of water boiled          | mg/liter | 25.2    | 5.9  | 23.7   | 19.8   | 33.7   | 23.4   |
| mass per fuel mass (raw)                           | mg/kg    | 473     | 113  | 460    | 360    | 629    | 443    |
| mass per equivalent dry fuel mass                  | mg/kg    | 617     | 170  | 589    | 461    | 859    | 560    |
| mass per fuel energy                               | mg/MJ    | 34.0    | 9.2  | 32.1   | 25.2   | 46.8   | 31.8   |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 61.6    | 14.3 | 58.0   | 47.9   | 81.8   | 58.7   |
| mass per time                                      | mg/hour  | 801     | 211  | 798    | 529    | 1043   | 834    |
| Low-power (30-minute simmer)                       |          |         |      |        |        |        |        |
| BC total mass                                      | mg       | 146     | 63   | 90     | 137    | 237    | 120    |
| mass per volume of water remaining                 | mg/liter | 4.0     | 1.7  | 2.4    | 3.7    | 6.4    | 3.3    |
| mass per fuel mass (raw)                           | mg/kg    | 343     | 133  | 239    | 322    | 536    | 275    |
| mass per equivalent dry fuel mass                  | mg/kg    | 341     | 143  | 217    | 306    | 546    | 292    |
| mass per fuel energy                               | mg/MJ    | 18.7    | 7.7  | 11.8   | 16.7   | 29.8   | 16.6   |
| mass per time                                      | mg/hour  | 292     | 127  | 180    | 274    | 474    | 241    |

#### Table 12. High-moisture fuel – emissions of BC (black carbon) measured with aethalometer

| Parameter                                                                       | Unite    | High-power |       | High- | power | Low-p             | ower              |
|---------------------------------------------------------------------------------|----------|------------|-------|-------|-------|-------------------|-------------------|
|                                                                                 | Units    | cold-      | start | hot-  | start | 30-minut          | e simmer          |
| Fuel moisture (wet basis)                                                       | %        | 7.2        | 17.1  | 7.3   | 16.6  | 7.2               | 17.4              |
| Fuel consumed (raw)                                                             | g        | 1817       | 2172  | 1724  | 2026  | 286               | 421               |
| Equivalent dry fuel consumed                                                    | g        | 1607       | 1650  | 1513  | 1562  | 338               | 427               |
| Time to boil 40 liters of water, 25 to 100°C                                    | min      | 72.71      | 79.60 | 66.81 | 72.68 | n.a.1             | n.a.1             |
| Thermal efficiency                                                              | %        | 55.0       | 53.9  | 56.0  | 55.6  | n.a.1             | n.a.1             |
| Fuel burning rate                                                               | g/min    | 22.2       | 21.0  | 22.7  | 21.7  | 11.3              | 14.2              |
| Temperature-corrected specific fuel consumption                                 | g/liter  | 40.3       | 42.0  | 39.4  | 41.1  | 9.2               | 11.5              |
| Temperature-corrected specific energy use                                       | kJ/liter | 718        | 753   | 700   | 736   | 162               | 207               |
| Fire power                                                                      | W        | 6574       | 6264  | 6729  | 6475  | 3318              | 4254              |
| Cooking power                                                                   | W        | 3640       | 3376  | 3765  | 3594  | n.a.1             | n.a.1             |
| Modified combustion efficiency                                                  | %        | 97.6       | 98.4  | 97.6  | 98.4  | 93.7              | 95.7              |
| PM <sub>2.5</sub> temperature-corrected total mass                              | mg       | 2295       | 2384  | 2359  | 2083  | 309               | 573               |
| mass per effective volume of water                                              | mg/liter | 60.1       | 61.9  | 62.0  | 54.0  | 8.5               | 15.5              |
| mass per fuel mass (raw)                                                        | mg/kg    | 1316       | 1118  | 1385  | 1015  | 1089              | 1367              |
| mass per equivalent dry fuel mass                                               | mg/kg    | 1491       | 1473  | 1573  | 1327  | 939               | 1338              |
| mass per fuel energy                                                            | mg/MJ    | 83.7       | 81.0  | 88.2  | 73.0  | 52.7              | 73.6              |
| mass per useful energy delivered (to water in pot)                              | mg/MJ    | 152.1      | 152   | 158.4 | 132   | n.a.1             | n.a.1             |
| mass per time                                                                   | mg/hour  | 1982       | 1837  | 2148  | 1716  | 618               | 1146              |
| CO temperature-corrected total mass                                             | g        | 45.0       | 30.2  | 40.9  | 30.7  | 20.9              | 19.2              |
| mass per effective volume of water                                              | g/liter  | 1.18       | 0.78  | 1.08  | 0.80  | 0.57              | 0.52              |
| mass per fuel mass (raw)                                                        | g/kg     | 25.8       | 14.2  | 24.2  | 15.0  | 72.4              | 45.4              |
| mass per equivalent dry fuel mass                                               | g/kg     | 28.8       | 18.7  | 27.2  | 19.5  | 61.7              | 44.7              |
| mass per fuel energy                                                            | g/MJ     | 1.62       | 1.03  | 1.53  | 1.07  | 3.48              | 2.46              |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 2.98       | 1.93  | 2.75  | 1.95  | n.a.1             | n.a.1             |
| mass per time                                                                   | g/hour   | 38.2       | 23.3  | 37.3  | 25.3  | 41.7              | 38.4              |
| CO <sub>2</sub> temperature-corrected total mass                                | g        | 2685       | 2935  | 2602  | 2896  | 505               | 664               |
| mass per effective volume of water                                              | g/liter  | 70.4       | 76    | 68.1  | 75    | 13.7              | 18.0              |
| mass per fuel mass (raw)                                                        | g/kg     | 1541       | 1377  | 1520  | 1410  | 1763              | 1579              |
| mass per equivalent dry fuel mass                                               | g/kg     | 1743       | 1814  | 1730  | 1831  | 1494              | 1553              |
| mass per fuel energy                                                            | g/MJ     | 97.9       | 100   | 97.1  | 101   | 84.1              | 85.5              |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 178        | 188   | 174   | 184   | n.a.1             | n.a.1             |
| mass per time                                                                   | g/hour   | 2314       | 2274  | 2353  | 2374  | 1009              | 1327              |
| <b>THC</b> (as C <sub>3</sub> H <sub>8</sub> ) temperature-corrected total mass | g        | 0.82       | 3.14  | 1.15  | 2.68  | 0.72              | 1.30              |
| mass per effective volume of water                                              | g/liter  | 0.02       | 0.08  | 0.03  | 0.07  | 0.02              | 0.04              |
| mass per fuel mass (raw)                                                        | g/kg     | 0.47       | 1.47  | 0.68  | 1.31  | 2.53              | 3.11              |
| mass per equivalent dry fuel mass                                               | g/kg     | 0.53       | 1.94  | 0.77  | 1.70  | 2.19              | 3.05              |
| mass per fuel energy                                                            | g/MJ     | 0.03       | 0.11  | 0.04  | 0.09  | 0.12              | 0.17              |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.05       | 0.20  | 0.08  | 0.17  | n.a.1             | n.a.1             |
| mass per time                                                                   | g/hour   | 0.69       | 2.43  | 1.06  | 2.20  | 1.43              | 2.60              |
| CH₄ temperature-corrected total mass                                            | g        | 0.21       | 0.78  | 0.26  | 0.69  | 0.30              | 0.35              |
| mass per effective volume of water                                              | g/liter  | 0.005      | 0.020 | 0.007 | 0.018 | 0.008             | 0.009             |
| mass per fuel mass (raw)                                                        | g/kg     | 0.12       | 0.37  | 0.15  | 0.33  | 1.06              | 0.83              |
| mass per equivalent dry fuel mass                                               | g/kg     | 0.13       | 0.48  | 0.17  | 0.44  | 0.90              | 0.82              |
| mass per fuel energy                                                            | g/MJ     | 0.01       | 0.03  | 0.01  | 0.02  | 0.05              | 0.05              |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.01       | 0.05  | 0.02  | 0.04  | n.a.1             | n.a.1             |
| mass per time                                                                   | g/hour   | 0.18       | 0.61  | 0.23  | 0.57  | 0.61              | 0.70              |
| NO <sub>x</sub> temperature-corrected total mass                                | g        | 1.26       | 1.35  | 1.15  | 1.27  | 0.17              | 0.27              |
| mass per effective volume of water                                              | g/liter  | 0.033      | 0.035 | 0.030 | 0.033 | 0.005             | 0.007             |
| mass per fuel mass (raw)                                                        | g/kg     | 0.72       | 0.63  | 0.68  | 0.62  | 0.59              | 0.64              |
| mass per equivalent dry fuel mass                                               | g/kg     | 0.82       | 0.83  | 0.77  | 0.80  | 0.50              | 0.63              |
| mass per fuel energy                                                            | g/MJ     | 0.05       | 0.05  | 0.04  | 0.04  | 0.03              | 0.03              |
| mass per useful energy delivered (to water in pot)                              | g/MJ     | 0.08       | 0.09  | 0.08  | 0.08  | n.a. <sup>1</sup> | n.a. <sup>1</sup> |
| mass per time                                                                   | g/hour   | 1.09       | 1.04  | 1.04  | 1.04  | 0.34              | 0.54              |

#### Table 13. Comparison of low- and high-moisture fuel – WBT, PM2.5 and gaseous pollutant parameters

<sup>1</sup>Not applicable to the low-power 30-minute simmer phase

| Devenue et eu                       | Unite    | High-power |            | High- | oower     | Low-power |                  |  |
|-------------------------------------|----------|------------|------------|-------|-----------|-----------|------------------|--|
| Parameter                           | Units    | cold-      | cold-start |       | hot-start |           | 30-minute simmer |  |
| Fuel moisture (wet basis)           | %        | 7.2        | 17.1       | 7.3   | 16.6      | 7.2       | 17.4             |  |
| OC temperature-corrected total mass | mg       | 539        | 716        | 582   | 449       | 93.5      | 198              |  |
| mass per effective volume of water  | mg/liter | 14.1       | 18.6       | 15.5  | 11.7      | 2.6       | 5.35             |  |
| mass per fuel mass (raw)            | mg/kg    | 309        | 335        | 345   | 219       | 331       | 478              |  |
| mass per equivalent dry fuel mass   | mg/kg    | 349        | 442        | 390   | 288       | 292.2     | 465              |  |
| mass per fuel energy                | mg/MJ    | 19.6       | 24.3       | 21.9  | 15.8      | 16.4      | 25.6             |  |
| mass per useful energy delivered    | mg/MJ    | 35.7       | 45.7       | 39.4  | 28.5      | n.a.      | n.a.             |  |
| mass per time                       | mg/hour  | 463        | 544        | 534   | 368       | 187       | 396              |  |
| EC temperature-corrected total mass | mg       | 1205       | 1163       | 1297  | 1144      | 105       | 175              |  |
| mass per effective volume of water  | mg/liter | 31.5       | 30.2       | 34.0  | 29.7      | 2.8       | 4.73             |  |
| mass per fuel mass (raw)            | mg/kg    | 691        | 546        | 758   | 557       | 370       | 408              |  |
| mass per equivalent dry fuel mass   | mg/kg    | 784        | 719        | 863   | 726       | 310       | 404              |  |
| mass per fuel energy                | mg/MJ    | 44.0       | 39.6       | 48.4  | 40.0      | 17.4      | 22.2             |  |
| mass per useful energy delivered    | mg/MJ    | 79.9       | 74.4       | 86.8  | 72.6      | n.a.      | n.a.             |  |
| mass per time                       | mg/hour  | 1042       | 901        | 1176  | 943       | 209       | 349              |  |
| Mass fraction of OC/TC              | -        | 0.309      | 0.381      | 0.310 | 0.282     | 0.471     | 0.532            |  |
| Mass fraction of EC/TC              | -        | 0.691      | 0.619      | 0.690 | 0.718     | 0.529     | 0.468            |  |

#### Table 14. Comparison of low- and high-moisture fuel – PM<sub>2.5</sub> organic and elemental carbon emissions

#### Table 15. Comparison of low- and high-moisture fuel – emissions of black carbon (aethalometer)

| Parameter                           | Units    | High-power<br>cold-start |      | High-power<br>hot-start |      | Low-power<br>30-minute simmer |      |
|-------------------------------------|----------|--------------------------|------|-------------------------|------|-------------------------------|------|
| Fuel moisture (wet basis)           | %        | 7.2                      | 17.1 | 7.3                     | 16.6 | 7.2                           | 17.4 |
| BC temperature-corrected total mass | mg       | 1138                     | 1137 | 1082                    | 970  | 74.5                          | 146  |
| mass per effective volume of water  | mg/liter | 29.8                     | 29.5 | 28.5                    | 25.2 | 2.0                           | 4.0  |
| mass per fuel mass (raw)            | mg/kg    | 652                      | 533  | 633                     | 473  | 261                           | 343  |
| mass per equivalent dry fuel mass   | mg/kg    | 741                      | 702  | 722                     | 617  | 217                           | 341  |
| mass per fuel energy                | mg/MJ    | 41.6                     | 38.6 | 40.5                    | 34.0 | 12.2                          | 18.7 |
| mass per useful energy delivered    | mg/MJ    | 75.1                     | 72.6 | 72.6                    | 61.6 | n.a.                          | n.a. |
| mass per time                       | mg/hour  | 985                      | 877  | 986                     | 801  | 149                           | 292  |

|                                                    |          | High-nower | High-power | Low-power     |  |
|----------------------------------------------------|----------|------------|------------|---------------|--|
| Parameter                                          | Units    | cold-start | hot-start  | 30-min simmer |  |
| Fuel moisture (wet basis)                          | %        | 8.4        | 8.4        | 8.4           |  |
| Fuel consumed (raw)                                | g        | 1797       | 1679       | 351           |  |
| Equivalent dry fuel consumed                       | g        | 1554       | 1446       | 395           |  |
| Time to boil 40 liters of water, 25 to 100°C       | min      | 61.84      | 49.47      | n.a.1         |  |
| Thermal efficiency                                 | %        | 56.2       | 56.1       | n.a.1         |  |
| Fuel burning rate                                  | g/min    | 23.8       | 29.3       | 13.2          |  |
| Temperature-corrected specific fuel consumption    | g/liter  | 37.0       | 36.5       | 10.4          |  |
| Temperature-corrected specific energy use          | kJ/liter | 669        | 660        | 187           |  |
| Fire power                                         | W        | 7166       | 8832       | 3961          |  |
| Cooking power                                      | W        | 4029       | 4958       | n.a.1         |  |
| PM <sub>2.5</sub> temperature-corrected total mass | mg       | 60         | 56         | 7.8           |  |
| mass per effective volume of water                 | mg/liter | 1.5        | 1.4        | 0.21          |  |
| mass per fuel mass (raw)                           | mg/kg    | 35         | 33         | 22.3          |  |
| mass per equivalent dry fuel mass                  | mg/kg    | 41         | 38         | 19.9          |  |
| mass per fuel energy                               | mg/MJ    | 2.3        | 2.1        | 1.1           |  |
| mass per useful energy delivered (to water in pot) | mg/MJ    | 4.0        | 3.8        | n.a.1         |  |
| mass per time                                      | mg/hour  | 58.6       | 67.4       | 15.7          |  |
| CO temperature-corrected total mass                | g        | 0.81       | 0.63       | 0.26          |  |
| mass per effective volume of water                 | g/liter  | 0.020      | 0.016      | 0.007         |  |
| mass per fuel mass (raw)                           | g/kg     | 0.48       | 0.37       | 0.74          |  |
| mass per equivalent dry fuel mass                  | g/kg     | 0.55       | 0.44       | 0.66          |  |
| mass per fuel energy                               | g/MJ     | 0.030      | 0.024      | 0.036         |  |
| mass per useful energy delivered (to water in pot) | g/MJ     | 0.054      | 0.043      | n.a.1         |  |
| mass per time                                      | g/hour   | 0.79       | 0.77       | 0.52          |  |

#### Table 16. Results from indoor (fugitive) emissions tests

<sup>1</sup>Not applicable to the low-power 30-minute simmer phase

#### Table 17. Carbon balance, percent difference based on fuel carbon

| Fuel<br>Moisture | Test phase            | Units | Test 1<br>08/21/2014  | Test 2<br>02/11/2015 | Test 3<br>02/12/2015 | Test 4<br>02/13/2015 | Test 5<br>02/20/2015  |
|------------------|-----------------------|-------|-----------------------|----------------------|----------------------|----------------------|-----------------------|
|                  | High-power cold-start | %     | 16.0                  | 5.4                  | 7.0                  | 2.9                  | 5.2                   |
| Low              | High-power hot-start  | %     | 18.0                  | 6.2                  | 5.7                  | 3.1                  | 5.4                   |
|                  | Low-power (simmer)    | %     | rejected <sup>1</sup> | 13.7                 | 13.4                 | 17.2                 | 10.2                  |
|                  |                       |       | Test 6                | Test 7               | Test 8               | Test 9               | Test 10               |
|                  |                       |       | 02/23/2015            | 05/06/2015           | 05/08/2015           | 05/12/2015           | 05/13/2015            |
|                  | High-power cold-start | %     | 5.7                   | -3.0                 | -6.2                 | -5.1                 | -3.8                  |
| Low              | High-power hot-start  | %     | n.a. <sup>2</sup>     | 1.6                  | -10.7                | -3.1                 | -6.0                  |
|                  | Low-power (simmer)    | %     | n.a. <sup>2</sup>     | 19.3                 | -6.9                 | 15.1                 | rejected <sup>1</sup> |
|                  |                       |       | Test 1                | Test 2               | Test 3               | Test 4               |                       |
|                  |                       |       | 05/18/2015            | 05/19/2015           | 05/20/2015           | 05/29/2015           |                       |
| High             | High-power cold-start | %     | -4.0                  | -4.2                 | -7.9                 | 6.6                  |                       |
|                  | High-power hot-start  | %     | -8.1                  | -4.3                 | -12.2                | 9.6                  |                       |
|                  | Low-power (simmer)    | %     | 13.8                  | 6.6                  | 4.7                  | 15.9                 |                       |

<sup>1</sup> Rejected due to carbon balance out of limits

<sup>2</sup> Test 6 discontinued after the cold-start phase

| Table 18. Measurement quality objectives for critical measurements.                                   |
|-------------------------------------------------------------------------------------------------------|
| All data included in this report were based on measurements that met or exceeded acceptance criteria. |

| Measurement                   | Reference            | Indicators            | Acceptance<br>Criteria |  |
|-------------------------------|----------------------|-----------------------|------------------------|--|
| Water and Fuel Mass,          | EPA RTP Met Lab SOP, | Accuracy              | ± 1 g                  |  |
| Electronic Balance            | MS-0501.0            | Precision             | ±1g                    |  |
| Water Temperature,            | EPA RTP Met Lab SOP, | Accuracy              | ± 0.5 °C               |  |
| Thermocouple                  | TH-0301.0            | Precision             | ± 0.5 °C               |  |
| Fuel Heat of Combustion       |                      | Accuracy              | ± 0.5%                 |  |
| Fuel Heat of Compustion       | ASTIVI D5805-13      | Precision             | ± 0.5%                 |  |
| Fuel Moisture Content Mass,   |                      | Accuracy              | ± 1g                   |  |
| Electronic Balance            | ASTIVI D4442-07      | Precision             | ± 0.5g                 |  |
| PM <sub>2.5</sub> Mass,       |                      | Accuracy              | ± 0.01 mg              |  |
| Microbalance                  | EPA Method 5         | Precision             | ± 0.01 mg              |  |
| PM <sub>2.5</sub> Mass,       | EPA RTP Met Lab SOP  | Accuracy              | ± 1 lpm                |  |
| Sampling Air Flow             | FV-0237.1            | Precision             | ± 1 lpm                |  |
|                               |                      | Accuracy              | ± 16.7%                |  |
|                               | NIOSH MELIIOU 5040   | Precision             | ± 10%                  |  |
| THC Concentration             | EDA Mothod 25A       | Calibration linearity | ± 2% of scale          |  |
| CH <sub>4</sub> Concentration |                      | ,<br>Zero bias        | ± 5% of scale          |  |
| CO Concentration              | EPA Method 10        | Span bias             | ± 5% of scale          |  |
| CO <sub>2</sub> Concentration | EPA Method 3A        | Zero drift            | ± 3% of scale          |  |
| NO <sub>x</sub> Concentration | EPA Method 7E        | Span drift            | ± 3% of scale          |  |
|                               | EDA Mothoda 1 8 2    | Accuracy              | ± 5% of reading        |  |
|                               | EPA MELTIOUS 1 & Z   | Precision             | ± 5% of reading        |  |
| Duct Gas Temperature          | EPA RTP Met Lab SOP, | Accuracy              | ±1°C                   |  |
| Thermocouple                  | TH-0301.0            | Precision             | ±1°C                   |  |

#### Acknowledgments

- (Alphabetical Order) Dale Greenwell, EPA Instrumentation Jerroll Faircloth, ARCADIS Instrumentation and Stove Operation Michael Hays, EPA OC/EC Analysis Amara Holder, EPA Aerosol Instrumentation Laura Nessley, ARCADIS Quality Assurance Bakul Patel, EPA OC/EC Analysis Chris Pressley, EPA Electronics Shop
- Guofeng Shen, EPA ORISE (Oak Ridge Institute for Science and Education) Postdoctoral Fellow
- Michael Tufts, ARCADIS Metrology Laboratory
- Richard Valentine, EPA Facilities
- Craig Williams, ARCADIS Project Lead
- Robert Wright, EPA Quality Assurance

#### References

1. *Partnership for Clean Indoor Air.* [Online] 2012. [Cited: March 12, 2014.] http://www.pciaonline.org/.

2. The United States' Commitment to the Global Alliance for Clean Cookstoves: Year Five Progress Report. *U.S. Department of State.* [Online] September 24, 2015. [Cited: January 18, 2016.] http://www.state.gov/r/pa/prs/ps/2015/09/247240.htm.

3. ISO/TC 285 Clean cookstoves and clean cooking solutions. *International Organization for Standardization.* [Online] 2014. [Cited: March 12, 2014.] http://www.iso.org/iso/home/standards\_development/list\_of\_iso\_technical\_committees/iso\_techni cal\_committee.htm?commid=4857971.

4. Chiang, Ranyee. EPA Stove Testing Training Workshop. *Global Alliance for Clean Cookstoves*. [Online] February 28, 2013. [Cited: May 25, 2015.]

http://community.cleancookstoves.org/about/news/02-28-2013-bonding-over-barbeque-bluegrassmusic-and-best-practices-for-quality-testing.html.

5. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lim et al. Pp.2224-60, Elsevier : Lancet, 2012, Vol. 380.

6. *Bounding the role of black carbon in the climate system: A scientific assessment.* Bond et al. Pp. 5380-5552, American Geophysical Union : Journal of Geophysical Research, 2013, Vol. 118.

7. Standards & Testing. *Global Alliance for Clean Cookstoves*. [Online] 2014. [Cited: March 12, 2014.] http://www.cleancookstoves.org/our-work/standards-and-testing/.

8. The Water Boiling Test Version 4.2.3. *Global Alliance for Clean Cookstoves*. [Online] March 19, 2014. [Cited: January 5, 2016.] http://cleancookstoves.org/technology-and-fuels/testing/protocols.html.

9. International Workshop Agreement 11: 2012 Guidelines for Evaluating Cookstove Performance. International Organization for Standardization. [Online] 2012. [Cited: March 12, 2014.] http://www.iso.org/iso/catalogue\_detail?csnumber=61975. IWA 11: 2012.

10. International Workshop Agreement 11: 2012 Guidelines for Evaluating Cookstove Performance. Final Draft. *Partnership for Clean Indoor Air*. [Online] 2012. [Cited: September 26, 2014.] http://www.pciaonline.org/files/ISO-IWA-Cookstoves.pdf.

11. Method 5G - Determination of Particulate Matter Emissions From Wood Heaters (Dilution Tunnel Sampling Location). *U.S. Environmental Protection Agency*. [Online] [Cited: October 06, 2015.] http://www3.epa.gov/ttnemc01/promgate/m-05g.pdf.

12. InStove Institutional Stove Solutions. [Online] [Cited: 04 02, 2015.] http://instove.org/.

**13.** NIOSH Method 5040, Diesel Particulate Matter. Atlanta, GA, USA : National Institute for Occupational Safety and Health, 2003.

14. *Measuring and simulating particulate organics in the atmosphere: problems and prospects.* Turpin, BJ, Saxena, P and Andrews, E. Elsevier : Atmospheric Environment, 2000, Vols. 34, Iss. 18, pp. 2983-3013.

**15.** *Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials.* West Conshohocken, PA : ASTM International, 2007. ASTM D4442 - 07.

16. *Standard Test Method for Gross Calorific Value of Coal and Coke.* West Conshohocken, PA : ASTM International, 2013. ASTM D5865-13.

17. Pollutant Emissions and Energy Efficiency under Controlled Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards - Also see Supplemental Information. Jetter, J; Zhao, Y; Smith, K R; Khan, B; Yelverton, T; DeCarlo, P; Hays, M D. ACS Publications : Environmental Science & Technology, 2012, Vols. 46, Iss. 19., Pp. 10827-10834. [Cited: January 5, 2016]. http://www.kirkrsmith.org/publications/2012/11/04/pollutant-emissionsand-energy-efficiency-under-controlled-conditions-for-household-biomass-cookstoves-andimplications-for-metrics-useful-in-setting-international-test-standards.

18. EPA QA/R-5, EPA Requirements for Quality Assurance Project Plans. *U.S. Environmental Protection Agency*. [Online] March 2001. [Cited: February 16, 2016.] http://www.epa.gov/quality/epa-qar-5-epa-requirements-quality-assurance-project-plans. EPA/240/B-01/003.

**19.** *Quality System and Description.* Cincinnati, OH : U.S. Environmental Protection Agency, National Risk Management Research Laboratory, August 15, 2012. Chapter 2.

20. Guidance on Technical Audits and Related Assessments for Environmental Data Operations, EPA QA/G-7 from January 2000. *U.S. Environmental Protection Agency*. [Online] January 2000. [Cited: February 16, 2016.] http://www.epa.gov/quality/guidance-technical-audits-and-related-assessments-environmental-data-operations-epa-qag-7. EPA/600/R-99/080.