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ABSTRACT 

A real-time event adaptive detection, identification and warning (READiw) system has 
two principal functions. First, signal treatment using adaptive algorithms reduces background 
noise and enhances contaminant signals, leading to accurate detection of water quality changes 
of as low as 1%.  Second, its forensic classification technique relates changes of water quality 
parameters to the reactivity of contaminants and hereby their chemical classes.  To test these 
detection functionalities, contaminant transport experiments in a pilot-scale single pass pipe were 
conducted for 16 herbicides and pesticide, inorganic and biological contaminants.  Sensor 
outputs (free and total chlorine, chloride, pH, DO, conductivity, ORP, and turbidity) were 
analyzed with the adaptive procedures.  The results show unique changes of water quality 
parameters and the reactivity differences among the tested contaminants, based on which an 
effective READiw system can be configured. 
 
INTRODUCTION 

Intentional sabotage can introduce chemical, biological and nuclear contaminants as well 
as toxic industrial chemicals into a drinking water system (McKone et al., 2003; GAO, 2003).  
Detection of such adverse events is required to protect Nation’s water infrastructure and help 
water utility and local authorities timely activate contingent management plans.  It is also a 
prerequisite for advanced risk forecasting and consequence management using methods such as 
those described in Murray et al. (2006).   

A contaminant warning system (CWS) uses commercially available sensor technologies 
to identify contamination effectively in a water distribution system (Dye, 2002; US EPA, 2005; 
Szabo et al, 2007).  Conventional water quality sensors are commonly used for their availability, 
favorable capital and operational costs.  The disadvantage is that they are non-selective 
responding to introduced contaminants as well as natural variations. This compromises the 
detection sensitivity and accuracy, leads to false negative and high rates of false positive 
detections, and undermines the usefulness of a CWS and its acceptance by the end users. 

EPA’s approach for improved detection is based on real-time event adaptive detection, 
identification and warning (READiw) methodology and associated data processing techniques.  
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Adaptive monitoring and data mining techniques have been used in other applications such as the 
Navy’s ship board biological detection system (Solka et al., 2003), computer network intrusion 
detection (Eskin et al., 2000; Lee et al., 2000; Kanevski et al., 2002; and Lin et al., 2001), space 
craft data processing and flight control (Mills et al., 2003), and soil and groundwater sampling 
optimization for environmental restoration (Romanowicz and Young, 2002).  The adaptive signal 
treatment and analysis statistically filter out background and instrumental noises, enhance 
contaminant signals, and use response patterns for contaminant classification.  

This paper describes an 
adaptive technique, and presents 
the results of using the signal 
treatment to identify 
contamination events in the 
datasets that U.S.EPA Homeland 
Security Research Center 
generated for 16 chemicals and 
biological contaminants (Szabo et 
al, 2007).  The tested 
contaminants (Table 1) include 
pesticides and herbicide (aldicarb, 
dicamba, and glyphosate), 
biological contaminants and 
growth media (Escherichia coli, 
sucrose, nutrient broth, terrific 
broth, and trypticase soy broth), 
alkaloid neuron-stimulants 
(nicotine, colchicine), laboratory 
chemicals (Dimethyl sulfoxide, potassium ferrocyanide, anhydrous sodium thiosulfate, and 
pentahydrate sodium thiosulfate), and inorganic chemicals (mercuric chloride, lead nitrate).   
 
EXPERIMENTS AND SENSOR SIGNAL TREATMENT 
Experiments and Composite Dataset 

Contaminant transport experiments were performed at the EPA’s Test and Evaluation 
(T&E) Facility using a pilot-scale 335.4-m long fiberglass-lined straight ductile iron pipe with a 
7.62-cm inside diameter (Fig. 1).    The pipe flow rate in all tests was 83.3 L/min (Re~25,000).  
Constant pressure and flow velocity in the pipe were established at 68.9-82.8 kPa and 0.305 
m/sec, respectively, using a 2841-L holding tank that gravity-drains water into the pipe. Feed 
water from the tank had a free chlorine residual of 1.0±0.1 mg/L.  Contamination was simulated 
by injecting 10 liters of contaminant solution into the pipe flow at a rate 0.5 L/min (Fig. 1).   

Water quality sensor stations were placed at 24.4-m and 335.4-m downstream from the 
contaminant injection port (Fig.1).  A split stream was diverted to a sensor panel to measure 
conventional water quality parameters: total chlorine, free chlorine, chloride, oxidation-
reduction-potential (ORP), dissolved oxygen (DO), turbidity, pH, and specific conductivity. 
Travel time from the pipe to sensors was <5 minutes.  The sensors used in the experiment 
included an ATI 15 for free chlorine, a Hach Cl-17 for total chlorine, and a YSI-6920 multiprobe 
pipe sonde for oxidation reduction potential (ORP), specific conductivity, pH, turbidity, 
dissolved oxygen, and chloride.  The Hach Cl-17 instrument uses the n,n-diethyl-p-phenylene 

Table 1 Chemical and biological compounds tested in the pipe 
flow experiments 
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diamine (DPD) colorimetric method and has a 0.035 mg/L detection limit at 5% accuracy and 
precision.  The free chlorine monitor (ATI 15) utilizes an agent-free membrane-covered 
polarorganic sensor with automatic pH correction in a flow-cell configuration, and has a reported 
0.5% or 0.02 mg/L detection accuracy.  The instrument was calibrated in standard solution 
before the experiments.  Other parameters were measured using the YSI-6920 pipe sonde.  The 
data acquisition was performed according to approved EPA quality control project plans. 

Datasets representing 
composite test runs for all 15 
contaminants are valuable in 
examining the detection 
capability of any CWS 
detection methods.  One 
approach is to arbitrarily 
compose individual 
experimental test data into a 
single sensor response 
spectrum, in which 
differences in baselines and 
calibrations between 
individual experiments are 
preserved.  Each contaminant 
was tested in two separate 
runs, and no reconciliation of 
sensor output differences was 
made in forming the composite dataset.  This treatment, although arbitrary in nature, has 
potentially preserved influences from different sensor calibrations and sensor operations between 
repeated test runs and among the contaminants.  The composite dataset can simulate potential 
complications in a field operation of sensor monitoring network, serving as a testing case to 
verify event detection algorithms and their ability in reducing false positive and false negative 
rates.  Original data used to form the composite dataset are available in Szabo et al. (2007). 
 
Sensor Output Treatment 

In general, a water quality sensor output ( tI ) consists of contributions from contaminants 

of interests ( t
cI ), natural background ( t

bI ), instrument noise ( t
nI ), drifting ( t

dI ), and random 
variance related to operations (σ ).  The background ( t

bI ) is zero or negligible for compound-
specific sensors, but can be significant for non-selective water quality sensors for which signal 
output and a target concentration (Ci) are related by: 
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 The linear instrument response factor β is defined in calibration against a set of standard 
solutions and the intercept iθ is often forced to zero.  These two instrumentation parameters are 
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Figure 1   Pilot-scale single-pass drinking water pipe device used 

for experimental testing.  Contaminant was introduced by 
injecting 10 liters of contaminant solution into the pipe at 
Qi=0.5 L/min. 
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independent of time, or instrumentation drifting occurs.  After incorporating these concepts, 
sensor output concentration can be written as: 
 
  ),()(ˆ σνβ t

n
t
i

t
i ItFmCI ++⋅=       (3) 

  
where m̂ is a constant matrix; the polynomial form )(tF is a function of time and represents 
combined sensor response from background ( t

bI ) and sensor drifting ( t
dI ); ),( σν t

nI is normally 
distributed and independent of time to account for instrumental noise and operation-related 
random variances, which can be eliminated using time-series signal processing techniques.  Eq.3 
further indicates that the contaminant detection and its false rates are directly a function of 
relative strength between the time-dependant contaminant and background signals in a pipe flow 
system.   

The component )(ˆ tFm , with continuity in time, superimposes on the contaminant 
signal t

iC⋅β .  For a successful contaminant detection, it is desired to separate these two signal 
components, suppress the non-contaminant signal portion [( ),()(ˆ σν t

nItFm + )], and enhance the 
contaminant contributions.  Yang et al. (2006) proposed an adaptive process to separate 
contaminant signal components in an adaptive time window (T ) by identifying signal change 
points and differentiating signal variation types.  This methodology is used in sensor data 
analysis in which concentrations are adaptively transformed into concentration ratios: 

 

  [ ] [ ]
T

Tt
t
iTT

t
it

i I
tFmtFmC

II
I

C
0

1
1

00

1 )(ˆ)(ˆ
1 −

++==Δ
+

+
+ β     (4) 

 
In the pipe flow tests, controlled experimental conditions significantly damped the 

background variations.  This simplification departs from field monitoring conditions, but makes 
it adequate to use the first 16 data measurements as the reference concentration ( TI 0 ).   In 
processing the composite dataset of 15 contaminants, an adaptive procedure was adopted using a 
moving adaptive time window.    
 
RESULTS  
Sensor Response Characteristics 

The free chlorine and total chlorine concentration data (Szabo et al, 2007) show U-shape 
residual loss curves on a concentration-time (c-t) plot for each sensor station (Fig. 2).  The loss is 
the result of oxidation reaction between contaminants and the disinfectant.  Correspondingly 
chloride as a final reaction product shows the concentration increase curve on the c-t plots and a 
characteristic dispersion tail, which extends beyond the downstream boundary of the chlorine 
residual loss (Fig. 2).  The tail is more pronounced for t > 2.8 at the 335.4-m station.   Similar V-
shaped tails occurred for ORP that decreases as chlorine oxidants are depleted in the contaminant 
oxidation.  Furthermore, pH changes occurred at the same t-range as for the other measured 
parameters.  Detected and qualified pH changes are as low as approximately 1% using the 
adaptive technique.   
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background and the flat bottom of a residual loss curve on c-t plots (Fig. 2).  This calculation 
requires that ot CC , at time t and t=0 be given by the residual concentration in the background 
and within the contaminant slug, respectively.  Due to their variations in reactivity with chlorine, 
the tested contaminants have different cΔ values and are clearly differentiated in the 
discrimination diagrams (Fig.3).  The slopes on the plots are related to the kinetic reaction rates 
and the generation of chloramines during contaminant oxidation. 
 
Adaptive Detections 
 The artificially composed dataset for 15 contaminants has been processed adaptively.  
Selected results are shown in Figures 4 and 5 for free chlorine, total chlorine, specific 
conductivity, and pH.  Results for the remaining sensor data (chloride, ORP, dissolved oxygen, 
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Figure 2. Sensor response patterns for E.coli and alkaloid colchicine and nicotine as detected at the 

24.4-m and 334.5-m sensor stations.  Y-axes are concentration ratios.  X-axis is 
dimensionless time normalized to hydraulic retention time at the 334.5-m sensor station. 
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and turbidity) are not shown.  For each parameter, direct sensor responses in absolute 
concentration values are plotted in the c-t diagram along with the adaptively treated Δc values.  
Also shown in the figures are two injection events for each of the 15 tested contaminants.  One 
injection lasted for 20 minutes. 
 
 Free and Total Chlorine   

Differential sensor responses are observed for free chlorine and total chlorine in the 
experiment tests on the c-t plots (Fig.4).  Contaminants aldicarb, glyphosate, E.coli with nutrient 
broth, anhydrous and pentahydrate sodium thiosulfate all showed >80% free chlorine loss in the 
contaminant slug.  Changes in total chlorine sensor responses as small as 3.15% occurred during 
the injection of several contaminants: dimethyl sulfoxide (DMSO), nutrient broth, terrific broth, 
and trypticase soy broth.  
These sensor responses 
were correctly identified 
as contaminant events in 
the adaptive signal 
analysis (Fig.4).   

Compared to free 
chlorine, the composite 
sensor dataset for total 
chlorine contains large 
background variations.  
Some are due to sensor 
noise or background 
change, and some are the 
result of data sets from 
individual tests 
arbitrarily integrated into 
the composite dataset.  
All 2268 chloride sensor 
measurements identified 
as background average at 
0.962±0.019 mg/L 
(m±σ).  The smallest sensor response identified as a contaminant event is 0.03 mg/L or 2% (0.95 
mg/L and 0.92 mg/L for background and contaminant slug, respectively).  This event 
identification for the lowest sensor response was made during the second terrific broth test 
(Fig.4).  The difference is approximately 1.5 times of the background standard deviation (1.5σ).   
 
 Specific conductivity and pH 

Specific conductivity sensors registered small, but relatively significant increases during 
contaminant injections (Fig.5).  The largest change occurred with potassium ferricyanide, shown 
by a peak of approximately 3.5-4.0 uS/cm from a background value of 348 uS/cm or a nearly 1% 
change.  Sucrose registered a small increase in the conductivity, which was correctly identified in 
the adaptive analysis procedure.  Conductivity signals generated from the nutrient broth injection 
are not characteristic of a contaminant slug in flow pipe, which led to it being excluded as a false 
signal in event identification.  Other uncharacteristic instrument noises were observed in 

 
Figure 3 Forensic discrimination diagram using free and total chlorine 

loss for chemical and biological compounds at 3 concentrations 
in a real-time pipe flow testing.  The differences among the 
contaminants reflect their reaction pathways and kinetic 
constants. 
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glyphosate and trypticase soy broth injections (Fig.5).  The pH data show large variations in 
background and between individual contaminant tests.  For example, two anhydrous sodium 
thiosulfate injection events are marked by small pH changes of about 1% among the baseline 
variations.  After adaptive corrections, the two events were enhanced among the flat baselines 
(Fig.5).  False negative signals recorded in the E.coli and terrific broth tests were excluded from 
contaminant events largely based on the change curve geometry and adaptive event continuity in 
time. 

 
 Chloride and ORP 

Chloride sensor signals show large background variations, some of which were arbitrarily 
imposed in forming the composite dataset.  They also contain an example of instrument failure at 
the time of second contaminant injection event for nutrient broth.  Sensor response to the failure 
is representative of random variations of ),( σν t

nI  in Eq.3, and can be identified using time 
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Figure 4 Free chlorine and total chlorine sensor output spectrum and adaptively treated data on the 

c-t plot for the 15 contaminant composite dataset.  Two contaminant injection events for 
each contaminant are shown for the duration of 20 minutes.  Positively detected 
contaminants are marked in Red.
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derivative signal treatment techniques.  In nearly all experiments, chloride increased at the 
locations of the contaminant slug for aldicarb, E.coli, glyphosate, nutrient broth, potassium 
ferrocyanide, anhydrous and pentahydrate sodium thiosulfate, and trypticase soy broth.  Two 
false positive events were identified for DMSO and sucrose.  Such false identifications were 
corrected based on other sensor responses.  The smallest sensor response change for a correct 
identification or the method resolution is 0.4 mg/L or 1.3% of chloride sensor output. 

 
 DO and turbidity 

In the dissolved oxygen composite dataset, the DO sensor signals contained extensive 
uncharacteristic and random variations that obscured the signals related to contaminant events.  
The noise also resulted in one false positive in the E. coli experiments.  The adaptively treated 
sensor signals are randomly distributed around the baseline 1=Δc .  Similarly the turbidity 
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Figure 5 Specific conductivity and pH sensor output spectrum and adaptively treated data on the 

c-t plot for the 15 contaminant composite dataset.  Two contaminant injection events for 
each contaminant are shown for the duration of 20 minutes.  Positively detected 
contaminants are marked in Red. 
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signals are not indicative of the contaminants tested, except for lead nitrate, where the 
contaminant event was clearly identified. 

 
SUMMARY 
 The experimental results, through adaptive analysis, show positive identifications of the 
contaminant events (Table 2).  Minimum sensor signal strength for a positive event identification 
is approximately 3-5% for chlorine and as little as 1% for pH and specific conductivity.  The 
detection is based on the use of adaptive algorithms to suppress background variations and 
consequently enhance signals for change point detection on time-series plots.  The data analysis 
technique successfully reduced the background variations and instrumental drifting into a flat 
line, transformed instrumental noises into oscillation patterns, and correctly identified all 
artificial anomalous changes in the composite dataset.  The technique, however, was not capable 
of identifying and correcting data anomalies related to all instrumentation failures.  False 
positives were observed for dimethyl sulfoxide and sucrose in pH, E.coli in DO, and mercuric 
chloride in chloride.  When sensor detections for all parameters were analyzed together, such 
false identification could be detected and corrected. 
 The chlorine reactivity of a contaminant is its most characteristic property, based on 
which contaminant classes in reaction kinetics can be identified in forensic discrimination 
analysis.  For example, aldicarb, glyphosate, and dicamba are pesticide and herbicides examined 
in this study.  Aldicarb and glyphosate both caused significant and distinguishable free/total 
chlorine and chloride changes.  However, unlike aldicarb, glyphosate generated a pH decrease of 
approximately 0.2 SU which was clearly defined in the adaptive signals (See Fig.5).  The pH 
change reflects the hydrogen ion generation in the chlorine-induced oxidation of glyphosate 
(Brosillon et al., 2006), while aldicarb chlorination involves no hydrogen ion generation (Mason 
et al., 1990).  Comparatively, the stable benzoic ring structure of dicamba makes it non-reactive 
with chlorine (Huston et al., 1999).  Hydrolysis of the pesticide has been reported (Brosillon et 
al., 2006), and this was demonstrated as a clear pH anomaly in the adaptive monitoring (Fig.5).  
Collectively, the differential sensor responses are the basis for contaminant identifications. 
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