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Many numerical methods use characteristic analysis to accommodate the advective component
of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified
method of characteristics (MMOC), and operator splitting methods. A generalization of
characteristic methods can be developed using an approach that we refer to as an Eulerian-
Lagrangian localized adjoint method (ELLAM). This approach is a space-time extension of the
optimal test function (OTF) method. The method provides a consistent formulation by defining
test functions as specific solutions of the localized homogeneous adjoint equation. All relevant
boundary terms arise naturally in the ELLAM formulation, and a systematic and complete treat-
ment of boundary condition implementation results. This turns out to have significant implica-
tions for the czliculation of boundary fluxes. An analysis of global mass conservation leads to
the final ELLAM approximation, which is shown to possess the conservative prop rty. Numerical
calculations demonstrate the behaviour of the method with emphasis on treatmeat of boundary
conditions. Discussion of the method includes ideas on extensions to higher spatial dimensions,

reactive transport, and variable coefficient equations.

1. INTRODUCTION

Advection-diffusion transport equations are important in
many branches of engineering and applied science. These
equations are characterized by a nondissipative (hyper-
bolic) advective transport component and a dissipative
(parabolic) diffusive component. When diffusion is the
dominant process, virtually all numerical solution pro-
cedures perform well. However, when advection is the
dominant transport process, most numerical procedures
exhibit some combination of excessive nonphysical oscilla-
tions and excessive numerical diffusion. While this
behaviour is easily explained using, for example, general
Fourier analysis®', the development of numerical
schemes that overcome the problems is an ongoing
challenge. While extremely fine mesh refinement is one
possible solution, it is usually not a feasible alternative
due to excessive computational requirements. Thus, alter-
native numerical formulations are sought that will allow
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accurate solutions with reasonable computational effort.

Two general classes of approximations can be identified
from the literature on modeling advection-dominated
transport. The first is referred to herein as the class of
optimal spatial methods, while the second is referred to
as the class of characteristic methods. Optimal spatial
methods (OSM’s) employ an Eulerian approach that is
rooted in a minimization of error in the approximation
of the spatial derivatives. For example, in the pioneering
work of Allen and Southwell’, a finite difference
approximation was developed for the advection and dif-
fusion terms that gives exact nodal values for the simplified
case of one-dimensional, steady state, constant coefficient
advective-diffusive transport without sources, sinks, or
reaction terms. This philosophy has persisted in many
other aproximations, including the finite element methods
of Christie, er al.'®, Hughes and coworkers =34
Carey®, Barrett and Morton?, Demkowitcz and Oden'®,
Hemker®, and Celia er al.''~"*. All of the procedures
yield an upstream bias in the resulting approximation.
‘While the theoretical basis for many of these methods is
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impressive, the approximations tend to be ineffective in
transient simulations because of the strong influence of
the time derivative. The salient features of this class of
approximations may be summarized as follows: (i) time
truncation error dominates the solutions (i) solutions are
characterized by significant numerical diffusion and some
phase errors (iii) the Courant number (Cu = VAr/Ax) is
generally restricted to be less than one, and sometimes
much less than one. A general comparison of some of these
methods is provided by Bouloutas and Celia®.

Other Eulerian methods can be developed that perform
significantly better than OSM approximations. These
methods attempt to use a nonzero spatial truncation error
(thereby differing from OSMs) to cancel temporal errors
and thereby reduce the overall truncation error. The cubic
Petrov-Galerkin method of Bouloutas and Celia® and the
general N + 2 methods of Westerink and coworkers®*
are examples of such procedures. While improved
accuracy results from these formulations, they still suffer
from strict Courant number limitations.

Because of the hyperbolic nature of advective transport,
it is natural to look to characteristic analysis to aid in solv-
ing the problem. This philosophy has led to many related
approximation techniques, which are called by a variety
of names. including Eulerian-Lagrangian methods
(ELM)*¥ - transport diffusion method**'**, method
of characteristics (MOC)*, modified method of
characteristics (MMOC)"=**_ and operator splitting
methods'*~'*°. These will be grouped herein under the
title of characteristic methods (CM's). Each of these
methods has in common the fact that the advective com-
ponent is treated by a characteristic tracking algorithm
(a Lagrangian frame of reference), and the diffusive step
is treated separately using a more standard (Eulerian)
spatial approximation. These methods have the signifi-
cant advantage that Courant number restrictions of purely
Eulerian methods are alleviated because of the Lagrangian
nature of the advection step. Furthermore, because the
spatial and temporal dimensions are coupled through the
characteristic tracking, the influence of time truncation
error present in OSM approximations is greatly reduced.

This paper and a companion one’’ provide a
generalization of characteristic methods using an approach
that we refer to as a localized adjoint method (LAM). The
present paper begins by reviewing the LAM procedure,
including discussion of the general approach as well as
specific formulations that have been developed to date.
This is followed by the specific space-time LAM formula-
tion that naturally leads to a generalized CM approxima-
tion. This approach provides a consistent formulation that
does not rely on any operator splitting or equation decom-
position. In addition, all relevant boundary terms arise
naturally in the formulation, and a systematic and com-
plete treatment of boundary condition implementation is
presented. This turns out to have significant implications
for the calculation of boundary fluxes. An analysis of
global mass conservation then leads to the final ELLAM
approximation, which is shown to possess the conservative
property. Example calculations are presented to illustrate
the method. Finally, a discussion of several additional
topics is presented, including extension to multiple dimen-
sions, development of higher order methods, formulations
for reactive transport equations, and treatment of noncon-
stant coefficients. The companion paper dwells more
thoroughly on the associated theoretical questions.
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2. LOCALIZED ADJOINT METHODS

The general approach of localized adjoint methods (LAMs)
is based on the philosophy of the algebraic theory of
numerical methods presented by Herrera'®*-% |p
LAM. a weight or test function, call it w,(w), is used to
write a weak form of the governing differential equation
of interest. Let the governing differential operator be
dcpo[ed symbolically by £, with the governing equation
written as

Lu(x) = f(x), x€0Q, (M
where u is the dependent variable and x is the vector of
independent variables. The weak form of equation (1) is
written as

(L (x)dx = | f(x)my(x)dx. ¥))]
Jo Ja

In the general LAM approach, the domain Q is discretized
into a number of subintervals or elements Q.(e = 1, 2,
. . ., E). Equation (2) is then written as a sum of elemental
boundary integrals and integrals over the interior of each
element. Depending on the continuity of u and w,. this
may be done using simple integration-by-parts, using the
theory of distributions, or using the general Green's
formulas of Ref. 26. This point is discussed in detail in
the companion paper®®. The resulting interior integrals
involve an integrand that includes the adjoint of £ acting
on w,, £*w,. The LAM procedure then defines as test
functions those which satisfy the homogeneous adjoint
equation within each element. so that L*w, =0.
Therefore all interior elemental integrals are eliminated
and only boundary integrals remain to be evaluated.
Evaluation of these boundary terms leads to the algebraic
approximation of interest. The key to LAM algorithms
is the choice of subintervals {£,] and the dfinition of
test functions that locally satisfy the homogeneous adjoint
operator. This latter point implies that the test functions
vary as the operator varies. In this way, the test functions
reflect the physics inherent in the governing equation.

LAM approximations have been applied to ordinary dif-
ferential equations'®**** and to the spatial dimensions of
partial differential equations''~"*. For ordinary differen-
tial equations, optimal approximations can be obtained in
the sense that exact nodal values are achieved for the case
of constant coefficients and approximations of an arbitrarily
high order can be achieved for the case of variable coef-
ficients. These results apply for arbitrary forcing func-
tions and arbitrary boundary conditions. Partial differential
equations in multiple spatial dimensions have been solved
by forming tensor product test functions''. For transient
partial differential equations, the LAM approach has been
applied in space to achieve a semi-discretization for the
linear advection-diffusion equation'” as well as nonlinear
advection-diffusion-reaction systems of transport equa-
tions'*. Standard time-marching algorithms were then used
to solve the semi-discrete system. When applied to the
advection-diffusion equation, the semi-discrete LAM
forms an optimal spatial method. This method therefore
suffers from the limitations of all optimal spatial methods,
as described in the previous section. However, there is
no reason for the LAM approach to be restricted to semi-
discrete formulations. Because the LAM approach is quite
general, LAM approximations can be applied to the full
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space-time operator. The next section develops a space-
time LAM algorithm that produces a general characteristic
method algorithm.

3. AN EULERIAN-LAGRANGIAN LAM FOR

ADVECTION-DIFFUSION TRANSPORT

EQUATIONS

Consider the one-dimensional transient advection-diffusion

equation subject to appropriate initial and boundary

conditions,

£uEa—u+Va—u~Da-lf

ar dx dax-
xeQ, = [0,1]
1eQ = [0, =]

(x, €Q, =0 X0, 3)

= fx, 1),

[}

u(x, 0) = ufx)
u(0, 1) = uy(r)
du
ax
First- and second-type boundary conditions are chosen for
demonstration purposes only; the following development
accommodates any combination of boundary conditions.
The adjoint operator associated with the operator £ of
equation (3) is

(I, 1) = gf1).

o BB
ar ax ax?

The LAM approach is initiated by writing the weak form
of equation (3). Let w{x, 1) refer to a test function (whose
precise form will be determined as part of the LAM
development). so that the weak form of equation (3) is

e«
i (Lu — fiw(x, 1)dx dr = 0. (5)
Jo Jo

As discussed in the previous section, the test function
w(x, 1) is chosen from the solution space of the homo-
geneous adjoint equation. In this case, the homogeneous
adjoint equation is

ew=-2_yZ_pZ¥_o (g

As opposed to the simple developments for ordinary dif-
ferential operators, the solution space of the partial dif-
ferential equation (6) is infinite-dimensional. Because the
objective of the numerical procedure is derivation of a
finite number of algebraic equations, only a finite number
of test functions should be chosen. Different choices of
test functions (solutions of equation (6)) lead to different
classes of approximations, including families of optimal
spatial methods and general characteristics methods.

By analogy to the tensor product approach of Celia er
al.'', a product solution of the form w(x, 1) = £(x)7(7)
could be sought such that £(x) satisfies the homogeneous
spatial operator of equation (6) while 7(r) satisfies the tem-

poral part. Such a space-time split, defined on a rectangular
discretization of Q, .. leads to optimal spatial algorithms
involving exponential weightings in space. The result is
analoglotls to the semi-discretizations presented by Celia
eral "

To derive a general family of characteristic methods
(CM’s), a different set of solutions to equation (6) must
be used. In particular, consider solutions to equation (6)
which satisfy the two homogeneous sub-equations that are
grouped based on common order of derivatives, viz.
(dw/dr) + V(@w/dx) =0 and D(8°w/dx’) =0. The
second constraint implies linear functions of x, while the
first constraint implies w = constant along lines x — x, =
V(r — 15). A natural choice for such a test function can
be defined with respect to a rectangular array of nodes
in space-time as follows,

X=X, =
. 4 . (x. e,
Ax Ax
el =4 x.,—x "t —
w1 e 4 . oneQ
Ax Ax -
0, all other (x, 1),

(N

where subscript i denotes spatial location (x, = i(Ax) for
constant spatial step Ax), superscript n denotes time level
(r" = n(Ar) for constant time step Ar), and the test func-
tion w/"(x, 1) is associated with spatial location { and
temporal location n + 1. In writing equation (7), cons-
tant node spacing Ax has been assumed. The regions Q]
and ! are illustrated in Fig. 1, as is a typical test func-
tion. The function w”~'(x, ) has the properties that it is

(a)

l‘\

w3 = . = el
X X, X
(b)
t A
tﬁ.d
N
Iy
t"
: 38 x; X
1 ] ] 1 )]
Xia X,z Xiq X, X X

Fig. 1. (a) General interior test function w}~(x, 1}, and
(b} associated geometric definitions
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€°[2,], €7'[Q,], is nonzero over only one time step (1"
to 2"*") with discontinuities aligned along " and 1"*',
and the lines of spatial derivative discontinuities align with
the characteristics that intersect the nodes x,_,, x,, and
x,., at time leve] r"*',

Given this test function definition, the weak form of
the equation can be evaluated by standard integration pro-
cedures. Let the spatial locations at time level " that are
on the characteristic curves that intersect points x,_,, x,,
x,., at 1"’ be denoted as x* |, x* and x¥ ,, respectively,
as illustrated in Fig. 1. These points are often referred
to as the ‘foot of the characteristic’ points. In addition,
let the characteristic curves that pass through points x,_,,
x,, and x,,, at time r"~' be identified by x/(r), x(r), and
x.(r), respectively, as illustrated in Fig. 1. The weak form
of equation (3) can be rewritten in an equivalent form by
applying integration by parts. If u(x, t) is assumed to be
at least C'-continuous in x and C’continuous in 7 (cases
of less restrictive continuity are treated in the companion
paper®), then the integrations of equation (5) can be writ-
ten equivalently as a sum of elemental integrals. Integra-
tion by parts can then be applied element-by-element,
where ‘elements’ are defined as the regions Q;, Q;, etc.
Evaluation of the weak form (5), with w"*'(x, 1) used as
the test function, leads to the following expression.

= M

[ \ (Lu = fw*'x, ndx dr =0

Jo Jo

_ r" r Bu du 3%u
Br ax

[ %1
= \ ux, 1w, 1 )dx
JX

- Ax, l)] w (x, Ndx dr

[xr

w(x, 1w (x, 1Mdx

LR

Pl n+l
—D“ u(x;(!).r)[[ 9w B dr
i ax x(t)
n-‘-!
i u(x(r), r)ﬂ: ]] dr
xAy
,r|+]
g u(xi(r), r)[[ ﬂ dr]
J x4r)

+ \ u(x, NL*wr*! dx dr
Ja

+j u(x, NC*w"! dx dr .
Q:

D S fx, wi*lx, ndx dr =0, (8)
oL0;

where the double bracket notation denotes a spatial jump
operator, [ -], = ]irré[(j,_,,( = (*)y-¢]. Due to the
P

special choice of test function given by equation (7),
L*w'* =0 in both 2} and 05, so that the interior in-
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tegrals involving u(x, 1) are eliminated. Furthermore, the
spatial jump operators can be evaluated explicitly from
equation (7) as

Iny! anr! 1
[ -15) =
an! 2
[[T:me-tz-

Equation (8) can therefore be simplified as

[ ‘-Iu()‘,‘ f"")l‘\'f‘l(_x, rrr-rl) d.x

PO A

= r"'u(x, 1w (x, 1) dx

ol
“D[(A—Jl\,n u(xi(1), 1) dr
(2 \
(M>._:"
+ -—I—> [ (x;(r), 1) d
(Ax \ A, ’]

fx, Ow’™Yx, t) dx dr. 9)

u(xi(r), 1) dr

J 0

Equations (7) through (9) have been written under the
assumptions of constant node spacing Ax and constant
coefficients in the governing equation, and for
characteristics that do not intersect the spatial boundaries.
For nonconstant spacing, the test functions change as
follows:

S0 o = .
xr 1 + V U . (x! f) e 91,
Vi, Vx,
X, 1) = X — X mth—y
e -V e (x, 1) €
0, all other (x, 1),
(10)

where Vx, = x, —x,_, and Ax, = x,., — x, are the usual
backward and forward difference operators. This modifica-
tion does not change equation (8), and equation (9) is
modified on]) by a revised determination of the locations
x*,, x% x%,, and by the evaluation of spatial jumps,
whlch are now

o i ek

dx a(r) VI, ’ ox 1, (1) Ax, ’
owy ! 1 1

= + —

ax o Vx; Ax‘)

When the velocity coefficient in the governing equation
is not constant, the characteristics are, in general, not
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parallel. The definition of the test function then must be
modified to reflect this fact. This case is discussed in some
detail in Section 8 of this paper. One possibility for this
case is to assume that the locations of characteristic lines
between the characteristics that pass through adjacent
nodes at 1"*' are determined by linear interpolation in
space for all 7" =7 =1""'. Then the appropriate test
function is

- nel

‘x X;—) 'f H i (. 1) € Q:‘

x 1) — xj(1) x. (1) — x;(1)

=l —_ — L .

wit i x, 1) Vx‘-, x t I e

x,(1) — x.(1) x; (1) — x (1)
0, all other (x, r).
(1)

For this case, the only change in the resulting numerical
approximation is again in the location of the feet of the
characteristics and in the spatial jumps. Now the jumps
are functions of time, viz.,

Fu! ~ 1
[[ ox ]]m— x(0) —xi(0)
gu ! B 1
B ax :|i|_1,,.,_x;(r)—x;(?)’

o Lo,
o Jloo  [mO-x0)  x0)-x

Because these terms are functions of time, they cannot
be removed from the integrations of equation (8). The
resulting approximation is thus of the form

B

\ ux, 1w (x, 17) de

- \ ”u(x. " N x, 7)Y dx

P S

-D ————u(x] d
“ [x:(r; —x;(r)}u(x’(r)’ S

! 1 I ,
—E [x}ir} - x(1) i xi(r) —I;(,)]”(xr(’), 1) dit

‘ 1
L——um mx;m]”"’(’)' ) dt]

|
= [ fwr! dx dr.
h (¥2)

In the developments that follow, V and Ax are held cons-
tant. This allows the general ideas of the method to be
demonstrated clearly.

Because of the special test functions chosen, this class
of LAM is referred to as an Eulerian-Lagrangian LAM
(ELLAM). Notice that the unknown function u(x, 1) has
not yet been approximated by any specific functional form.
The integrals that appear in this equation may in fact be

approximated in many different ways. Different approx-
imations of these integrals lead to different CM algorithms
reported in the literature. In all of these, the integrals are
approximated in terms of nodal values of u at the discrete
time levels 7" and 1"*', so that the unknowns in the equa-
tion ultimately include the nodal values at time 1""},
fug*', Ur', ..., Ug'}, where U"' is an approxi-
mation to w(x,, t"*'). For example, piecewise linear
spatial interpolation of u at time levels 1"~' and 77,
coupled with a one-point (at 7=r""") fully implicit
approximation to the temporal integrals, leads to the
modified method of characteristics (MMOC) of Douglas
and Russell’® and others. Given the definition of the test
function w"*'(x, 7), and the assumptions of constant
Ax and V, the resulting discrete approximation is

Vv + (3o + (5) U
6 3 6
—(AX) [B U ez + BaUl_peoy
+8:UT_pe + BUl_pei]

_ Dian)

(U =207 + U1 = 77 (13)

t+1

where Nc is the (truncated) integer value of the Courant
number Cu

V.
Cusﬁ.azl—[CU*Nc].
Ax
1 o o o
=——-—--§———-——1
B 6 2 2 6
2 , ol
===+ —,
B=g ety
B—i.}.g.;.a_:_i
6 2 2 2
and
o
ﬁ==?o

The grouping of terms involving B; corresponds to exact
evaluation of the integral at 7 = 1", namely

X

T uCx, !t x, )dx,

o X

using piecewise linear interpolation for u(x, ") and assum-
ing constant Ax. The usual MMOC approach approximates
this term using numerical integration, which is the most
practical option for nonconstant grid spacing and/or non-
constant velocity fields. The exact integration is used here
for demonstration purposes only, and to indicate that it
is a reasonable option when both Ax and V are constant.
Baptista® has compared a variety of interpolation
schemes for the integrals at time r” in the context of
Eulerian-Lagrangian Methods. These procedures are

Adv. Water Resources, 1990, Vol. 13, No. 4 191



An Eulerian-Lagrangian localized adjoint method: Michael A. Celia et al.

closely related to MMOC and are again a subset of the
general CM equations that result from ELLAM.

Traditional MMOC and ELM algorithms have a
substantial base of theoretical results'™'**** and com-
putational experience®* %45, However, several pro-
blems remain unresolved. Chief among them are treat-
ment of boundary conditions and evaluation of spatial
integrals along r = 1". Significant experience has been
gained in integral evaluation (see, for example, Ref. 3).
However, as discussed by Russell**, boundary condi-
tions have usually been dealt with in ad hoc ways. When
a characteristic line passing through points x,_,, x,, or
x,., at time "*' crosses the boundary between times "
and """, call it time t*, the boundary information must
be incorporated into the approximating equation. Dirichlet
conditions are easiest to deal with, although most
algorithms fail to accommodate the reduced time inter-
val 1""! — r* associated with certain boundary terms (see
Section 4). Flux boundary conditions are usually ignored,
although some developments appear in the literature (e.g.,
Ref. 38). Based on the treatment of boundary conditions,
all MMOC and ELM approximations proposed in the
literature appear to be inherently non-mass-conservative.
In variable-velocity flow fields, failure to conserve mass
also results from inexact representations of the
characteristics.

The ELLAM approach outlined above overcomes the
boundary condition and mass conservation problems
inherent in other CM approaches. As the next section
demonstrates, the ELLAM approach provides a systematic
and consistent methodology for proper incorporation of
boundary conditions. Correct treatment of boundary con-
ditions leads to an overall approximation that can be shown
to possess the conservative property, thereby assuring con-
servation of mass in the numerical solution. Therefore,
while ELLAM provides a general framework from which
many traditional ELM and MMOC approximations can
be derived, it also provides important additions to the
methods by properly incorporating boundary information
and by possessing demonstrable mass conservation. In Sec-
tion 8, conservation in the case of approximate
characteristics dictated by variable velocity fields will be
discussed.

4. IMPLEMENTATION OF BOUNDARY
CONDITIONS

The general CM equation (12) must be modified when
one or more of the characteristic curves x;(r), xi(1), xi(r)
intersects the spatial boundary. When this occurs, boun-
dary conditions are introduced into the approximating
equations. Proper evaluation of the weak form, (8)
inherently accommodates all relevant boundary informa-
tion, and provides for proper incorporation of boundary
conditions at all boundaries. As the following derivation
demonstrates, careful treatment of both inflow and outflow
boundaries allows proper incorporation of boundary con-
ditions and provides a formulation that demonstrably con-
serves global mass. In addition, the ELLAM equations
apply to both the advection-diffusion (D # 0) and pure
advection (D = 0) cases with no modification of the equa-
tions required as D — 0.

To demonstrate the incorporation of boundary condi-
tions at the inflow boundary (x = x, = O for the example
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(a)

Y

X
'Y
tnn
(b)
*
t,
tn
(O ol & X, X
Fig. 2. (a) Test function wi*'(x, t), and (b) associated

geometric definitions

of equation (3) with V' > 0), let us consider an example
for which the Courant number Cu = [V(Ar)/(Ax)] is
between 1 and 2. The general case of arbitrary Cu is
treated in the appendix. For the case of 1 < Cu < 2, the
characteristic curve that passes through node 1 (x = x,)
at time "' intersects the boundary at x = x, = 0 at time
1¥ = 1". Therefore, equations that involve this charac-
teristic will be influenced by boundary conditions. Con-
sider the ELLAM equation associated with node 1. The
test function w*'(x, 1), illustrated in Fig. 2, differs from
the general function w;*' of Fig. 1 because part of w[*’
intersects the boundary at x = 0 with nonzero value.
Therefore, evaluation of the general ELLAM egquation (7)
is modified by boundary influences. The ELLAM equa-
tion associated with w”'(x, 1) is derived in the same
way as equations (8) and (9): elemental integration by parts
is applied to each term, the condition that £L*w*' =0
in each element is recognized, and the appropriate jumps
in the spatial derivative [[(dw/dx)] are evaluated to
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— [ -u(x, [n)w,ln*-!(x’ f") dX

o X0

v E u(0, NwWiN0, 1) dr}

@] e

(—2—> u(xl(r), ) dr

o

TN

Ax

(ﬁ) u{xi(r), n dr]

+D\ 34 0. w0, 1) dr
ax

AL

+ D(é)g::u(ﬂ, 1) dr

If(.x, Dywix, 1) dx dr. (14)

Jalun

Examination of ecuati »n (14) indicates that the spatial
integration at time ?" is modified by the boundary at
x = (. While this integration spans a distance of 2Ax in
equation (7), it spans (2 — Cu)Ax in equation (14). The
part that is cut off by the boundary, corresponding to the
distance Cu(4x), is picked up by the third integral on the
left side of equation (14), which involves the boundary
value u(0, 1). The next three integrals in equation (14)
correspond to the three diffusive terms in equation (7),
except that the left integral is evaluated along x = 0 and
the integrand is the boundary value u(0, r). Finally, the
last two integrals on the left side of equation (14) are again
integrals that are evaluated along the boundary x = 0: the
second of these involves the function (0, 1) but the first
involves the spatial gradient (6u/6x)(0, r). Notice that this
latter integral introduces an additional degree of freedom
at the boundary, so that both (0, 7) and (du/dx)(0, 1) are pre-
sent in this equation. Even when a first type boundary con-
dition is specified at x = 0, the flux at the boundary may
need to be determined due to the presence of this integral.
Therefore, an additional equation should be written, that
which corresponds to node 0, with test function w{*'(x,
1) (see Fig. 3). This is in contrast to standard finite ele-
ment methods, wherein the boundary flux need not be
explicitly determined when first type boundary conditions
are prescribed. The reason that both boundary values
appear in the ELLAM formulation is that the space-time
LAM elements of Fig. 1 are not parallel to the time axis,
while standard semidiscrete finite elements correspond to
rectangular space-time elements with sides parallel] to the
space-time coordinate axes.

Similar terms arise in all equations for which the test
function is nonzero along a portion of the spatial boun-
dary. As illustrated in the development for arbitrary
Courant number presented in the appendix, equations
associated with all nodes to the left of node Ne + 2 will
have contributions from the inflow boundary (assuming
constant Ax and V), where Nc is the (truncated) integer
value of the Courant number Cu. For the present case of
1= Cu <2, Nc=1 and equations associated with
wi™!, wi™! and wi™' will have boundary contributions.
The relevant ELLAM equations for wj™' and wi™' are,
respectively,

E u(x rn-*l)wn*l "'H)d.):

o

poani

-y \ u(©, 1wl (0, 1) dr

SrF

_1 ot
*D[(E>\ w0, 1) dr
+ RS r'l x%n), nd

G e

g
D\ % 0. rma 0, 1) dr
dx

= \ fwgtdx dr (15a)
Jof

and.

X

.U(I, rn+l)M,§+l(x, rrr‘rl) dx

Cor
- { u(x, 1"ywi Nx, ") dx

u(©, 1w (0, 1) dz‘:|

- D{(ﬁ) X:r u(xf(!), 1) dr
_ (é) j\: Au(x?(r), 1) dr

+ (i) L{: u(x* (1), 1) dr:'

+D [ — (0, w0, n dr

= \ ‘fw;" dx dr. (15b)
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Equations (14), (15a), and (15b) are the three equations
(for Nc = 1) in which inflow boundary condi.-ons appear.
If a first-type boundary condition is specified, then all
integrals involving u(0, r) are known and the integrals
involving the diffusive flux D(du/dx)(0, r) are unknown.
Conversely, for a second-type boundary condition,
(8u/dx)(0,1) is known and u(0, r) must be determined.
Finally, for a third-type boundary conditions, the gradient
(du/dx)(0, r) may be written in terms of u(0, 1), or vice
versa. For all three scenarios, both u and (9u/dx) must
be determined at the inflow boundary, and equation (15a)
is therefore required. Notice that in all three equations
((14), (15a), (15b)) the advective and diffusive fluxes may
be combined: in equation (15a), for example, the total
boundary flux term is

- S [Vu(O, 1)-D [ (0, :)] wit(0, ndr.
' ox

This is convenient for implementation of third-type boun-
dary conditions and also makes it easier to see that the
final set of equations possesses the conservative property
(see Section 5). In addition, if a one-point integration rule
is used to approximate the boundary integrals, and the
integration point is 7 =¢"*', then the flux term in, for
example, equation (14),

[ L] (0, w0, ndr,
J ox
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is zero because w"*'(0, 1"*’) =0 for all { > 0. There-
fore, while this diffusive type of boundary integral is pre-
sent in all ELLAM equations that have characteristics that
intersect the inflow boundary, further approximation of
the equations may eliminate this term. This point appears
to have significance for the resulting matrix structure, as
discussed in Section 5.

Notice that, in general, when a characteristic crosses
the boundary, some of the integrals that arise in the
ELLAM equations span a time less than Ar. In particular,
the integrals related to the diffusion term (for example,
the third and fourth integrals in equation (15a)) span the
time increment "' — r¥, which is less than Ar. Thus the
diffusion part of the equation applies over a reduced time
step. This effect, which was unnoticed by most CM
references in the literature (an exception being Douglas
er al.’®), arises naturally in the ELLAM formulation.

These issues about the one-point integration and time
intervals less than Ar are discussed further, from a dif-
ferent point of view, by Russell*®. There, an equivalent
formulation is derived, in which the terms multiplied by
D in equations (14), (15a), and (15b) are obtained by
integrating the diffusive term in equation (8) by parts once
instead of twice. Russell’'s paper emphasizes the special
case of ELLAM with one-point integration as an exten-
sion of MMOC.

Treatment of outflow boundary conditions is somewhat
more involved. We herein propose an approach that
inherently conserves global mass and directly accom-
modates the case of pure advection (D = 0), for which
no outflow boundary condition is specified. To begin, let

(a)

X

- (b)

in.W - ~

QE
2 15,“
t" .
xD XE 3 xE-? xE—‘ xE ﬁx

Fig. 4. ({a) Test function wi*'(x, t), and (b) associated

geometric definitions
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the boundary condition of equation (3), namely (du/dx)(/,
1) = gf1), pertain. Again, consider the case of
] = Cu <2, so that Nc = 1. ELLAM equations would
be written for nodes x,, X;, X1, . . . , Xg_;; equations
(14). (15a), and (15b) provide expressions for i =0, 1,
2, respectively, while equation (9) applies for i = 3, 4,

., E — 1.1f the only unknowns in these equations are
nodal values at the new time level, then these equations
constitute a set of E equations in E + 2 unknowns
(unknowns (3UZ*"/ax), Ug™', UT~', Uz™', ..., UF""). One
additional equation is available from the inflow boundary
condition. If a first-type boundary condition were given at
x =1, then U7™" would also be known and, coupled with
the boundary condition at x = 0, the system could be
solved for all nodal unknowns listed above. However, if
a second-type boundary condition is prescribed, then
Uz=! is not known and an additional equation must be
written, that associated with wi™'(x, 7). The function
wi*i(x, 1) is illustrated in Fig 4. Notice that this is the
first test function that has a nonzero region along
x=xz=1 1"<1=<7""". Therefore boundary terms at
x =1 will appear in this equation. Evaluation of the
ELLAM equation for wi™' leads to the following
expression:

.
\ u(x, t"" ywp G, 177y dx
-

7

+ V‘ u(l, w ', 1) dr}

1\
(E) \ u(xE(r), 1) dr

_ E) \’ u(xE(r), 1) dr

+ L {';”u(xf d
(@)] w04l

1\ [
-D[ —
(A—’:)j’z..u(lg na

= leszg” dx dr. (16)

For a second-type boundary condition, (du/ax)(l, t) would
be prescribed as the outflow boundary condition while w(/,
1) is unknown for " <7< 1""'. One possibility for
evaluation of u(/, 7), 1" < r < 1""', is a simple interpola-
tion between U7 and Uz*'. Then. no additional unknown
is introduced in equation (16), and the system of equa-
tions would be closed. Another option is to place an
additional node at the location (xg, #£.,), and to define
an additional nodal unknown at this point. For the latter

case, let a node be added at location (xg, rf.,), call it
node «,. with the associated discrete unknown denoted
by U, . Because this adds another unknown to the
system, another algebraic equation must be sought. To
achieve this, an ELLAM equation can be written for the
test function wgZl(x, 1), with only that portion of the
test function within the domain €, , used for the approxi-
mation (see Fig. 5). Use of wiIi(x, 1) as the test func-
tion leads to the following ELLAM equation:

Py

Vv u(l, Hwiill, 1) dr — ‘ Em(x. MwEl(x, 1) dx
1 [ E+lp,y
-D| (L \ uET, 1) dr
2 [rE-
- £y, 1 d
(AX’) ..\r" u(x () ) I]
!n'\ a
—D[ S5 w0 dr
J ax
LN[ [
+D<—)|: K u(l, 1) dr
Ax J 1R
- [ Mu(!. 1) dr]
N \ fwgz! dx dr. (17)
Jot vae
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Fig. 5. (a) Test function wii(x, t), and (b) associated
geometric definitions
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Integrals along the boundary x = x; = can again be
approximaled using discrete nodal values. Because
wgli(l, 1) is nonzero at : =", and all information is
assumed known for r < 17, it is this information at node
E and time " that effcctive]y serves to close the system.
For this case of second-type outflow boundary conditions
and Nc = 1, there are E + 2 ELLAM equations written,
corresponding to wi™', wiTl, L. . wiil These are
solved for the nodal unknowns (dUg*'/dx), Ur!, Us~!,
..., UF', U,. The nodal values that are known are
ugt! (frorn the inflow boundary condition); (dU}"'/ax),
(aU, /dx), and (8U%/dx) (from the outflow boundary
condition); and U} (from the solution at the previous
time step).

While these equations provide a solution for the
unknowns of interest, they generally fail to conserve global
mass. The next section addresses the question of mass con-
servation and presents a modification to these equations
so that the resulting set of ELLAM equations possesses
the conservative property.

5. GLOBAL MASS CONSERVATION

This section examines the global mass conservation pro-
perties of the ELLAM algorithm. As was done in the
previous sections, the case of Nc = 1 will be used as an
example. The general case is presented in the appendix.

To analyze mass balance, consider summation of all
ELLAM equations. Summation of equations associated
with test functions wg~' through wi;] results in the
following expression.

i” w(x, 1"y dx — [ [“”u(x. ") dx

J xo X0

+\ u(x Mwiilx, 1) dx]

=l
{r
ot

[Vu(O, 1—-D ﬂ (0, r)}dr
ax

+

—
. 3

' [Vu(l, n-p2 r)] dr
‘ ax

- { [Vu(!, 1)
-D

g—— {, r)] weilx, 1) dr

() w(l, 1) dr . )

u(xE'(r), 1) dr

[ [ﬂ 1) dx dr

—g fo, D[ = willx, ] dxdr. (18)
i
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In equation (18), use was made of the fact that within any
space-time element Q} = Q4" and w{"' + w2/ =1.In
addition, I Dv\""(x =1 (0=x=<1I) and
Ehow' "0, 1)=1 ("<t =1""). Examination of
equation (18) indicates that a global balance is almost
achieved, with boundary and interior regions associated
with space-time element Q¢! being responsible for the
lack of global balance. This can be explained as follows.
Within any space-time element that is bounded by nodes
x, and x,_, at time r"*', two test functions will be
nonzero, namely w/*' and w/']]. Because these func-
tions sum to one wuhm the element, and because of the
symmetries in the boundary integral terms, the sum of
the two ELLAM equations associated with these two test
functions preserves a global balance. Element 25~ suf-
fers from the lack of an ELLAM equation associated with
test function witi(x, 7). In fact, wfi} is the only re-
maining test function that has a nonzero region in
[0, 1] x [r", t™*'] for which an ELLAM equation has
not been written. The ELLAM equation associated with
wrr) is not needed to solve for the nodal unknowns of
interest, because the known values from the previous time
level at node E in effect supersede this equation. However,
this final equation can be used to enforce global mass
conservation.

The test function ufﬂ x, 1) is illustrated in Fig. 6.
The ELLAM equation associated with test function
wildx, 1) is

Elfal
o
.

{Vu(l, Nn—-D i (. r)] wiildl, 1) dr
ax

XE
- E u(x, twIix, ") dx

Jxi

1 17
+D<M)Hn u(l, 1) dr

- \””u(x,“(r), 1) dr]

"

S, Dwpsx, 1) dx dr. (19)

r_..-—:

Summation of equations (18) and (18) yields

L3 Xfg

u(x, """ dx — j u(x, 1") dx

W Xy Xy

[ [Vu(O n-p%o, ,)]

—

[ Vu(l, !)—D“(! I)}

=1, [Ef(, 1) dx dr, (20)
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Fig. 6. (a) Test function wili(x, 1), and (b} associated
geometric definitions

which represents a statement of global mass conservation.
Therefore, the set of all ELLAM equations, including that

_ associated with wiIi(x. 1), possesses the conservative

property. However, use of all ELLAM equations over-
specifies the system by one equation. Yet without equa-
tion (19), the ELLAM system does not, in general, possess
the conservative property. Therefore, add equation (19)
to equation (17), noting that xf*%(z) = xF*'(r), QF-* =
QF*7, and will(x, 1) + wiiix, 1) = 1 on Qf "' (see Figs
5 and 6). This yields

[5' [Vu{], t)y—D Ll «{, r)]wgi,'(l. 1) ar
JTEa ax

i"" [Vu(!, n-p2%. :)} di]
A ox

I

{rwmﬂﬂmmm

- “u(x. ") dx]

JIEa

1\{"
+ D(—) \ u(l, 1y dr
Ax ey

i-

—D[(E)\ utwE= (1), 1) dr

(L [ e
(AA)\, u(x:- " (1). 1) dr]

=[ Swis) dedr + \ fix,nydedr. (21
o' Jat

.

If equation (21) is used in place of equation (17). then
the proper number of ELLAM equations results and these
equations possess the conservative property by summing
to equation (20) instead of equation (19).

The modifications presented above guarantee mass con-
servation for the system of equations that includes U,
as an unknown. Recall that this was one of two options
presented in Section 4, the other being simple interpola-
tion between 7" and 7"~' along the outflow boundary. If
this other option is chosen. global mass conservation can
still be achieved. This is accomplished by using the
information contained in the ELLAM equations associated
with wiZ| and w21, In this case. these two equations
(equations (17) and (19)) should be summed and then
added to the equation associated with w}™' (equation
(16)) to obtain

\ i u(x, 17w 1) dx

vl

=\ fwg"dxdr+\ fdrdr. (22
Jo! Jattent ot

Just as equation (19) modified equation (17) to provide
a conservative scheme when U, was included, now the
sum of equations (17) and (19) injects information into
equation (16) so that global mass conservation is
guaranteed.

In general, ELLAM equations should be written for all
test functions that have nonzero values within [x;. x;] X
[7, t""']. For the case of Nc = 1. this means w{"'
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through wii. If a first-type boundary condition is given
at the outflow boundary, then the first £ equations may
be solved independently. If detailed information about
(du/dx) at the outflow boundary is desired, then the addi-
tional equations should be written and solved for nodal
values of (dU;"'/ax) and (dU, /ax), subject to the global
conservation constraint imposed by the equation associated
with wfZl. If only a measure of the total flux crossing
the boundary is of interest, the additional equations may
be summed to give a relationship between total outflux
and known information. For the case of Nc = 1, rearrange-
ment of equation (22) yields

et

I3

Jan

IVVMU_. 1) —Dég (!, f)] dr = [ fWE” dx dr
dx .

+ \ fix, 1) dx dr
APYRPTaE

N,
+D[(3>l‘" u(xEr), 1) dr

T

_ (i) l ' u(xE@), 1) dt:|

-
+ wl(x, 1w (x, ") dx
GEE
.

- ‘ ulx, 1"y dx

All information on the right side of equation (23) is known
from the previous solution of the first E ELLAM equa-
tions, so that the total flux may be calculated.

For a second- or third-type boundary condition at the
outflow boundary, the equation associated with wi™'
must be written. Evaluation of the boundary flux terms
may then proceed by introduction of the additional
unknown U, , as illustrated in Section 4, or by inter-
polation between time levels n and n + 1. If the latter case
is chosen, then equation (16) would be replaced by equa-
tion (22). Otherwise, equation (19) is summed with equa-
tion (17) as demonstrated in equation (21). In all of these
cases, global mass conservation is assured.

Notice that summation of equations produces a result
that is equivalent to deriving the ELLAM equations using
a redefined test function. This redefined test function is
equal to the sum of the original test functions. For
example, combination of equations (17) and (19) results
in equation (21); equation (21) can also be obtained by
application of ELLAM using the modified test function
w* = witl + wZil, which has the definition,

wlx, 1" wE N x, 1) da (23)

x
Xgo

e rn*] __,
L e . (x 1 EQE,
Ax
w(x, 1) =
1. (x, 1) €QF,
0, . all other (x, 1).
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Similarly, the combination of equations (16). (17), and
(19) (which eliminates U,) can be achieved using
ELLAM with test function w** = wi™' + wil]+will,

X — Xp_ Tl — ¢
2=l th L (1) eQE,
Ax Ax

w¥¥(x, 1) =<
1 , (x, N €Qf or (x, 1) eQFT,

0 s all other (x, 7).

The redefined test functions still satisfy the homogeneous
adjoint equation within each element.

While the ELLAM procedure provides a variety of
choices for dealing with boundary conditions, the pro-
cedure can always incorporate all types of possible boun-
dary conditions and guarantee that a conservative scheme
will result. In general, when a first-type boundary condi-
tion is given at the inflow boundary, equations associated
with w{”"' and w""' (1 =i < E) should be written. The
first Nc + 2 of these equations will include boundary
values of both u and (du/dx). When a one-point fully im-
plicit approximation is used for these boundary integrals,
the flux integral only appears in the first (w§') equa-
tion, so that it is not necessary to solve for the unknown
(8u/dx) at t"*'. The ELLAM equation associated with
w{ "' is uncoupled from the others in this case, and only
needs to be used to calculate the inflow boundary flux,
if desired. As in the outflow case just described, this may
be done by replacing w}~' with the sum w§*' + wi*!,
which is equal 1o one on Q). When a second- or third-
type boundary condition is specified at the inflow boun-
dary. the equation associated with w{™' must be used,
independent of the boundary integration method chosen.
The outflow boundary is similar to the inflow boundary
in that no boundary equations are required when a first-
type condition is specified. Boundary equations, associated
with wi™', will, ..., are required only to calculate
the associated outflow boundary flux. For flux boundary
conditions, at least one outflow boundary equation must
be written, that being the equation based on the summed
test functions. If more refined information is desired at
the outflow boundary, individual equations may be writ-
ten for wi™', wfi!, . .., with concomitant introduc-
tion of additional unknowns analogous to U, above.
These procedures yield Eulerian-Lagrangian schemes that
demonstrably possess the conservative property.

A final consideration in boundary condition implemen-
tation is the matrix structure of the resulting set of algebraic
equations. This depends on the choice of trial function,
call it &, that is used to approximate the unknown func-
tion u. So far, the trial function has not been specified,
except in the MMOC example of equation (13). In view
of the test functions, which have the chapeau form at
t=1¢""", it is natural to define i to be piecewise linear
also. Interpolation between r=1" and 7 =t"*' can be
taken to be linear along characteristic lines. For one-space-
dimensional problems, this gives rise to the general matrix
structure illustrated in Fig. 7. The matrix 1s symmetric,
tridiagonal except for the additional column of potentially
nonzero entries associated with inflow boundary infor-
mation. This corresponds to the unknown at the inflow
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0 | xXx
1 I X X X
2 | X XXX
3 X X X X O
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Nc+1 X X X X
XX X
O i
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Fig. 7. General matrix structure for ELLAM. Nc is the
rruncated integer value of the Courant number

boundary: (8U;"'/dx) for Dirichlet problems and U;™'
for Neumann or Robin problems. This column (except
for the entry in row one) may be eliminated in the Dirichlet
problem via judicious one-point approximations to the in-
tegrals involving (du/dx)(0, 1). Elimination of this col-
umn is more difficult in the other cases of second- or third-
type boundary conditions because it appears that larger
errors are committed in achieving this, although quan-
titative demonstration of this point remains to be done.

Notice that the matrix structure depends entirely on the
chosen interpolation (integration) rule, which is dictated
by choice of trial function. For example, a space-time in-
terpolation that does not follow characteristic lines will
in general lead to less sparseness in the matrix stucture,
accompanied by loss of symmetry. This is an important
consideration because the computational advantages in
maintaining a symmetric tridiagonal matrix are signifi-
cant, while the accuracy of the method depends heavily
on the chosen interpolation. Further analysis is required
to adequately resolve this issue.

6. THE CASE OF PURE ADVECTION

The ELLAM equations presented in Sections 3 through
5 naturally accommodate the degenerate case of D = 0.
The approach incorporates all of the space-time domain
of interest and uses known information from the previous
time step (UF) to close the system of discrete equations.
The ELLAM equations remain exactly as written in Sec-
tions 3, 4, and 5, with any terms multiplied by D simply
set to zero. All terms involving spatial gradients (du/dx)
disappear because they are all multiplied by D (actually
these terms never arise because the second-order diffusive
term is absent in the govsmmg equa[ion) Unknowns are
now {U™', Us™', , U,,} (assuming Nc = 1).
A first-type boundarv condmon is rcqmred atx = 0, since
the governing equation is now formally first-order.
Therefore U7~ will be known. Notice that the test func-
tions continue to satisfy the homogeneous adjoint equa-
tion within each space-time element. This is why the
ELLAM equations can be used directly as written above.

The ELLAM equations therefore inherently accommodate
a formal change of governing from a second-order
parabolic equation in which boundary conditions are
specified at both inflow and outflow boundaries to a first-
order hyperbolic equation in which boundary conditions
are given only at inflow boundaries. No change is required
in the ELLAM algorithm,

7. EXAMPLE CALCULATIONS

This section reports on computations with ELLAM for
a simple test problem. As noted in Section 3, a backward
Euler approximation of the temporal integrals in interior
elements yields the MMOC procedure. given by equa-
tion (13). The benefit of ELLAM in this context is that
it shows how to treat boundary conditions (Section 4) and
conserve mass (Section 5). Numerical results applymg
MMOC to equation (3) have appeared previously=, but
that work did not address boundary conditions, smcc the
computational boundaries were far from the advecting
front. Hence, mass conservation, which did hold in the
earlier work, was not studied in a situation where boun-
daries were important.

With this background. the natural experiments to per-
form here are ones that include significant boundary
behaviour. We consider an advecting Gaussian hill that
may cross an inflow or outflow boundary. Specifically,
we solve equation (3) with f= 0 and initial condition

u,(x) = exp(—xx?) (24)

chosen so that the initial peak value of ¥ and total mass
are both equal to 1. As a pure initial-value problem, this
leads to the analytical solution

— - — V1)
1 exp( w(x 1) )_(25)
T+ 4D 1+ 4xDr

We obtain an initial-boundary-value problem with the same
solution by cutting off the spatial domain and imposing
Dirichlet or flux boundary conditions from equation (25),
viz.,

u(x. 1) =

ua, 1) =ula. 1

(Vu - D ﬁ)(a, )= (Vu‘, -
dax

u(b. 1) = wu,(b, 1),

<Vu -D -a—li)(b, = (Vua —
dax

where Q, = [a. b] is the truncated spatial domain.

In the runs to be reported here, we used V = 10,
D =0.1. and final time 1, = 0.5. Thus. the peak traveled
from x =0 to x =5, over which distance the Peclet
number was 500. Some runs with D = 0.001, or Peclet
number 50,000. were also made. The exact solutions in
these cases are shown in Fig. 8. We considered the

or

D a“”)(a, 0, (26)
X

or

a“")(b, . @7)
X
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Fig. 8 Exact solution for example problem (equation
(25)) with (@) D= 0.1, and (b) D = 0.001

domains [2%,9], [=3,2%], and [ —3, 9], with which,
respectively, the pulse crosses an inflow boundary, an
outflow boundary, or neither; denote the domains by /I,
O, and N. For each domain, all relevant combinations of
boundary conditions were tried. The maximum slope of
the initial pulse is V2m/e = 1.52, and at r =1, it is
V(2w/e)/(1 + 4xDi;) = 0.933 (D=0.1) or 1.51 (D=
0.001) with peak value 1/N1+4xDr=0.784 (D=
0.1) or 0.997 (D = 0.001).

Previous numerical studies of MMOC with linear trial
functions have demonstrated that it produces accurate,
nonoscillatory results as long as at least three intervals
discretize a front. In the context of a Gauss hill of peak
value 1, we take this to mean that Ax should be no larger
than 1/38, were § is the maximum slope; in our case this
is Ve/187 = 0.219. Our runs showed that we could do
slightly better than this, and Ax = 4/15 = 0.267 was used
as a base case. This corresponds to a grid Peclet number
Pe = VAx/D = 263. As a check on convergence rates,
we also ran with the 5-fold refinement Ax = 4/75 =
0.0533 [Pe = 5'4]. For Ax = 4/15, we used Ar = 0.25
and 0.05 (Cu=9%, 1%); for Ax = 4/75, Ar=0.25,
0.05, 0.01, and 0.002 (Cu = 46%, 9%, 1/, %) were
run.

In order to assess the effectiveness of ELLAM in the
absence of quadrature errors, we computed integrals
involving initial and boundary conditions with high-order
Lobatto rules. For example, in equation (14), the second
integral involves initial conditions when n = 0, and the
third and seventh integrals combine into a flux boundary
condition (for a Dirichlet condition, the third integral uses
the boundary data, while the seventh becomes a spatial
integral at time level n + 1 under a backward Euler scheme
detailed in Ref. 43). Similarly, in equation (17), the first,
second, and fifth integrals are of these types, and the
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second integral in equation (9) uses u/x) when n = 0.
For n > 0, as noted in Section 3, the integrals at 1 ="
can be evaluated exactly, and this was done here. Integrals
such as the first in equation (9) were computed exactly,
and temporal integrals were replaced by backward Euler
approximations in order to obtain the MMOC procedure.
With these specifications, all calculations conserved mass
to the level of machine roundoff.

In the computations, we found it advantageous to con-
solidate the last two outflow-boundary elements described
in Section 4 into a single element. That is, instead of Nc¢
trapezoids and one small triangle along the outflow boun-
dary, we have Nc — 1 trapezoids and one larger triangle.
This corresponds to use of the function w** in Section
5, and avoids the possibility of anomalous answers on the
small triangle. For a Dirichlet outflow condition, as noted
in Section 5, ELLAM solves for the outgoing flux as a
function of time; we considered piecewise-linear and
piecewise-constant representations of this function. For
full details of the implementation, see Ref. 43.

Results for the test runs are summarized in Table 1.
All runs used D = 0.1 except for those designed by ‘d",
which took D =0.001. For the domains N and I, L*
errors and peak values are given at the final time
1,=0.5. For O, these are listed at r = 0.25, at which
time the peak is leaving the domain. This time usually
provided the least favorable (i.e., largest) ratio of the L-
error of the numerical solution to that of the L? projec-
tion; this ratio is necessarily at least 1. In runs 25 through
30, the peak has left and the Dirichlet outflow condition
forces the numerical maximum to agree with the exact
one, rendering peak-value data meaningless.

Runs 1 through 6 do not involve significant boundary
behaviour, so that the implemented ELLAM reduces to
MMOC and we find results analogous to those reported
by Ewing and Russell’’. Comparing runs 5 and 6, we
see that temporal error is relatively unimportant, so that
we can conclude 0(Ax?) convergence by relating run 1
to 5 or 2 to 6. Similarly, spatial error is unimportant in
runs 3 and 4 and we find a rate of 0(Ar). Runs 1 and 2,
with a spatial mesh of the size that one would want in
practice, show that large Courant numbers are appropriate
with this scheme. The peak in excess of 1 in run 24 is
not an instability; as the L’ projection shows, it is a
necessary result of accurate approximation of a peak by
continuous piecewise-linear polynomials on a course grid.
By examining the difference between the numerical peak
value and the L’-projection peak for fixed Ax and
variable Ar, we see that time truncation is antidiffusive;
with variable Ax and fixed Ar, spatial error is found to
be diffusive.

Runs 7 through 18, with domain I, demonstrate that we
can move the peak through the inflow boundary about as
well as possible. Comparison of runs 7 through 12, as
a group, to 13 through 18 shows that the type of boun-
dary condition makes virtually no difference. The L*
error tends to be slightly larger with a Dirichlet condi-
tion, especially in the lower-diffusion run 84. This is easily
explained by noting that the essential condition is imposed
exactly at the boundary node, while better L? accuracy
during the passage of the peak could be obtained if the
boundary value were free as in the flux-condition case.
For related reasons, runs 8 and 8d show miniscule oscilla-
tions (of size about 0.0001 and 0.001, respectively) ahead
of the peak as it enters; diffusion subsequently eliminates




