Metals Release from Mining-Impacted Streambed Sediments: North Fork Clear Creek, Colorado

Presented by Barbara Butler August 20, 2010

Presentation Outline

Background

Acid Mine Drainage (AMD)
Metals Transport
North Fork Clear Creek (NFCC)
Bed Sediment Metals Research
Future Research

۲

RESEARCH & DEVELOPMENT

Prevalent in the western U.S.
 Heavy metal mining

 Gold, silver, copper, lead, zinc, uranium, molybdenum, etc.

 Prevalent in the eastern U.S.

 Coal mining

RESEARCH & DEVELOPMENT

Prevalent in the western U.S.
 Heavy metal mining

 Gold, silver, copper, lead, zinc, uranium, molybdenum, etc.

 Prevalent in the eastern U.S.

 Coal mining

Note: Affected streams may or may not be acidic

RESEARCH & DEVELOPMENT

Acid-mine drainage (AMD)
 Mining process
 Exposes pyrite to the atmosphere
 Grinding processes
 Larger surface areas for exposure

RESEARCH & DEVELOPMENT

Pyrite	- 1998		
			CALL OF THE
		0	7
	and the second	Star Ball	

$4\text{FeS}_{2(s)} + 15\text{O}_{2(g)} + 14\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_{3(s)} + 8\text{SO}_4^{2-}(\text{aq}) + 16\text{H}^+(\text{aq})$

Pyrite	

$4\text{FeS}_{2(s)} + 15\text{O}_{2(g)} + 14\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_{3(s)} + 8\text{SO}_4^{2-}_{(aq)} + 16\text{H}^+_{(aq)}$

HFO

Rapid formation in water column

Pyrite	- 19 1 0	
	Contraction of the second	

Rocks

$4\text{FeS}_{2(s)} + 15\text{O}_{2(g)} + 14\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_{3(s)} + 8\text{SO}_4^{2-}_{(aq)} + 16\text{H}^+_{(aq)}$

HFO

Acid-Dissolution

Metals

Presentation Outline

Background

 Acid Mine Drainage (AMD)
 Metals Transport
 North Fork Clear Creek (NFCC)

 Bed Sediment Metals Research
 Future Research

۲

RESEARCH & DEVELOPMENT

'M' = metal; 'Diss' = dissolved; 'Part' = particulate

'M' = metal; 'Diss' = dissolved; 'Part' = particulate

Background – Metals Transport
 Sorption
 Surface complexation

RESEARCH & DEVELOPMENT

Background – Metals Transport
 Sorption

 Surface complexation
 Analogous to aqueous complexation

 $M^{2+} + H_2 O \longrightarrow MOH^+ + H^+$

۲

RESEARCH & DEVELOPMENT

Background – Metals Transport Sorption Surface complexation Analogous to aqueous complexation M^{2+} M^{2+} OН H^+ M^{2+} Surface OН M^{2+}

۲

RESEARCH & DEVELOPMENT

Background – Metals Transport Sorption Surface complexation Analogous to aqueous complexation M^{2+} M^{2+} M^{2+} M^{2+} H^+ $O-M^+$ OH H^+ H^+ M²⁺ Surface Surface OH $O-M^+$ M^{2+} H^+ **RESEARCH & DEVELOPMENT**

Background – Metals Transport Two main types of sorption Outer-sphere Weak ionic interaction Affected by changes in ionic strength (I) - Higher I more metal in solution Lower I ------> more metal sorbed

RESEARCH & DEVELOPMENT

Background – Metals Transport Two main types of sorption Outer-sphere Weak ionic interaction Affected by changes in ionic strength (I) Higher I ----- more metal in solution Lower I ----- more metal sorbed Affected by changes in pH

RESEARCH & DEVELOPMENT

Background – Metals Transport Two main types of sorption Inner-sphere Strong chemical bond Not (strongly) affected by changes in ionic strength

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

 Three common inorganic surfaces in AMD-impacted stream systems
 Iron oxyhydroxide (HFO)
 Aluminum oxyhydroxide (ALO)
 Manganese oxyhydroxide (HMO)

RESEARCH & DEVELOPMENT

 Iron oxyhydroxide (HFO)
 Rapid formation in water column at pH > ~ 4
 Oxidation of ferrous iron precedes precipitation

RESEARCH & DEVELOPMENT

 Aluminum oxyhydroxide (ALO)
 Rapid formation in water column at pH > ~ 5
 No oxidation necessary

RESEARCH & DEVELOPMENT

Manganese oxyhydroxide (HMO)
 Requires oxidation
 Requires a surface for formation
 Formation at pH > ~ 9

RESEARCH & DEVELOPMENT

Manganese oxyhydroxide (HMO)
 Formation may be facilitated by periphyton

Manganese oxyhydroxide (HMO)
 Formation may be facilitated by periphyton
 Algal photosynthesis

 $6HCO_3^- + 6H_2O \xrightarrow{hv} C_6H_{12}O_6 + 6OH^- + 6O_2$

$$Mn^{2+} + O_2 \xrightarrow{high-ph} MnO_2(s)$$

RESEARCH & DEVELOPMENT

Presentation Outline

Background

Acid Mine Drainage (AMD)
Metals Transport
North Fork Clear Creek (NFCC)
Bed Sediment Metals Research
Future Research

۲

RESEARCH & DEVELOPMENT

Background – NFCC
 Clear Creek Watershed (~ 400 sq. mi)
 Rocky Mountains – west of Denver, CO

Background – NFCC
 Clear Creek Watershed (~ 400 sq. mi)
 Colorado Mineral Belt (CMB)
 Extensive mining for gold, silver, copper, lead and zinc in the late 1800's

 Background – NFCC
 Clear Creek Watershed (~ 400 sq. mi)
 ~ 1,300 abandoned mines (USGS 1997 estimate)

Background – NFCC Clear Creek Watershed (~ 400 sq. mi) Superfund site Listed on National Priorities List (NPL) in 1983

Background – NFCC
 Clear Creek Watershed (~ 400 sq. mi)
 Improvement in water quality in the main stem of Clear Creek from 2 water treatment plants in 1997

ldaho Springs

Background – NFCC

North Fork Clear Creek
 Dominant processes are:

RESEARCH & DEVELOPMENT

Background - NFCC^{M²⁺ M²⁺} M^{2+ M²⁺} North Fork Clear Creek Dominant processes are: Rapid oxidation and precipitation of iron as ferric oxyhydroxides (HFO)

RESEARCH & DEVELOPMENT

Background – NFCC M^{2+} M^{2+} H^+ HFO H^+ North Fork Clear Creek Dominant processes are: Rapid oxidation and precipitation of iron as ferric oxyhydroxides (HFO) Sorption and/or coprecipitation of metals with HFO

RESEARCH & DEVELOPMENT

Background – NFCC M^{2+} M^{2+} H^+ DOC - CuHFO OM^+ H^+ North Fork Clear Creek DOC - CuDominant processes are: Rapid oxidation and precipitation of iron as ferric oxyhydroxides (HFO) Sorption and/or coprecipitation of metals with HFO Complexation of copper with DOC

RESEARCH & DEVELOPMENT

Background – NFCC M^{2+} M^{2+} H^+ DOC - CuHFO/HMC H^+ North Fork Clear Creek $\overline{DOC} - Cu$ Dominant processes are: Rapid oxidation and precipitation of iron as ferric oxyhydroxides (HFO) Sorption and/or coprecipitation of metals with HFO Complexation of copper with DOC To a lesser extent Hydrous manganese oxyhydroxide (HMO) precipitation onto rock surfaces with sorption and/or coprecipitation of metals RESEARCH & DEVELOPMENT

Presentation Outline

Background

Acid Mine Drainage (AMD)
Metals Transport
North Fork Clear Creek (NFCC)
Bed Sediment Metals Research
Aerobic Study

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

NFCC Record of Decision (ROD) Gregory Incline and Gregory Gulch – water treatment plant National Tunnel diversion to downstream anaerobic treatment

RESEARCH & DEVELOPMENT

 Bed Sediment Research
 How will the existing sediments respond to the absence of mininginputs?

RESEARCH & DEVELOPMENT

Bed Sediment Research Expected changes Decreased ionic strength Important for outer-sphere sorption (increased sorption) Increased colloidal stability (less/slower aggregation)

RESEARCH & DEVELOPMENT

Bed Sediment Research Expected changes Decreased ionic strength Important for outer-sphere sorption (increased sorption) Increased colloidal stability (less/slower aggregation) Increased dissolved organic carbon Important for dissolved metal complexation (increased dissolved metal)

RESEARCH & DEVELOPMENT

Bed Sediment Research
 Expected changes

 Increased pH
 Important for inner- and outer-sphere sorption (increased sorption)

RESEARCH & DEVELOPMENT

 Other parameters of importance
 Sediment size – smaller particle sizes have a larger specific surface area for sorption

RESEARCH & DEVELOPMENT

 Other parameters of importance
 Sediment size - smaller particle sizes have a larger specific surface area for sorption

Kinetics

Equilibrium?

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Bed Sediment Research Factorial design (2x2x2x10)

RESEARCH & DEVELOPMENT

Bed Sediment Research
 Factorial design (2x2x2x10)
 Particle size

 63-µm < x ≤ 2-mm and < 63-µm

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions Bed Sediment Research
Factorial design (2x2x2x10)
Ionic strength

40 and 80% less than ambient
= 2 and 0.7 mM
Na, Ca, CO₃, SO₄ salts

RESEARCH & DEVELOPMENT

Bed Sediment Research Factorial design (2x2x2x2x10) Ionic strength 40 and 80% less than ambient = 2 and 0.8 mM \square Na, Ca, CO₃, SO₄ salts ⊔ pH **6** and 8 ambient typically ranges from 5.5-8.5 NaOH or HNO₃

RESEARCH & DEVELOPMENT

Bed Sediment Research
Factorial design (2x2x2x10)
DOC

1 and 3 mg/l higher than ambient
= 3 and 5 mg/l C
Citrate

RESEARCH & DEVELOPMENT

Bed Sediment Research Factorial design (2x2x2x2x10) I and 3 mg/l higher than ambient = = 3 and 5 mg/l C Citrate Time **0**, 1, 10, 30, and 60 min; 2, 5, 10, 24, and 48 hr Individual units sacrificed over time

RESEARCH & DEVELOPMENT

Bed Sediment Research Factorial design (2x2x2x2x10) I and 3 mg/l higher than ambient = = 3 and 5 mg/l C Citrate Time 0, 1, 10, 30, and 60 min; 2, 5, 10, 24, and 48 hr Individual units sacrificed over time Alkalinity Ambient 15 mg/l as CaCO₃ **RESEARCH & DEVELOPMENT**

8 different solutions prepared
160 individual experimental units

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

~ 5 g wet < 63-µm
~ 8 g dry 63-µm < x ≤ 2-mm
40 ml solution

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Bed Sediment Research Measured parameters at t = x □ pH Dissolved (< 0.45-µm) Cd, Cu, Fe, Mn,</p> Zn Inductively coupled plasma – atomic emission spectroscopy (ICP-AES)

RESEARCH & DEVELOPMENT

Bed Sediment Research
 General MANOVA results (2x2x2x2x10)
 Data showed large differences between particle size fractions versus within each size fraction

RESEARCH & DEVELOPMENT

 General MANOVA results (2x2x2x2x10)
 Data showed large differences between particle size fractions versus within each size fraction

> Individual MANOVAs done to assess effects of chemistry within size fractions

RESEARCH & DEVELOPMENT

Cadmium

Cadmium

Copper

Copper (63-µm < x ≤ 2-mm)

p < 0.05

Iron

Manganese (63- μ m < x \leq 2-mm) *p* < 0.05

Manganese (63- μ m < x \leq 2-mm) *p* < 0.05

Question:

Is the amount released as a function of size simply due to there being more present for release?

RESEARCH & DEVELOPMENT

Test:

 Compare amount of metal released versus amount 'bioavailable'
 0.6 M HCl digestion for 2-hours*

*Luoma et al. (1995). Marine Pollution Bulletin. 31(1-3):44-54; Hornberger et al. (1999). Marine Chemistry. 64:39-55; Giddings et al. (2001). USGS Water Resources Investigations Report 01-4213.

RESEARCH & DEVELOPMENT

Answer:

 Fraction released follows same trend for Cd, Cu, and Mn
 Fraction released is opposite to trend for Fe and Zn

Fraction released = amount released / amount 'bioavailable'

RESEARCH & DEVELOPMENT

Answer:

Fraction released follows same trend for Cd, Cu, and Mn

- Fraction released is opposite to trend for Fe and Zn
- < 1% Cd, Cu, Fe, Zn; 4-7% Mn</p>

Fraction released = amount released / amount 'bioavailable'

RESEARCH & DEVELOPMENT

Answer:

- Fraction released follows same trend for Cd, Cu, and Mn
- Fraction released is opposite to trend for Fe and Zn
- < 1% Cd, Cu, Fe, Zn; 4-7% Mn</p>
- Release due to size is not simply due to there being more metal for release

Fraction released = amount released / amount 'bioavailable'

RESEARCH & DEVELOPMENT

Bed Sediment Research Summary Time Increased metal released with time Cu increased to 10 hours, then decreased

RESEARCH & DEVELOPMENT

Bed Sediment Research Summary Time Increased metal released with time Cu increased to 10 hours, then decreased Size ■ 63-µm < x ≤ 2-mm More Cu released; less Cd, Fe, Mn, and Zn Greater fraction for Cu, Fe, and Zn ≤ 63-µm More Cd, Fe, Mn, and Zn released; less Cu Greater fraction for Cd and Mn

RESEARCH & DEVELOPMENT

SummaryDOC

- More Cu released with higher DOC from both sizes of sediment
- More Mn released with higher DOC from larger sized sediment; more with lower DOC from smaller sized sediment
- More Zn released with higher DOC from larger sized sediment only

RESEARCH & DEVELOPMENT

Summary

 Ionic Strength (I)
 More Cd, Mn, and Zn released with higher I
 Not statistically significant for Cd from larger sized sediment

RESEARCH & DEVELOPMENT

Summary

<mark>_</mark> pH

More Cd and Zn released at lower pH
More Mn released at higher pH for larger sediment size

More Mn released at lower pH for smaller sediment size

RESEARCH & DEVELOPMENT

Indications and implications...

- Cu bound by inner-sphere mechanism (no dependence on ionic strength)
- Cd, Mn, and Zn bound by outer-sphere mechanism (strong dependence on ionic strength, and pH)

RESEARCH & DEVELOPMENT

Indications and implications...
 Sediments will release metals

 Perhaps less than current for Cd, Mn, and Zn (with lower I)
 Perhaps more than current for Cu and for Zn associated with larger sediment particles (with higher DOC)

RESEARCH & DEVELOPMENT

Indications and implications...
 Sediments will release metals

 2 mm - 63 µm
 83% of total sediment (mass)*
 < 63 µm
 17% of total sediment (mass)*
 The majority of this material comes from precipitation of AMD-inputs

*April 2007...sampling in April 2008 had 7% small sized particles

RESEARCH & DEVELOPMENT

Indications and implications...

 Acute national water quality criteria (WQC) for each metal were exceeded at most time points
 But these would be diluted by stream water

flow

RESEARCH & DEVELOPMENT

Indications and implications...

- Acute national water quality criteria (WQC) for each metal were exceeded at most time points
 - But these would be diluted by stream water flow

The smaller-sized particles (precipitated metal oxyhydroxides) won't be formed to the same extent

RESEARCH & DEVELOPMENT

Indications and implications...

- Acute national water quality criteria (WQC) for each metal were exceeded at most time points
 - But these would be diluted by stream water flow

The smaller-sized particles (precipitated metal oxyhydroxides) won't be formed to the same extent
 Hardness-based...would not be the same

RESEARCH & DEVELOPMENT

Acknowledgements

Dr. Jim Ranville (Colorado School of Mines)

 sampling assistance

 Many folks in LRPCD – SSMB and RRB
 Folks at T&E for running sulfate and DOC analyses and for use of the ICP-AES

RESEARCH & DEVELOPMENT

Thank you!