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Abstract — A simple model is presented that allows the pressure difference in a subslab aggregate layer to be
estimated as a function of radial distance from the central suction point of an active subslab depressurisation (ASD)
system by knowing the average size, thickness, porosity, and permeability of the aggregate along with the total flow
rate. The flow regimes may span the range from fully developed turbulence, through the transition, to Darcian flow.

BACKGROUND

Active subslab depressurisation (ASD) systems
used to reduce the levels of indoor radon are
known to perform most reliably when a layer of
aggregate such as coarse gravel is present under
the slab. However, the performance of ASD
systems has been observed to vary widely from
one installation to another. Reliable models are
needed to characterise the performance of ASD
systems and to develop diagnostic procedures for
designing and testing these installations. Because
of accelerations and decelerations associated with
the contorted flow paths in gravel beds, the
inertial properties of the gas are exaggerated
relative to flow in an open tube. Consequently,
flows in porous media may exhibit non-Darcian
behaviour at flow rates that would be laminar in
open tubes where these accelerations would not
occeur.

MODEL DESCRIPTION

Flow in gravel beds is most easily modelled in
cylindrical symmetry where the only component
of flow is radial, e.g. Matthews et al¥. The
formulation used here is more along the lines of
Gadsby ez al'” who simulated the flow in a large
disc of gravel in the laboratory. It was surmised
that the flow would be Darcian for Reynolds
numbers less than about 1 and turbulent for
Reynolds numbers greater than about 100.

For radial flow, the velocity and hence the
Reynolds numbers vary with radial distance.
Consequently, for large diameter discs, the nature
of the flow changes from turbulent near the centre
to laminar near the perimeter. In many cases, the
bulk of the region of interest constitutes the
transition region between turbulent and laminar
flows. A number of empirical approaches® have
been used to model the transition region between

these two regimes. Following Gadsby er al', a
power-law relationship between the pressure
gradient and flow rate is assumed.

The Burke-Plummer equation® for turbulent
flow in a packed column is applied near the
central suction point, and Darcy’s law is used at
large radii. The empirical power law is used in the
transitional region. Since the empirical expression
contains an arbitrary constant, it will be chosen to
match the gradients of the solutions at the Darcian
transition. This transition will occur at a radius
determined by specifying the critical Reynolds
number. The equation describing the radial
pressure profile becomes
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where P(r) is the pressure at radius r, r is the radial
distance from the centre of the suction point, t, is
the radius of the suction hole in the gravel bed,
p is the density of air, D, is the average diameter
of gravels, q is the flow rate, T is the thickness of
the gravel bed, € is the porosity of the gravel bed,
R, is the radial location of the Burke—Plummer
transition, k, is the permeability of the gravel bed,
U is the viscosity of air, f is the exponent in the
power law (1 < f < 2), R, is the radial location of
the transition to Darcian flow, and R, is the
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effective radius of the gravel bed. The first line in
Equation 1 represents the Burke-Plummer equation,
while the third line represents Darcy’s law.

Consider an imaginary disc of nearly infinite
radius filled with gravel. Then the transition
region occurs between radii R; and R, The
exponent in the empirical power-law relation
would vary from 2 at R to 1 at R. As a simple
approach, supposc that the exponent varies
linearly with Reynolds number or, equivalently, as
the reciprocal of the radial distance. The parameter,
f, in Equation 1 would then be the average value
of this exponent betwcen R; and R; or R,
whichever is smaller. That is
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The two transition radii are given by
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where Re; and Re,; are the critical values of
Reynolds number at the turbulent and Darcian
transitions, respectively. Most of the area under a
slab would lie in the transition region between
turbulent and laminar flows.

RESULTS

Comparisons of the predictions of Equation 1
with measured pressure profiles in aggregate beds
under slabs are illustrated in Figures 1 and 2.
These pressure profiles are induced by mitigation
fans mounted on suction pipes penetrating the
central portion of the slab. Values of the critical
parameters used to make projections with
Equation 1 are shown in Table 1. These quantities
are all either measured or calculated by the four
equations, except for k, which is chosen to match
predictions with measurements at a single
arbitrarily selected point. Values of additional
parameters that were estimated to be about the
same for all these cases are: p = 1.22 kg.m™,
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D =0.0254m, T=0.10m,e=0.5,and p = 1.7
16~ kg.m 's\. In Figures 1 and 2 the curves
represent predictions of Equation 1 while the
symbols represent measured values. Figure 1
shows pressure profiles in subslab gravel layers in

Pressu
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Figure 1. Subslab pressure profiles for three basement

houses with gravel layers. Curves represent model

predictions and symbols represent measurements:
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Figure 2. Subslab pressure profiles for two large slab-
on-grade buildings. Curves represent model predictions

and symbols represent measurements: (H, - - -) d,
(x,—)e.

Table 1. Parameters used to compute theoretical
curves.

Parameter a b ¢ d e

k, (10" m? 2.69 1.00 1.19 0.25 393

f 1.427 1381 1415 1.333  1.160

qm’s™) 0.031 0.0195 0.0222 0.111 0.100

R (m) 1.8 1.13 1.29 483 274

R, (m) 180 113 129 483 274
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three typical basement houses. The experimental
values have been adjusted so that both the
predicted and measured pressures are referenced
to the pressure at the predicted turbulent transition
location given by Equation 3. Consequently, only
the transitional region is illustrated. The only
parameter that has been chosen to improve the
agreement of the predictions with measurements is
k,. The exponent, f, which determines the shape of
the curve is computed from Equation 2. A better
illustration of the pressure profiles is provided by
the much larger slabs shown in Figure 2. The
cffective diameters of these slab-on-grade buildings
are up to seven times that of typical residential
buildings.

According to Table 1, the effective permeability
of the gravel bed under building d is about an
order of magnitude smaller than that of building e.
This difference in permeability is the most
important factor influencing the large differences
in pressures. A sample of the same gravel as used
under building e was tested in the laboratory by
Princeton University. The laboratory value of
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permeability was 6 X 10”7 m? compared with 3.9 x
10”7 m? from Table 1. However, when this value is
adjusted for the laboratory measurements of
porosity (0.45), the permeability becomes 5.3 x
107 m? which differs by only 12% from the
laboratory measurement. This is the only instance
in this study for which there are independent
confirmatory measurements.

DISCUSSION AND SUMMARY

By knowing the average size, thickness and
porosity of the aggregate bed, along with the total
flow rate, the present model allows one to determine
the shape of the pressure—flow relationship. If the
permeability of the gravel bed is also known, the
pressure—flow relationship is determined. This
simple model appears to provide an adequate
description of the flow in subslab aggregate beds.
In order to describe ASD’s influence on radon
entry, this model should be coupled to a model for
flow through the soil and the slab.
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