technical BRIEF BUILDING A SCIENTIFIC FOUNDATION FOR SOUND ENVIRONMENTAL DECISIONS ## **Exposure Assessment of Livestock Carcass Management Options During Natural Disasters** #### Introduction Proper management of livestock carcasses following large-scale mortalities protects humans, wildlife, and the environment from chemical and biological hazards. In support of the National Response Framework, the U.S. Department of Homeland Security (DHS) Science and Technology Directorate funds research in collaboration the U.S. Environmental Protection Agency's (USEPA's) Homeland Security Research Program (HSRP) and the U.S. Department of Agriculture's (USDA's) Animal and Plant Health Inspection Service (APHIS) to support the proper management of animal carcasses following major environmental incidents involving the agricultural sector. Mass livestock mortalities can result from a natural disaster, foreign animal disease (FAD) outbreak, chemical or radiological incident, or other large-scale emergencies. As a product of the collaborative research between USEPA, DHS, and USDA, this research brief summarizes an evaluation of livestock carcass management options following a natural disaster through a comparative exposure assessment. This assessment helps to inform a scientifically-based selection of environmentally protective methods in times of emergency. Future phases of this project will examine a FAD outbreak and chemical or radiological incidents. In actual natural disasters, many site-specific factors contribute to potential chemical and microbial exposures from carcass management activities. The exposure estimates presented in this summary should not be interpreted as "actual" exposures associated with the management options. However, site managers can use these findings, in conjunction with site-specific factors, to make informed decisions about which carcass management options would minimize risks to human health and the environment for specific locations. ## **Evaluation Approach** The livestock carcass management options included in this exposure assessment are seven well-established methods with sufficient capacity for large-scale carcass management: on-site open burning (pyre), on-site air-curtain burning, on-site unlined burial, on-site composting, off-site fixed-facility incineration, off-site landfilling, and off-site carcass rendering. Conceptual models were developed for all seven carcass management options to identify potential exposure pathways resulting from implementation of those carcass management options to address a hypothetical natural disaster scenario (USEPA, 2017). With the three off-site options, all releases to the environment are restricted by, and are assumed to comply with, applicable U.S. federal regulations. Therefore, chemical and microbial releases from off-site commercial facilities are assumed to be adequately controlled. The number of potential chemical and microbial exposure pathways in conceptual models for the three off-site management options are lower than for the four on-site options. These differences are the basis of a Tier 1 ranking (first tier ranking of the seven carcass management options based on the level of regulatory pollution controls) shown in Table 1. Table 1. Tier 1 Ranking of Livestock Carcass Management (Offsite vs. Onsite) Options | Tier 1 | Management
Options | Exposure Pathways ^a | | Controls and Limits to | | |--|------------------------|--------------------------------|-----------|---|--| | Ranking | | Chemical | Microbial | Environmental Releases | | | Rank 1: Negligible to minimal exposure - releases regulated to | Incineration | 6 | 6 | Air emissions regulated under the Clean Air Act (CAA), including pollution control equipment (e.g., scrubbers, filters), with tall stacks to prevent localized deposition; residuals (i.e., ash) managed under the Resource Conservation and Recovery Act (RCRA); wastewater managed under the Clean Water Act (CWA). | | | levels safe
for human | Rendering | 3 | 2 | Releases to air and to water regulated under the CAA and CWA, respectively. | | | health and
the
environment | Landfilling | 2 | 2 | Landfill design and operation regulated under RCRA; controls include leachate collection and methane recovery. | | | Rank 2: Higher exposure potential - uncontained releases to the environment | Open Burning | 10 | 10 | Uncontrolled and unregulated combustion emissions; possible releases from combustion ash if managed on site. | | | | Air-curtain
Burning | 10 | 10 | Partially controlled but unregulated combustion emissions, possible releases from combustion ash if managed on site. | | | | Burial | 6 | 6 | Uncontrolled leaching from unlined burial; slow gas release to air. | | | | Compost
Windrow | 6 | 6 | Partially controlled releases from compost windrow (minor leaching, runoff, and gas release to air); where finished compost is | | | | Compost
Application | 2 | 1 | tilled into soils, potential runoff and erosion from amended soil. | | ^a Higher number (10) indicates potential for higher exposure and risk and a low number indicates less potential for exposure. The number of exposure pathways does not necessarily indicate the relative level of exposure among the management options because the potential levels of exposure vary substantially by pathway. Exposure rankings by management option are presented in Table 2. The top section of Table 2 shows that the Tier 1 assessment for chemicals did not rank the offsite options relative to each other. In a Tier 2 assessment for the on-site management options, potential exposures are ranked relative to one another for a hypothetical site, using a standardized set of environmental conditions, assumptions about the scale of mortality, and how the carcass management options are designed and implemented. Chemical and microbial exposures are assessed independently due to fundamental differences in characteristics influencing transport and fate and in their effects on human health and the environment. For chemicals, Tier 2 rankings are based on a quantitative assessment in which different methods are applied to estimate combustion releases to air and subsequent deposition to ground level and to assess fate and transport in surface and subsurface soils, groundwater, and an on-site lake. Exposures were assessed for humans breathing airborne chemicals and ingesting chemicals in drinking water, home grown foods, and fish caught in the on-site lake. Some options were not distinguishable from each other given data gaps and uncertainty in modeling. Those options have, therefore, the same relative rank. **Table 2. Ranking of Livestock Carcass Management Options for Chemicals** | Tier 1 Description | Tier 1 Description Management Option | | Principal Rationale | | |--|--------------------------------------|------------------------|--|--| | The qualitative Tier 1 assessment distinguishes the offsite options from the on-site | Off-site Rendering | | Carcasses processed into useful products; wastes released under permits; availability decreasing. | | | options based on level of regulatory control. The off-site options are considered to pose lower risk than the on-site options, which have uncontrolled | Off-site Landfill | | Carcass leachate contained and methane captured; landfills at capacity are closed and new ones built. | | | environmental releases. The off-
site options are not ranked
relative to each other. | Off-site Incinerator | | Destruction of materials; air emissions are regulated; ash is landfilled. | | | Tier 2 Description | Rank ^b | Management
Option | Principal Rationale | | | | 1 | Compost
Windrow | Bulking material retains most chemicals. | | | The quantitative Tier 2 assessment ranks the on-site options relative to each other by | 1 | Burial | Soils filter out chemicals traveling toward groundwater. | | | comparing ratio of estimated exposures (from data on source | 2 | Air-curtain
burning | Similar release profiles; emissions sensitive to type and quantity of fuels used and burn temperature. | | | emissions and fate and transport modeling) with toxicity reference values (TRVs). | 2 | Open Pyre
burning | | | | | 3 | Compost
Application | If no offset from lake; mitigate with offset and erosion controls. | | ^b Rank 1 poses the lowest relative risk and higher numbers indicate higher relative risk. In the Tier 2 assessment for microbes, three pathogenic microbes were evaluated to represent prions, bacterial spores, and bacterial cells. For these microbes, all estimated exposures were below available exposure benchmark values. However, because of significant uncertainty about the initial concentration of the pathogenic microbes in healthy livestock, the Tier 2 rankings for microbes are based on the degree of thermal destruction and containment provided by the carcass management options. These rankings assume prions could survive more management options than spores, and bacteria that do not form spores were most susceptible to thermal inactivation. Thermal destruction can be applied as a criterion for both the on-site and off-site options. Tables 3 and 4 show the microbial exposure rankings for Tier 1 and Tier 2, respectively. Although the on-site options are not ranked relative to the off-site options, some will offer thermal destruction comparable to or greater than off-site options. Table 3. Tier 1 Ranking of Off-site Livestock Carcass Management Options for Microbes | Tier 1 Description | Rank ^c | Management
Option | Principal Rationale | |---|-------------------|-------------------------|---| | The qualitative Tier 1 assessment distinguishes the off-site options from the on-site options based on level of regulatory control. Among the off-site options, rankings are based qualitatively on the level of thermal destruction. Off-site options are not ranked relative to on-site options, although some will offer thermal destruction comparable to or greater than off-site options. | Н | Off-site
Incinerator | Thermal destruction of all microbes, ash is landfilled | | | M | Off-site
Rendering | Thermal inactivation of all microbes except prions, workers protected from prion exposure with the use of personal protective equipment (PPE). | | | L | Off-site Landfill | Containment, including liner, leachate collection, cover material, but no thermal destruction; when capacity is reached, landfill is closed and new ones built. | Abbreviations: H = Highest rank; M = Middle rank; L = Lowest rank. Table 4. Tier 2 Ranking of On-site Livestock Carcass Management Options for Microbes | Tier 2 Description | Rank ^{d,e} | Management
Option | Principal Rationale | |---|---------------------|---------------------------------------|---| | Rankings in the Tier 2 | 1 | Air-curtain | Thermal destruction of all microbes | | assessment are based on quantitative exposure dose | 2 | Open Pyre | Thermal destruction of all microbes except prions | | estimates for a limited number of exposure pathways. For those pathways and the microbes assessed, all estimated exposure doses were below the available ID ₅₀ values for each representative microbe (<7, 3–4, and ~ 1 order of magnitude lower than the ID ₅₀ for Escherichia coli, Bacillus anthracis, and prions, respectively). Therefore, the rankings reflect the extent of thermal destruction. | 3 | Compost: • Windrow • Soil application | Thermal inactivation of most microbes during windrow decomposition phase, incomplete activation of spore-forming microbes and prions with some decay/inactivation expected before the application of finished compost | | | 4 | Burial | No thermal inactivation of any microbes, some decay expected | Abbreviations: ID_{50} = infectious dose for 50 percent of the exposed population. ^c Relative and absolute risks from microbial pathogens depends on initial concentrations in healthy cattle, which is unknown. ^d Rank 1 poses the lowest relative risk and higher numbers indicate higher relative risk. ^e Relative and absolute risks from microbial pathogens depends on initial concentrations in healthy cattle, which is unknown; qualitative ranking is based on thermal destruction and containment. ## **Uncertainties in the Exposure Assessment** Tables 5, 6, and 7 summarize three types of "uncertainties" in the exposure assessment: - Parameters with Moderate to High Natural Variation - Uncertain Parameter Values or Models - Simplifying Assumptions. Table 5. Moderate to High Natural Variation in Parameter - Potential Bias from Selected Values | Key Topic | Selected Parameter Value | Bias | Rationale | | | |------------------------------|---|---------------------------------------|--|--|--| | Natural Disaster So | Natural Disaster Scenario | | | | | | Scale of
Mortality | •Mortality of 100 cattle at one farm with a
total weight of 50 tons to match the
environmental impact statement. Large-
scale mortalities could limit availability
of or access to resources. | Possibly High
Underestimate | • The scale of mortality is likely to be "small"
relative to mass mortalities for which
emergency measures at a state and federal
level would be required. In general, larger
mortalities result in greater potential
releases and exposures. | | | | Site Setting and Er | vironmental Conditions | | | | | | Surface Water | Hypothetical farm layout includes a
100-acre lake that is large enough to
support recreational or subsistence
fishing. | Variable
Overestimate | Site design is likely to overestimate
exposure. In particular, exposure is
overestimated for sites without a fishable
pond or lake. | | | | Groundwater | Contaminants leached from the burial
trench, temporary storage pile, and
buried combustion residuals can reach
groundwater. | Variable
Overestimate | The depth to an underground aquifer is likely to be deeper than 1 m. Although the domestic well exposure pathway is possible, a domestic well is not likely to be shallow enough to directly intersect leachate from surface sources. | | | | Meteorological
Conditions | One year of meteorological data from a
weather station in lowa, chosen to
represent a moderate climate in the
U.S. agricultural heartland. | Moderate
Over- or
Underestimate | The meteorological data used for this
assessment could over- or underestimate
relevant conditions in other areas of the
country. | | | | Soil Type and
Properties | Recommended default soil properties
were chosen to reflect national
average conditions. Soil properties
influence how quickly leachate and
rainwater can flow through soils
vertically and how likely it is for
chemicals and microbes to sorb to soil
particles. | Moderate
Over- or
Underestimate | Although the soil conditions were chosen to
represent national average conditions, sites
with different soils could have higher or
lower rates of vertical water movement and
capacity to adsorb chemicals or viruses. | | | | Exposure Receptor | Exposure Receptors and Estimation | | | | | | Human
Receptors | Exposures are assessed for three types of farm residents: infants who consume drinking water in their formula, young children (age 1-2 years old), and adults. | Neutral | Although exposures might be over or
underrepresented for receptors or receptor
populations included in the assessment, the
approach includes a range of age
categories and is based on EPA exposure
assumptions. | | | | Exposure
Factors | Exposure factors (e.g., ingestion rates,
body weights) are mean values. | Neutral | Means are used so that exposure is not
over or underestimated by this aspect of the
approach. | | | Table 6. Uncertainty in Parameter Value(s) Selected | Parameter | Description | Uncertainty | Rationale for Uncertainty
Category | | | | |--|--|-------------|---|--|--|--| | Natural Disaster Sc | Natural Disaster Scenario | | | | | | | Chemicals | Chemicals included in the assessment
were identified from relevant published
sources. | Low | Chemicals included in the assessment
does not necessarily include all
potential chemicals of interest from
actual carcass management. | | | | | Microbial Agents | Microbial agents included microbes
present in healthy livestock. Among
those three representative agents were
selected for exposure estimation:
prions, Bacillus anthracis, and E. coli
O157:H7. | Low | The three microbial agents were selected to represent three organisms with three distinct characteristics (e.g., persistence). Exposures for various organisms may be over or under estimated. | | | | | Carcass Manageme | ent Options | | | | | | | Combustion Fuels | Types and amounts of fuels affect the
composition and amounts of emissions
to air and combustion residuals. | Moderate | Combustion fuel assumptions could
contribute to over or underestimation of
exposure. | | | | | Ash Disposal | Combustion ash is managed on site,
buried in place using in the assumed
length and width of the combustion
units. | High | Exposures are overestimated if
combustion ash is not disposed of on
site. | | | | | Releases and Relea | ise Rates | | | | | | | Releases
Estimates | Data to characterize the composition,
quantity, and rate of releases are very
limited. | High | Actual releases can vary significantly
due to many factors (e.g., unit design,
environmental conditions). | | | | | Animal Vectors | Chemicals or microbes can be
transported by insects, birds, or
mammals that come in contact with
carcasses before or during
management. Quantitative evaluation
of animal vectors not included. | Moderate | Exclusion of animal vectors from the assessment causes potential exposures to be underestimated. This uncertainty impacts the composting option more that burial or the combustion-based options. | | | | | Fate and Transport Modeling | | | | | | | | Models | Various screening-level models and
calculations to estimate chemical fate
and transport through air, water, soil,
and terrestrial and aquatic food chains. | High | Data and methods can individually
contribute to estimation of exposures.
Usage of conservative assumptions
and approaches likely result in over-
estimates of possible exposures. | | | | | Chemical
Properties and
Other Inputs | Modeling uses various chemical
properties and numerical inputs (e.g.,
soil properties, food web composition). | Moderate | Uncertainties might be present in input
parameters. Many modeling inputs
generally uses central-tendency
values. | | | | **Table 7. Simplifying Assumptions - Effects on Exposure Estimates** | Key Topic | Simplifying Assumption | Effect | Rationale for Effect | |---|--|--|---| | Natural Disaster S | cenario | | | | Type of
Livestock
Affected | Any livestock type can suffer mortalities from
natural disasters. Body size ranges from small
to large and animal density varies with farming
practices. Livestock species differ in terms of
body composition, which can affect combustion
temperature and residual materials and affect
rate of decomposition for other options. | | Body composition varies among
species, but variability is limited
by the general similarity in
warm-blooded vertebrate
bodies. | | Site Setting and E | nvironmental Conditions | | | | Site Layout | Conceptual models and site layout were designed to include all feasible complete exposure pathways. | | Overestimate exposure as the
layout assumes a worst-case
exposure for each possible
pathway. | | Carcass Manager | nent Options | | | | Off-site Carcass
Management
Options | Off-site carcass management facilities comply with applicable regulations and that those regulations are protective of human health and the environment. | Low
Underestimate | Underestimated where the facilities do not comply with applicable regulations. | | Design of Onsite Management Units | Design of on-site management options are
based on 50 short tons of carcasses. For larger
mortalities, the spatial pattern and nature of
environmental releases could be different. | Moderate Over-
or
Underestimates | Carcass management units
could lead to over- or
underestimation of exposure. | | Carcass
Handling Before
Management | Workers who handle livestock carcasses are
assumed to use recommended personal
protective equipment (PPE). | Moderate
Underestimate | Exposure to workers is
underestimated if no PPE is
used. | | Temporary
Storage Pile | Carcasses are stored in a pile on bare earth for 48 hours during preparations for further management. Moderate Unde or Overestimate | | If animals are in the temporary
pile for more time, exposures
from the storage pile are
underestimated and exposures
from subsequent management
are overestimated (and vice
versa). | | Carcass
Transportation | Exposures due to carcass transportation are considered insignificant and are not used in ranking the carcass management options. | | If carcass transportation results
in a significant exposure, the
assessment underestimates
overall exposure. | | Fate and Transpo | rt Modeling | | | | Runoff from
Compost
Application | Application site is immediately adjacent to the lake. | High
Overestimate | Overestimates runoff to the lake
and human exposure to any
metals in the compost. | | Exposure Receptor | ors and Estimation | | | | Homegrown farm Products | Farm residents are assumed to consume only home-grown products. | Moderate
Overestimate | Farm residents also rely on store-bought foods. | ## **Conclusions** Off-site options, including incineration, landfilling, and rendering, are subject to air, water, and solid waste regulations designed for adequate health and environmental protection. This assessment finds that, when properly designed and implemented, the four on-site carcass management options as well as the off-site options are unlikely to cause adverse health or environmental effects. The Tier 2 assessment provides a scientifically based understanding of the relative contribution of specific exposure pathways, hazardous agents, and steps in carcass management processes. These insights can assist selection of environmentally protective livestock carcass management methods in the event of a natural disaster. The assessment also can aid selection and priority setting for mitigation and best management practices to assist State regulators and communities to prevent, prepare for, respond to, and recover from emergencies. The overall outcome of exposure assessments will help development of a decision tool to support selection of management methods in times of emergencies by providing scientifically-based information on potential hazards to human health, livestock, wildlife, and the environment. #### **Additional Information** U.S. EPA. Exposure Assessment of Livestock Carcass Management Options During Natural Disasters. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-17/027, 2017 (URL: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335655) ## **Contact information** For more information, visit the EPA Web site at http://www2.epa.gov/homeland-security-research Technical Contact: Sandip Chattopadhyay, Ph.D. (chattopadhyay.sandip@epa.gov) General Feedback/Questions: Kathy Nickel (nickel.kathy@epa.gov) **U.S. EPA's Homeland Security Research Program** (HSRP) develops products based on scientific research and technology evaluations. Our products and expertise are widely used in preventing, preparing for, and recovering from public health and environmental emergencies that arise from terrorist attacks or natural disasters. Our research and products address biological, radiological, or chemical contaminants that could affect indoor areas, outdoor areas, or water infrastructure. HSRP provides these products, technical assistance, and expertise to support EPA's roles and responsibilities under the National Response Framework, statutory requirements, and Homeland Security Presidential Directives.