Advances in X-ray Analysis **Cumulative Title Index**

Characterization of Metal Benzotriazoles and Related **Polymers**

S.J. Wasson, M.C. Kerzic, J.W. Hall, M.A. Cates and J.R. Wasson, Vol. 42, pp. 555-561, (1998).

Return to Index

Document Go To

Characterization of Metal Benzotriazoles and Related Polymers

Shirley J. Wasson ¹
Melissa C. Kerzic and James W. Hall ²
Melanie A. Cates and John R. Wasson ³

MD-91, National Risk Management Research Laboratory
 U. S. Environmental Protection Agency, Research Triangle Park, NC 27711
 Wingate University, Department of Chemistry and Physics, Wingate, NC 28174
 Advanced Materials, 865 Pea Ridge Road, New Hill, NC 27562

ABSTRACT

Benzotriazole (bta-H) is a well-known corrosion inhibitor for copper, copper-alloy, and other metal surfaces. Typical uses are to deactivate surfaces of computer hard drives and other internal metal computer parts, and for treatment of apparel hardware such as zippers and buttons to withstand harsh fabric washing and dyeing processes. Particles from these surface treatments will ultimately contribute to environmental indoor dust or outdoor industrial effluent, but they have not been fully characterized. Bta-H is one of a group of several organic ligands which bind to transition metals and which have similar structures. We have systematically investigated approximately 30 transition metal complexes of the general formula ML₂, where M = VO ²⁺, Mn ²⁺, Co ²⁺, Ni ²⁺, Cu ²⁺, and Zn ²⁺, and L = deprotonated benzotriazole, imidazole, benzimidazole, 2-methylimidazole, or 2-methylbenzimidazole. Where possible, these materials have been synthesized and characterized by chemical analysis, spectroscopy, and x-ray diffraction techniques. The ML₂ compounds are coordination polymers with metal-deprotonated nitrogen and metal-nitrogen (dative bonding) interactions. X-ray powder diffraction patterns have been determined and indexed for Co(C₃N₂H₃)₂ · H₂O and Zn (C₃N₂H₃)₂ · 0.5 H₂O.

INTRODUCTION

Benzotriazole (bta-H), is a well-known protective additive which reacts with copper, brass, or other metal surfaces to provide a barrier against oxygen, air pollutants ¹, or attack by corrosive agents in water. Typical uses are to deactivate surfaces of computer hard drives and other internal metal computer parts, and for treatment of apparel hardware such as zippers and buttons to withstand harsh fabric washing and dyeing processes. The nature of the protective film has been probed by various procedures ², but particles shed from these surfaces has not. Since particles from these surface treatments may ultimately contribute to environmental indoor dust or outdoor industrial or municipal effluent, we chose to investigate compounds which may be studied as particulate surrogates. Recent work on triazoles and triazolate complexes has been reviewed ³. Reedijk et al. ⁴ studied the coordination compounds of several metals with both the neutral ligands (bta-H) and the deprotonated ligands (bta ¹). They concluded that the copper (II) benzotriazole compounds which they studied were almost certainly polymeric. The search for model compounds for Cu(bta)₂ led them to determine the crystal structure of (benzotriazolato)thallium(I)⁵. Sotofte and Nielsen^{6,7} concentrated their efforts on the

benzotriazoles and published a tetragonal-bipyramidal structure for blue polymeric Cu(bta)₂· H₂O. We have investigated the preparation of a series of metallic bta compounds along with simpler ligands of similar structure in the search for compounds with sufficient crystalline nature that their diffraction patterns could be determined. We investigated the preparation of six transition metals or metallic cations (VO ²⁺, Mn ²⁺, Co ²⁺, Ni ²⁺, Cu ²⁺, and Zn ²⁺) with the five ligands shown in Figure 1. Analysis showed that the cobalt, nickel, copper, and zinc produced the benzotriazolato, imidazolato, 2-methylimidazolato, benzimidazolato, and 2-methylbenzimidazolato polymeric complexes of the formula ML₂, tetrahedrally coordinated with some water involved. The vanadyl and manganese cations failed to produce the desired products with the ligands under the conditions of synthesis.

The x-ray powder patterns of the products showed varying degrees of crystallinity. The amorphous area in the data was estimated by determining the percentage of background/total integral counts in the scan range. Most of the compounds had enough amorphous character (>50%) to seriously compromise indexing. The cobalt and zinc imidazoles, however, had sufficient crystalline character to report.

BENZIMIDAZOLE (BENZ) N 2-METHYLBENZIMIDAZOLE (2-MEBENZ)

Figure 1. Ligands investigated

EXPERIMENTAL

The ML₂ compounds were prepared by mixing the ligand with an aqueous solution of a stoichiometric amount of the metal chloride or nitrate salt followed by stepwise addition of

sodium hydroxide with vigorous stirring. The insoluble products were isolated by filtration and then repulped with deionized water using high speed mixing. The compounds were again isolated by filtration and dried. Table 1 provides analytical information. The C, H, and N analyses were performed by Galbraith Laboratories, Knoxville,

TN. Metal analyses were performed using ethylene diamine tetraacetic acid (EDTA) titrations and a Buck Scientific Model 210 atomic absorption spectrometer. Differential thermal analysis (DTA) scans were obtained using a Mini-

Therm analyzer (Wagner Co., Parkesburg, PA) and an alumina reference standard. Infrared spectra were determined using a Buck Scientific Model 500 spectrometer and Nujol mulls on sodium chloride cells.

X-RAY POWDER DATA

The samples were ground in a boron carbide mortar, put through a 325 mesh sieve, and side-drifted into a cavity in an aluminum holder. Some of the specimens were prepared by sifting onto a smear of petroleum jelly on a zero background quartz holder to sharpen the peaks. The diffraction data were collected on a Siemens D-500 diffractometer under the conditions given in

Table 2. The diffractometer was controlled by Datascan (Materials Data, Inc.) and processed using MDI Jade software. Processing the data consisted of 2θ correction by silicon NIST SRM 640b standard, and defining the background. Peaks were allowed to ride on the background, and profiles were manually fitted using the Pearson VII function⁸. The peak list thus generated was used for indexing. Initial indexing was performed on the first 12 peaks. The proposed lattice parameters were refined until the solutions converged.

Table 1. Results of Elemental and Physical Analyses

Compound		%C	%H	%N	C/N	Color	Percent
					Ratio		Amorphous
$Co(im)_2 \cdot H_2O$	Calc	34.14	3.82	26.54	1.286		
	Found	33.91	3.74	26.63	1.273	Purple	37
$Zn (im)_2 \cdot 0.5 H_2O$	Calc	34.56	3.38	26.87	1.286		
	Found	34.69	3.39	26.86	1.292	White	25

Table 2: Experimental Parameters

Parameter	Setting or Condition
Radiation: CuKα	1.5418Å
Monochromator	Graphite
Detector	Scintillation
Divergence Slits (fixed)	1°
Receiving Slits	0.15°
Soller Slit	Present, 2°, diffracted beam
Resolution	Quartz, $H_1/H_2 = 1.59$
Range of 2θ	5 to 85°
Internal 20 standard	Silicon, NIST SRM 640b
2θ calibration correction	Less than 0.01° 2θ
Step size/dwell time	0.04°/5 s
Voltage/Current	45 kV/40 mA
Diameter of Measuring Circle	401 mm

DISCUSSION

 $Co(C_3N_2H_3)_2 \cdot H_2O$ and Zn $(C_3N_2H_3)_2 \cdot 0.5$ H_2O are both tetragonal, but they are not isomorphous. Diffraction data are given in Tables 3 and 4, and the spectra are shown in Figures 2 and 3, respectively. The cobalt imidazolate crystallizes in the space group $I4_1$ /acd, while the zinc imidazolate belongs to the space group $I4_1$ cd. The crystal data reported by Lehnert and Seel 9 confirm our reported data for the zinc complex including the tetragonal symmetry, the space group, and the cell parameters. They did not report any water in the crystal lattice, however. Sturm et al. 10 reported crystal data for anhydrous $Co(C_3N_2H_3)_2$. They found tetragonal symmetry, but a space group of $I4_1$, and slightly different cell parameters than we report.

CONCLUSIONS

31.532

32.489

33.380

31.531

32.502

33.371

2.835

2.7536

2.6821

7.4

5.7

3.5

811 404

831

Previously unreported diffraction data are reported for two crystalline polymeric complexes of the type $ML_2 \cdot x H_2O$ where M = cobalt and zinc, and L = deprotonated imidazole. Our work confirms that of Lehnert and Seel for the zinc compound, although they did not report the presence of water. The cell parameters and space group reported by Sturm et al. for the anhydrous cobalt compound are different from the data we report for the complex with one water.

Table 3. Diffraction Data for $Co(C_3N_2H_3)_2 \cdot H_2O$ Tetragonal (I-Center), I41/acd (142), <origin at -4>, a = 23.467 Å, c = 12.464 Å, V = 6864.0 Å³, $d_{calc} = 1.634 \text{ g/cm}^3$ from formula $Co(C_3N_2H_3)_2 \cdot H_2O$, Z = 32, $F_{20} = 100.1 (0.0074, 27)$, $F_{30} = 57.2 (0.0099,53)$

$2\theta_{obs}$ °	$2\theta_{calc}$ °	d_{obs} (Å)	I/I_0	hkl	$2\theta_{obs}$ °	$2\theta_{calc}$ °	d _{obs} (Å)	I/I_0	hkl
7.519	7.527	11.748	2.1	200	34.100	34.138	2.6271	0.5	840
10.642	10.652	8.3066	1.4	220	34.600	34.615	2.5903	0.5	822
11.003	11.010	8.0342	1.1	211	35.201	35.202	2.5474	2.5	723
15.097	15.086	5.8636	100	400	35.964	35.974	2.4951	3.3	921
15.354	15.342	5.7660	22.2	321	36.861	36.842	2.4364	1.9	604
16.088	16.087	5.5045	8.4	202	37.699	37.695	2.3842	1.6	743
16.875	16.879	5.2495	1.5	420	38.638	38.637	2.3283	1.2	325
17.108	17.109	5.1785	13.7	411	39.134	39.140	2.3000	2.2	932
18.571	18.573	4.7738	14.9	312	39.633	39.634	2.2722	2.3	714
20.197	20.196	4.3930	5.2	431	40.700	40.679	2.2150	0.7	772
20.778	20.773	4.2716	20.6	402	41.038	41.056	2.1975	2.0	862
21.558	21.581	4.1188	7.4	521	41.552	41.566	2.1715	2.4	923
22.100	22.123	4.0189	0.6	422	42.238	42.238	2.1379	1.4	961
22.703	22.712	3.9135	3.0	600	43.718	43.718	2.0689	3.2	664
23.014	22.999	3.8613	1.8	213	45.011	45.003	2.0124	1.6	1060
24.014	24.013	3.7027	8.9	512	45.388	45.476	1.9965	0.7	914
25.316	25.304	3.5151	5.1	541	46.034	45.976	1.9700	0.7	725
26,335	26.334	3.3814	2.6	532	46.423	46.414	1.9544	1.4	972
26.534	26.535	3.3565	4.8	413	47.151	47.153	1.9259	2.5	981
26.884	26.885	3.3136	6.3	602	48.038	48.000	1.8924	0.8	516
27.964	27.957	3.1880	1.2	622	48.557	48.544	1.8734	1.5	1053
28.562	28.573	3.1194	6.8	721	49.314	49.317	1.8464	2.2	835
29.685	29.678	3.0070	4.8	523					
30.469	30.485	2.9314	5.6	712					
31.073	31.097	2.8758	1.6	314					

 I/I_0

1.4

1.4

1.7

1.8

0.5

1.7

2.1

1.2

2.8

1.3

0.8

1.3

0.7

0.6

1.4

2.1

0.8

1.2

1.9

0.6

hkl

743

325

932

714

1031

1002

923

961

943

116

1013

1102

316

725

406

963

516

1123

835

606

Table 4. Diffraction Data for $Zn(C_3N_2H_3)_2 \cdot 0.5H_2O$ Tetragonal (I-Center), I41cd (110), a = 23.505 Å, c = 12.451 Å, $V = 6879.3 \text{ Å}^3$, $d_{calc} = 1.611 \text{ g/cm}^3$ from formula $Zn(C_3N_2H_3)_2 \cdot 0.5H_2O$, Z = 32, $F_{20} = 62.5(0.0119,27)$, $F_{30} = 44.1(0.0126,54)$

		_					120
20 obs	$2\theta_{calc}$ °	d _{obs} (Å)	I/I_{o}	hkl	20 obs	$2\theta_{\rm calc}$ °	d _{obs} (Å)
7.489	7.516	11.793	1.3	200	37.686	37.674	2.3850
10.622	10.637	8.3214	1.1	220	38.663	38.673	2.3269
11.000	11.006	8.0367	0.6	211	39.102	39.097	2.3018
11.940	11.897	7.4062	0.2	310	39.628	39.633	2.2724
15.102	15.064	5.8616	100	400	40.690	40.092	2.2156
15.332	15.329	5.7743	65.6	321	41.021	41.010	2.1984
16.093	16.097	5.5029	5.6	202	41.538	41.535	2.1723
16.857	16.855	5.2553	2.5	420	42.154	42.179	2.1419
17.102	17.092	5.1804	12.1	411	43.714	43.716	2.0690
18.570	18.575	4.7741	13.7	312	43.964	43.392	2.0578
19.236	19.238	4.6104	0.6	510	44.388	44.424	2.0392
20.171	20.174	4.3986	4.8	431	44.962	44.981	2.0144
20.760	20.769	4.2751	14.1	402	45.343	45.334	1.9984
21.555	21.556	4.1192	3.8	521	45.991	45.988	1.9717
22.095	22.116	4.0197	0.4	422	46.372	46.363	1.9564
22.684	22.679	3.9167	2.6	600	47.142	47.171	1.9262
22.990	23.019	3.8653	1.0	213	48.035	48.040	1.8925
23.998	24.001	3.7052	7.5	512	48.500	48.499	1.8754
25.278	25.273	3.5203	3.8	541	49.306	49.318	1.8467
26.323	26.317	3.3829	2.8	532	49.730	49.674	1.8319
26.540	26.543	3.3557	4.8	413			
26.867	26.867	3.3157	4.9	602			
27.907	27.936	3.1944	0.7	622			
28.577	28.537	3.1210	6.1	721			
29.674	29.678	3.0081	4.7	523			
30.459	30.459	2.9323	4.3	552			
31.143	31.123	2.8695	1.4	314			
31.496	31.490	2.8381	5.8	741			
32.500	32.524	2.7527	5.2	404			
33.342	33.327	2.6851	3.0	831			
34.102	34.089	2.6270	0.3	840			
35.222	35.187	2.5459	2.0	723			

35.978

36.021

36.847 36.850

2.4942

2.4373

2.9

1.5

444

604

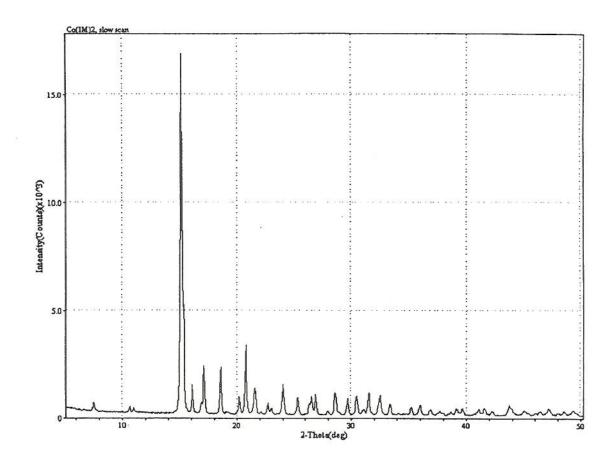


Figure 2. Diffraction pattern for cobalt imidazolate

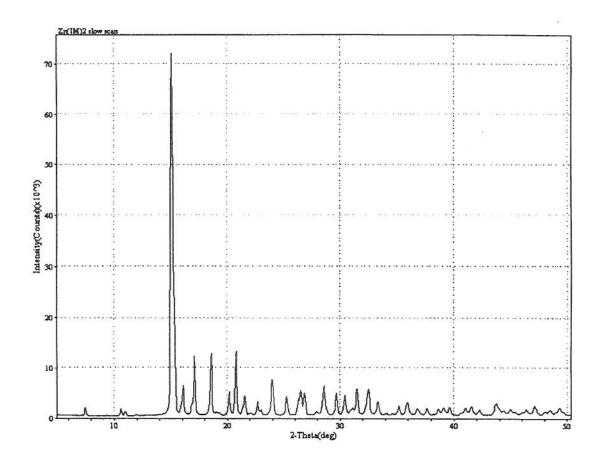


Figure 3. Diffraction pattern for zinc imidazolate

REFERENCES

- [1] R. R. Thomas, V. A. Brusic, and B. M. Rush, J. Electrochem. Soc., 139 (1992) 678-685
- [2] R. Walker, Corrosion (NACE), 32 (1976) 414
- [3] D.S. Moore and S.D. Robinson, Advances in Inorganic Chemistry, 32 (1988) 171-239
- [4] J. Reedijk, A. R. Siedle, R. A. Velapoldi, and J. A. M. Van Hest, *Inorg. Chim. Acta* 74 (1983) 109
- [5] J. Reedijk, G. Roelofsen, A. R. Siedle, and A. L. Spek, Inorg. Chem., 18 (1979) 1947
- [6] I. Sotofte and K. Nielsen, Acta Chem. Scand., 35A (1981) 733
- [7] Ibid. 38A (1984) 253
- [8] A. Brown and S. Linde, "Powder Diffraction Profiles and the Pearson VII", Adv. X-ray Anal., 30 (1985) 343-350
- [9] R. Lehnert and F. Seel, Z. Anorg. Allg. Chem. (1980) 464 187-194
- [10] M. Sturm, F. Brandel, D. Engel, and W. Hoppe, Acta Crystallogr., B31 2369 (1976)