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Abstract 
Implementation of conservation programs are perceived as being crucial for restoring and 
protecting waters and watersheds from nonpoint source pollution. Success of these programs 
depends to a great extent on planning tools that can assist the watershed management process. 
Herein, a novel optimization methodology is presented for deriving watershed-scale sediment 
and nutrient control plans that incorporate multiple, and often conflicting, objectives. The 
method combines the use of a watershed model (SWAT), representation of best management 
practices, an economic component, and a genetic algorithm-based spatial search procedure. For 
a small watershed in Indiana located in the Midwestern portion of the United States, selection 
and placement of best management practices by optimization was found to be nearly three times 
more cost-effective than targeting strategies for the same level of protection specified in terms 
of maximum monthly sediment, phosphorus, and nitrogen loads. Conversely, for the same cost, 
the optimization plan reduced the maximum monthly loads by a factor of two when compared 
to the targeting plan. The optimization methodology developed in this paper can facilitate 
attaining water quality goals at significantly lower costs than commonly used cost-share and 
targeting strategies. 
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INTRODUCTION 
Best management practices (BMPs) are widely accepted as effective control measures for 
agricultural nonpoint sources of sediments and nutrients. The 2002 Farm Bill provided up to $13 
billion for conservation programs aimed at protecting water quality from agricultural nonpoint 
source (NPS) pollution (USDA, 2003). In addition, under the Clean Water Act Section 319 
Nonpoint Source National Monitoring Program and wetland protection programs, the EPA 
supports programs to reduce the negative impacts of runoff from agricultural, urban, and 
industrialized areas. Similarly, the Natural Resources Conservation Service (NRCS) provides 
hundreds of millions of dollars in federal funds to support agricultural best management practices 
(BMPs) in an effort to reduce the movement of pollutants into our waterways. Success of such 
programs, however, is contingent upon availability of efficient watershed-scale planning tools. 
 
Implementation of BMPs is challenged by complexities in incorporation of conflicting 
environmental, economic, and institutional criteria. Environmental assessments in watersheds 
hinge on resolving social benefits such as achieving the goal of swimable and fishable water 

 



bodies under the EPA’s Total Maximum Daily Load (TMDL) agenda. While BMPs facilitate 
achievement of such targets, their establishment bears additional cost for watershed management 
and/or agricultural producers. Since management practices are usually implemented under a 
limited budget, costs associated with unnecessary/redundant management actions may jeopardize 
attainability of designated water quality goals. Identifying optimal combinations of watershed 
management practices requires systematic approaches that allow decision makers to quickly 
assess trade-offs among environmental and economic criteria.  
 
Research to date indicates the promise of heuristic optimization for cost-effective allocation of 
watershed management practices (Srivastava et al., 2002; Veith et al., 2004; Muleta and Nicklow, 
2005). Unlike gradient-based approaches, heuristic techniques do not require linearity, continuity, 
or differentiability either for objective/constraint functions or for input parameters. Thus, they are 
well-suited for cost-effective allocation of watershed management plans. However, several 
questions still defy answers. A decision making tool that can clearly accommodate economic, 
environmental and institutional criteria is still lacking. The means for imposing target values for 
pollutant loads, and total watershed cost of implementation of management plans needs to be 
explored.  
 
The main goal of this study is to develop an optimization framework that enhances decision 
makers’ capacity to evaluate a range of agricultural and environmental management alternatives. 
The tool will be designed to identify near optimal watershed plans that reduce pollutant loads at a 
watershed outlet to below regulatory or target values with minimum cost. We hypothesize that 
reductions of pollutants at watershed outlets can be attained at significantly lower cost by 
optimized implementation of conservation practices than by current cost-share and targeting 
approaches. This overall goal is achieved by the following specific steps: 

i. Development of a novel genetic algorithm-based spatial search model. This step will 
focus on formulating versatile objective and constraint functions for the optimization 
model that can handle multi-criteria and landscape characteristics.  

ii. Integration of an NPS model (SWAT; Soil and Water Assessment Tool), a new BMP 
representation method, and a cost-benefit economic relationship with the GA-based 
spatial optimization model to identify optimal spatial allocation of best management 
practices. 

iii. Demonstrate the application of the optimization tool through a case study. 
 
 
METHODS 
The optimization model developed in this study is comprised of the SWAT model for simulating 
pollutant loads, a BMP representation tool, an economic component, and a GA-based spatial 
optimization technique. A MATLAB computer program (The Mathworks, Natick, MA) was 
developed to provide the linkage among various components of the model as shown in Figure 1. 
The model was tested for optimization of the location of field borders, parallel terraces, grassed 
waterways, and grade stabilization structures in the Dreisbach watershed. SWAT simulations 
were performed for a 10-year period from January 1st, 2000 through December 31st, 2009. In the 
analysis, 1991-2000 precipitation data, 2000 USDA-National Agriculture Statistics Service 
(NASS) land use and 2002 Soil Survey Geographical Database (SSURGO) were utilized to 
establish a base-case SWAT run. Parameter values in the base-case run were selected from a 

 



NPS Model 
 SWAT

Obj. Function 
Cost-benefit ratio 

Fitness Score 

BMP Tool 

Cost  
Establishment, 

maintenance, and 
opportunity cost 

GA Population
 First generation: 

Choose randomly 
 Nest generations: 

Crossover/ 
Replacement/   

Mutation 

Near 
Optimum 
Solution 

On-site sediment and 
nutrient reduction 

benefits 

Benefit

Constraint 
Water quality targets

YES 
Termination Criteria
Convergence of fitness score, 
cost, and constraints/ Max Iter

NO 

Start here 

Figure 1. Schematic of the proposed optimization procedure (Arabi et al., 2006). 

manual calibration (Arabi et al., 2004). Portions of the watershed classified as urban and forested 
areas were not considered for implementation of BMPs. 
 
Case Study Watershed 
The utility of the optimization framework was examined for a subwatershed in the Black Creek 
basin. The Black Creek watershed located in northeast Indiana is a typical watershed in the upper 
Maumee River basin in the Midwestern portion of the United States. In mid 1970’s and early 
1980’s, several BMPs were implemented in the watershed and detailed water quality monitoring 
was carried out at various locations within the watershed to examine short-term water quality 
impacts of soil and water conservation techniques. Data collected from automated samplers at the 
outlet of the Dreisbach watershed (6.23 km2) within the Black Creek basin were the most 
complete and were used in this study. Figure 2 depicts the location of the Dreisbach watershed. 
The dominant hydrological soil group in the study watershed is type C. Available data, land use 
distribution, and other information for the watersheds can be obtained from Arabi et al. (2004).  
 
Watershed Model 
The Soil and Water Assessment Tool, or SWAT (Arnold et al., 1998), is a process-based 
watershed model that simulates flow, sediment, erosion, nutrients, pesticides, and bacteria. The 
current version, SWAT 2005, is based on a foundation of 30 years of hydrologic/water quality 
modeling research and development by the USDA, other federal and state agencies, and 
universities. SWAT has also been adopted as part of the US EPA Better Assessment Science 
Integrating Point & Nonpoint Sources (BASINS) software package. The model has been 
validated under a wide variety of conditions and in watersheds ranging from small to large 
(reviewed by Arnold and Fohrer, 2005), and a significant base of researchers continues to expand 
the science and functions within SWAT. The widespread use of SWAT within the U.S. and 
internationally will facilitate replication and expansion of the methods we develop and use in this 
project for other watersheds. Although as a watershed-scale model, SWAT generalizes watershed 

 



Figure 2. Study watershed. 

processes in hydrologic response units (HRUs), it has nevertheless been shown to effectively 
represent many BMPs. Kalin and Hantush (2003) reviewed key features and capabilities of 
widely-cited watershed-scale hydrologic and water quality models, with emphasis on their ability 
to represent watershed management practices for TMDL development, and found that SWAT 
offers the most management alternatives for modeling in agricultural watersheds. 
 
Genetic Algorithm (GA) 
A genetic algorithm (GA) was employed to optimize spatial allocation of BMPs. In this GA 
component, each optimization string corresponds to a specific watershed management plan. The 
length of each string (m) corresponds to the total number of genes, i.e., individual management 
actions that are considered in optimization. For example, in a watershed with 50 fields considered 
for implementation of field borders and/or parallel terraces, and 20 reach segments considered for 
implementation of grassed waterways and/or grade stabilization structures, the total number of 
genes on each management string is equal to m= [2×50+2×20=] 140. The alleles are binary 
values, with “1” or “zero” indicating that the corresponding BMP “be” or “not be” implemented. 
 
The mathematical representation of the objective function used in this paper was: 
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subject to water quality constraints: 
 1( , , , ) ( , , , , ) 0ix t td ymax x t td y ytiα αΓ = − ≤  2 
and budget constraints:  
 2 ( , , , ) ( , , , ) cos 0x t td ct x t td w tα αΓ = − ≤  3 
where ymaxi is maximum delivery of pollutant constituent i after implementation of BMP 
combination (α) estimated with SWAT simulations over period td; and yti is the allowable load of 
constituent i. Variable ct is the total cost of implementation of α, and wcost is the total available 

 



budget for implementation of management plans. The denominator in 1 was designed such that it 
will never be zero. 
 
The optimization constraints in 2 and 3 are typically defined by regulatory and implementation 
agencies. For example, allowable sediment and nutrient loads (yti) may be obtained from a Total 
Maximum Daily Load (TMDL) for a given watershed. While yti and ymaxi can be expressed on a 
daily, monthly, or annual basis, as loads or concentrations, their units should be consistent. The 
cost constraint represents available budget for implementation of watershed management 
scenarios and may be specified by implementation agencies. 
 
The fitness score (fs) for each string was evaluated by the objective function (z) associated with 
the string from Eq 1. Infeasible solutions, i.e., solutions that do not satisfy the constraint 
functions Γ1 and Γ2 in 2 and 3, were penalized by applying a penalizing factor k as: 
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A more detailed description of the optimization procedure can be obtained from Arabi et al. 
(2006). 
 
BMP Representation 
For this study, a method presented by Arabi et al. (2004) was utilized to evaluate the water 
quality impacts of grassed waterways, grade stabilization structures, field borders and parallel 
terraces. The method was developed based on published literature pertaining to BMP simulation 
in hydrological models and considering the hydrologic and water quality processes simulated in 
SWAT. Based on the function of the BMPs and hydrologic and water quality processes that are 
modified by their implementation, corresponding SWAT parameters were selected and altered. 
Arabi et al. (2004) provides a detailed description of the method used for representation of field 
borders, parallel teraces, grassed waterways, and grade stabilization structures.  
 
Economic Component 
An economic component was developed for the optimization model that is comprised of a cost 
function in addition to an economic return (benefit) function. Both cost and benefit are a function 
of watershed characteristics and time. The total cost of implementation of BMPs was evaluated 
by establishment, maintenance, and opportunity costs. Establishment costs included the cost of 
BMP installation, and technical and field assistance. Maintenance cost is usually evaluated as a 
percentage of establishment cost. The opportunity cost is a dollar value that would be produced 
over the BMP design life as a result of investing the establishment and maintenance costs by 
purchasing saving bonds. The benefit function reflects the impact of BMPs on sediment and 
nutrient reductions. The economic return of implementation of BMPs was determined by 
assigning monetary values to onsite and offsite benefits of sediment and nutrient reductions. A 
detailed description of the economic component of the optimization framework in Figure 1 is 
available in Arabi et al. (2006). 
 
 

 



RESULTS  
The optimization procedure shown in Figure 1 was used to allocate four types of structural BMPs 
in the Dreisbach watershed. These BMPs included parallel terraces, field borders, grassed 
waterways, and grade stabilization structures. The analysis aimed at allocating BMPs such that 
maximum sediment, phosphorus, and nitrogen loads over the simulation period (2000-2009) 
(ymaxi in Eq 2) did not exceed the ones corresponding to a targeting plan. The purpose of 
comparing targeting and optimization results was to compare the total watershed cost (ct in Eq 3) 
of the two cases while providing the same level of water quality protection. 
 
In the optimization case, constraints of the GA included only water quality constraints that were 
set equal to maximum monthly sediment and nutrient loads from the targeting strategy. The GA 
terminated once one of the pollutant constituents reached its maximum allowable value. A total 
number of 150 optimization generations, each with a population of 20 strings, were computed. 
Prior to optimization evaluations, allowable sediment and nutrient loads, yt in 2, were set equal to 
values from the targeting case to be able to compare the total watershed cost of the optimization 
plan with the targeting plan for the same level of reduction of sediments and nutrients.  
 
A summary of results for targeting and optimization cases in the study watersheds is provided in 
Table 1. It was estimated that the targeting plan would cost $414,690. The cost of the near 
optimal plan that attained the same water quality benefits was estimated to be $165,370, nearly 
2.5 times less than the cost of the targeting plan. Comparison of the results reveals that in the 
Dreisbach watershed, BMPs selected and placed by optimization would also yield nearly three 
times better benefit-cost ratio, while providing the same level of protection against phosphorus 
and providing even higher protection against sediment and nitrogen pollution. 
 
Table 1. Results for targeting and optimization cases 

Variable Symbol Units Targeting Optimization 
Maximum monthly sediment yield  ymaxs t/ha/m 0.17 0.06 

Maximum monthly phosphorus yield ymaxp kg/ha/m 0.15 0.15 
Maximum monthly nitrogen yield ymaxn kg/ha/m 2.1 1.55 

Objective function z $/$ 0.12 0.35 
Watershed cost ct $ 414,690 165,370 

 
Figure 3a shows a sample of the results, with the left y-axis reflecting the objective function for 
all model evaluations (dots), and the right y-axis is total cost of implementation of the best 
solution in each optimization generation (dashed line). The first generation represents a random 
combination of BMPs, while the last generation shows the near optimum solution. It is evident 
that maximum and median fitness of generations improved as optimization progressed to next 
generations. This pointed to the efficiency of the developed algorithm. Conversely, the total 
watershed cost associated with the best solutions of GA generations generally reduced in 
successive generations.  

 



 (a) (b) Figure 3.  
(a) Optimization 
outputs for the 
Dreisbach 
watershed;  
(b) Spatial 
allocation of 
BMPs from 
optimization 
procedure. 

CONCLUSIONS 
A GA-based optimization procedure was developed for selection and placement of BMPs. The 
sensitivity of the model to different combinations of GA operating parameters, including 
population size and replacement rate, was tested in order to identify the most efficient 
combination that converges rapidly for a given runtime. For two small watersheds in Indiana, a 
setup with a higher number of generations and lower population size was more efficient. 
However, these results may be site-specific and vary for watersheds with different spatial scale 
and characteristics.   
 
The cost effectiveness of the optimized BMPs was compared to that of BMPs prescribed through 
targeting strategies in the study watersheds. It was demonstrated that the BMPs from 
optimization would achieve the same level of sediment and nutrient reductions with nearly one 
third of the cost required for implementation of the targeting scenario. Conversely, it was shown 
that an optimized management scheme would likely provide nearly twice higher level of 
protection against sediment and nutrient loads for the same amount of money that would be spent 
for implementation of the targeting plans in these watersheds.   
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