
Mobile sensing approach with plume integration

In the cases of a mobile sensor traversing a plume perpendicular to the main wind direction the
integral of 𝐷𝐷𝑦𝑦 𝑥𝑥,𝑦𝑦 is unity (∫−∞

∞ 𝐷𝐷𝑦𝑦 𝑥𝑥,𝑦𝑦 = 1) when 𝐷𝐷𝑦𝑦 𝑥𝑥,𝑦𝑦 is formulated in both instantaneous
or ensemble-average manner. This removes most of randomness caused by the lateral dispersion
when dealing with instantaneous plume and reduces the previous equation as:
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where 𝐶𝐶𝑦𝑦 is the cross plume integrated concentration. 𝐷𝐷𝑧𝑧 𝑥𝑥, 𝑧𝑧 can be estimated as: 𝐷𝐷𝑧𝑧 𝑥𝑥, 𝑧𝑧 =
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, where s, A, and B are functions of atmospheric stability and downwind distance

[Gryning et al. 1987, Foster et al. 2015]. Note that this equation is applicable only in the case when
the path mobile sensor is perpendicular to the wind direction. In field applications, the sensor paths
are typically limited by road access that may not perpendicular to the wind direction. In these cases,
we apply a numerical integration of 𝐶𝐶𝑦𝑦 [Albertson et al. 2015]:
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where i is a index for the sensor position, ∆𝒕𝒕 is the sensor time step, V is the vehicle speed, 𝐷𝐷𝑦𝑦 𝑥𝑥,𝑦𝑦
is approximated by the traditional Gaussian shape function, 𝜎𝜎𝑦𝑦 is the horizontal length scale of the
plume, and yi is the crosswind distance from the plume center [Albertson et al. 2015].

Following Bayes theorem, we can estimate the posterior probability density function (PDF) of the
source rate Q given the cross-plume integrated concentration 𝐶𝐶𝑦𝑦, and the local meteorological and
landscape conditions I , such as surface roughness length z0 and atmospheric stability conditions [Yee
2010]:
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where 𝑃𝑃 𝑄𝑄|𝐶𝐶𝑦𝑦 , 𝐼𝐼 and 𝑃𝑃 𝑄𝑄 represent posterior and prior distribution of Q, respectively.
𝑃𝑃(𝐶𝐶𝑦𝑦|𝑄𝑄, 𝐼𝐼) is the likelihood function, which represents the probability of observing 𝐶𝐶𝑦𝑦 given Q.
𝑃𝑃(𝐶𝐶𝑦𝑦|𝐼𝐼) is the “evidence” which normalize 𝑃𝑃 𝑄𝑄|𝐶𝐶𝑦𝑦 , 𝐼𝐼 [Albertson et al. 2015]. For a general case, we
adapt a uniform distribution of Q assume that the upper (Qmax) and lower (Qmin) bounds of leak rate
are known. However, after the jth traversal, we update the prior with the posterior 𝑃𝑃 𝑄𝑄|𝐶𝐶𝑦𝑦 , 𝐼𝐼 of the
previous pass.

Field experiments
Sampling locations: Enid, OK; Woodward, OK; Borger, TX.
Time: Jun. 16th to 19th, 2015
Sampling platform: Google Street View car equipped with a
methane analyzer based on the cavity ring-down spectrometer
(Picarro Inc., Santa Clara, CA, USA)
Sampling strategy:
1. Set-up a 3-D sonic wind sensor in a nearby, relative open place
2. Driving around the targeted facility to identify possible leaks
3. Over-sampling identified plume transects by multiple traversals

Method validation with controlled release
Using a mobile OTM 33 collection approach, data were collected for a controlled release (CR)
experiment conducted on May 15, 2010 in Durham, North Carolina where three passes were made.
The point source release rate was controlled at 0.6 gram/s. The passes do not always start and end in
the same location, which explains why the plumes in the figure below do not always appear at the
same distance along the transects.

The sensor vehicle was first parked in a nearby open area to collect meteorological data. Then, the
sensor vehicle traversed the plume of elevated CH4 concentrations multiple times. Finally, the vehicle
was parked to obtained additional meteorological data. The meteorological data collected before and
after the passes are used to estimate the mean wind speed, friction velocity, and stability parameter for
use in the dispersion model along with the methane concentration measurements. Based on the mobile
method, the PDF of leak rate can be estimated after each pass. It is encouraging that the posterior PDF
peaks around the true release rates of 0.6 g/s, and the recursive updating leads to more accurate leak
rate estimation and reduced uncertainty (a sharpening of the estimate) with increased sensor passes.

An example of plume transect in the field
Here an example plume transect is plotted in Google Earth with the red bar indicates above-ambient
CH4 concentration. At that time, the wind was blowing from northeast, which also suggests fugitive
emission from the facility. We found a total of 12 plumes transects from this facility during a span of
30 minutes, during which the wind direction is almost steady. These data are then utilized to analyze
the emission rate from the facility using the mobile approach.
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Preliminary results
We consider a case where surface roughness (z0) is 0.01 meters (suggested by 3-D sonic data), source height (Zs) is
4 meters (typical height of a tank), and model noise-to-signal ratio ( ⁄𝜎𝜎𝑒𝑒 𝐶𝐶𝑦𝑦) is 1 as a first estimate. The posterior
pdf of Q was updated after each pass and the final posterior is plotted as the thick red line. Around 200 gram/min,
which is 0.29 metric ton/day, of fugitive methane emission is identified from this ammonia fertilizer plant.

Sensitivity analysis
A sensitivity analysis of z0, Zs, and ⁄𝜎𝜎𝑒𝑒 𝐶𝐶𝑦𝑦 is performed here and only the posterior pdf of the final pass is plotted.
It is clear that ⁄𝜎𝜎𝑒𝑒 𝐶𝐶𝑦𝑦 is most effective in controlling the shape of the posterior pdf comparing with z0 and Zs. A
small ⁄𝜎𝜎𝑒𝑒 𝐶𝐶𝑦𝑦 indicates higher confidence thus help the inference converges faster with narrow pdf. Despite the
different simulation results, the estimated emission rate is still around 200 gram/s.

Conclusion
1. Considerable success has been achieved using the mobile sensing approach for detecting fugitive methane

emission in suburban and rural environments.
2. More analytical/experiment work needs to be done to quantify 𝜎𝜎𝑒𝑒 under varying meteorological and obstacle

conditions

Introduction
Natural gas is considered as a bridge fuel towards clean energy due
to its potential lower greenhouse gas (GHG) emissions comparing
with other fossil fuels [Alvarez et al., 2012]. Natural gas is the
largest source of anthropogenic emission of methane (CH4), which
is a more potent GHG than CO2. Natural gas leaking could happen
at any point along the path from production to end use, thus
reducing the potential GHG advantage over competing fossil fuels
such as coal.
Current literature focuses on characterizing fugitive methane
emission budgets of industrial sectors such as the top-down
approaches to estimate regional fluxes [Caulton et al., 2014] and the
intensive experimental investigations of individual sites [Allen et
al., 2013] to support an estimate of emissions from representative
types of facilities. However, these efforts do not address the
practical need to identify the location and strength of individual
leaks in order to guide direct mitigation efforts.
This work examines the feasibility of quantifying fugitive methane
emission in suburban and rural environments using a mobile sensor
platform. A recently developed plume integration method
[Albertson et al. 2015] is used to probabilistically infer leak rate
based on Bayesian inference. Data collected from controlled release
experiments is used to validate this method. Then, it is applied to
estimate fugitive methane emissions from several ammonia
fertilizer plants based on field data.

Target facility

Abstract
Natural gas is used as a feedstock for major industrial processes,
such as ammonia and fertilizer production. However, fugitive
methane emissions from many major end-use sectors of the natural
gas supply chain have not been quantified yet. This research
introduces new tools to estimate meth emission rates, and examines
results from recent field measurements conducted downwind of
several industrial plants using a specialized vehicle equipped with
fast response methane sensor that circles around the targeted
facility. Using these measurements along with the local
meteorological data, a Bayesian approach is applied to
probabilistically infer methane emission rates. Data from controlled
tracer release experiments are presented and used to validate the
approach. With access via public roads, this mobile monitoring
method is able to quickly assess the emission rate of facilities. This
work is developing the capacity for efficient regional coverage of
potential methane emission rates in support of leak detection and
mitigation efforts.

Consider a steady leak located at 𝐱𝐱𝟎𝟎 with a leak
rate of 𝑄𝑄𝑇𝑇. Using a local coordinate system 𝐹𝐹 =
𝑋𝑋,𝑌𝑌,𝑍𝑍 with origin at the leak source and its 𝑋𝑋

axis directed along the mean wind direction. The
above-ambient ensemble average plume
concentration, 𝐶𝐶 𝐱𝐱 , can be modeled using a
Gaussian dispersion model [Pasquill, et al. 1983;
Horst et al., 1992]
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where 𝑈𝑈 ̅𝑧𝑧 is the effective speed of plume
advection. 𝐷𝐷𝑦𝑦 𝑥𝑥,𝑦𝑦 and 𝐷𝐷𝑧𝑧 𝑥𝑥, 𝑧𝑧 are the cross-
wind and vertical dispersion factors, respectively
[Horst et al., 1992].
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The likelihood function can be described by
a traditional Gaussian likelihood function
[Yee 2010]:
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where 𝐶𝐶𝑀𝑀
𝑦𝑦 𝑄𝑄 is the integral of modeled

cross-plume concentration for a given Q, and
𝜎𝜎𝑒𝑒 is combined model and measurement
errors [Yee 2010].
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The emission rate is computed as the expected
values of posterior PDF:
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Pass QT (g/s) QE (g/s)

1 0.60 0.65

2 0.60 0.51

3 0.60 0.60
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