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Disclaimer
The information in this document has been funded wholly or in part by the U.S. Environmental 
Protection Agency (EPA). It has been subjected to the Agency’s peer and administrative review, 
and has been approved for publication as an EPA document. Mention of trade names or commercial 
products does not constitute endorsement or recommendation for use.

This work was performed under Interagency Agreement (IA) DW89921928 with Sandia National 
Laboratories, Contract EP-C-05-056 with Pegasus Technical Services Inc., and IA DW89922555 with 
Argonne National Laboratory. Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the U. S. Department of Energy’s National Nuclear Security 
Administration under Contract DE-AC04-94AL85000.

The TEVA-SPOT software described in this manual is subject to copyright. It is free software that 
can be redistributed and/or modified under the terms of the GNU Lesser General Public License as 
published by the Free Software Foundation and to the terms of other third-party software licenses. 
Specifications of these terms are included with the TEVA-SPOT software distribution.

The authors and the U.S. Environmental Protection Agency are not responsible and assume no 
liability whatsoever for any results or any use made of the results obtained from this software, nor for 
any damages or litigation that result from the use of this software for any purpose.



v

Foreword
Following the events of September 11, 2001, EPA’s mission expanded to address critical needs related to 
homeland security. Presidential Directives identified EPA as the primary federal agency responsible for 
safeguarding the nation’s water supplies and for decontamination following a chemical, biological, and/or 
radiological (CBR) attack. To provide scientific and technical support in meeting this expanded mission, EPA’s 
National Homeland Security Research Center (NHSRC) was established. NHSRC is focused on conducting 
research and delivering products that improve the capability of the Agency to carry out its homeland security 
responsibilities.

As a part of this mission, NHSRC conducts research and provides technical assistance to support America’s 
drinking water utilities so they can improve their security preparedness, response and recovery. Over the last 
several years, NHSRC has been developing new methods to help design, implement, and evaluate drinking 
water contamination warning systems. These new systems integrate a variety of monitoring technologies to 
rapidly detect contamination. One important question for contamination warning system design is where to most 
effectively place a limited number of sensors in a water distribution network. This network may be composed of 
hundreds to thousands of miles of pipe and the contamination warning system must economically safeguard the 
largest number of people. This publication summarizes a large body of research addressing sensor placement 
issues, and provides critical information for water utilities to use when considering where to place sensors 
in their own distribution networks.
NHSRC works with many partners to meet its responsibilities. This research was conducted in collaboration 
with EPA’s Office of Water, across the federal government working with the U.S. Department of Energy’s Sandia 
National Laboratories and Argonne National Laboratory, with academia through the University of Cincinnati, and 
with the American Water Works Association and their member utilities.

This publication provides a comprehensive resource on sensor placement methods and case studies and is intended 
for a broad audience of water utility staff, policy makers, and researchers. NHSRC has made this publication 
available to help improve the security and the quality of our nation’s drinking water. This research is intended 
to move EPA one step closer to achieving its homeland security goals and its overall mission of protecting 
human health and the environment while providing sustainable solutions to our environmental problems.

Cynthia Sonich-Mullin, Acting Director 
National Homeland Security Research Center
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1.
Background and Purpose

Protecting our nation’s critical infrastructure from terrorist 
attacks has become a federal and local priority over the 
last several years. Under Homeland Security Presidential 
Directive 7, the United States Environmental Protection 
Agency (EPA) is the lead federal agency for protecting the 
water infrastructure in the United States. In this capacity, EPA 
has worked with public and private water utilities, federal, 
state and local agencies, and the public health community 
to develop assistance and research programs to improve 
the safety and security of drinking water systems. Water 
associations, community water systems, academia, private 
industry, and others have focused attention and research on 
developing new methods, policies, and procedures to secure 
drinking water and wastewater systems.

The Public Health Security and Bioterrorism Preparedness 
and Response Act of 2002 required drinking water systems 
serving more than 3,300 people to conduct vulnerability 
assessments and prepare or update emergency response 
plans that address a range of potential terrorist threats 
(BTACT 2002). In 2006, a report on the fourteen features 
of an active and effective security program informed the 
water community about the most important organizational, 
operational, infrastructure, and external features of resilient 
and secure systems (U.S. EPA 2006a). Many representatives 
of the water sector have joined together to prepare a sector-
specific plan that coordinates activities across organizations 
(U.S. DHS et al. 2007). These activities have reduced 
water sector vulnerabilities through increasing awareness, 
hardening of critical assets, improved physical security, and 
more comprehensive response plans.

Recently, water security research efforts have focused on the 
advancement of methods for mitigating contamination threats 
to drinking water systems (see for example, Ostfeld 2006; 
AWWA 2005; Murray 2004). A promising approach for the 
mitigation of both accidental and intentional contamination is 
a Contamination Warning System (CWS), a system to deploy 
and operate online sensors, other surveillance systems, rapid 
communication technologies, and data analysis methods 
to provide an early indication of contamination (U.S. EPA 
2005c). CWSs with multiple approaches to monitoring — 
like water quality sensors located throughout the distribution 
system, public health surveillance systems, and customer 
complaint monitoring programs — are theoretically capable 
of detecting a wide range of contaminants in water systems. 
However, CWSs are expensive to purchase, install, and 
maintain. To make them a viable option, there is a clear need 
to minimize the investment required by individual drinking 
water systems.

The purpose of this report is to provide documentation on 
strategies and tools needed to assist in the design of an online 
sensor network for a CWS. A key aspect of CWS design is 

the strategic placement of sensors throughout the distribution 
network. There has been a large volume of research on this 
topic in the last several years, including a “Battle of the 
Water Sensor Networks” (Ostfeld et al. 2008) that compared 
15 different approaches to solving this problem. This report 
focuses on the sensor placement methodologies that have 
been developed by EPA’s Threat Ensemble Vulnerability 
Assessment (TEVA) Research Team, which is composed 
of researchers from EPA, Sandia National Laboratories, the 
University of Cincinnati, and Argonne National Laboratory. 
This team has developed TEVA-SPOT — the Threat 
Ensemble Vulnerability Assessment Sensor Placement 
Optimization Tool — a collection of software tools that can 
help utilities design sensor networks (Berry et al. 2008b; U.S. 
EPA 2009).

This report is organized as follows. Chapters 1–5 are 
intended for a broad audience of water utility staff, 
policy makers, and researchers. This chapter provides 
background information and an overview of the research 
on sensor placement methods. Chapter 2 discusses the 
data required as input to sensor placement methods, 
highlighting the important design decisions a utility 
would need to make. Chapter 3 describes the iterative 
decision-making process a utility would follow when 
implementing optimization software. Chapter 4 provides 
several real-world case studies, and Chapter 5 discusses 
several common challenges that a user might face when 
applying sensor placement software to real water systems.

Chapters 6 and the rest of this report are intended for 
researchers and others who want to understand the modeling 
and optimization methods in greater detail. Chapter 6 is 
focused on the methodology for estimating the impacts 
of drinking water contamination, including methods for 
estimating dose and public health response. Chapter 7 
describes the optimization problem for locating sensors. 
Appendix A includes a full literature review, and Appendix B 
provides a summary of the Battle of the Water Sensor 
Networks (Ostfeld et al. 2008).

Vulnerability of Drinking Water Distribution 
Systems
The heightened risk of terrorist attacks on our nation’s 
critical infrastructure has placed the security of the water 
supply in the same league as the security of our nation’s 
treasured monuments. There is a long history of threats to 
water systems and a shorter list of actual incidents at water 
systems (AwwaRF 2003; Kunze 1997; Staudinger et al. 
2006). However, public awareness of the threat has increased 
dramatically since the 9/11 attacks partly due to media 
coverage of two international terrorist plots against drinking 
water supplies; one premised on the introduction of a cyanide 
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compound into water pipes near a U.S. Embassy in Italy 
(Henneberger 2002), and the other a direct threat to American 
water supplies from an Al-Qaeda operative (Cameron 2002).

Although the threat of terrorist attacks might not be a daily 
worry for water utilities, terrorist threats are of significant 
concern because of their potentially large public health and 
economic impacts. Conceivable terrorist threats to drinking 
water systems include the physical destruction of facilities or 
equipment, airborne release of hazardous chemicals stored 
onsite, sabotage of Supervisory Control and Data Acquisition 
(SCADA) and other computer systems, and the introduction 
of chemical, biological, or radiological contaminants into 
the water supply (ASCE 2004). Explosive and flammable 
agents that could cause physical destruction of facilities 
might be threats to drinking water systems because of the 
ease of obtaining the necessary equipment, the past use of 
these agents as terrorists’ weapons of choice, and the general 
ease of access to water facilities, such as storage tanks and 
pumping stations. However, contamination hazards might 
pose a more significant threat because they could result in 
major public health and economic impacts and long-lasting 
psychological impacts.

Drinking Water Vulnerability Assessments
The Bioterrorism Act of 2002 requires all community water 
systems serving more than 3,300 customers to “conduct an 
assessment of the vulnerability of its system to a terrorist 
attack” and to submit a copy of the assessment to EPA. The 
law directs vulnerability assessments to include “a review of 
pipes and constructed conveyances, physical barriers, water 
collection, pretreatment, treatment, storage and distribution 
facilities, electronic, computer, or other automated systems 
which are utilized by the public water system, the use, 
storage, or handling of various chemicals, and the operation 
and maintenance of such system.”

Based on its particular facilities, treatment methods, 
water sources, regional topology, and service community, 
each water utility faces unique vulnerabilities to terrorist 
threats. Several risk assessment tools and methodologies 
have been developed to aid drinking water systems in 
determining these vulnerabilities. RAM-W, the Risk 
Assessment Methodology for Water developed by Sandia 
National Laboratories in 2000–01 with funding from the 
American Water Works Association Research Foundation 
(AwwaRF) and EPA, was based on a risk assessment 
approach for nuclear facilities and was later expanded to 
apply to buildings, federal dams, prisons, nuclear power 
plants and now water utilities (AwwaRF et al. 2002). 
Other methodologies include VSAT, the Vulnerability 
Self-Assessment Tool developed by the Association of 
Metropolitan Sewerage Agencies for wastewater and 
drinking water systems (AMSA 2003), and SEMS, the 
Security Emergency Management System developed by 
the National Rural Water Association (NRWA 2003).

Staudinger et al. (2006) provide a review of vulnerability 
assessment (VA) methods for small systems, and they 
suggest that standards and minimum requirements should be 

developed. Along these lines, the Department of Homeland 
Security (DHS) has developed the Risk Assessment Model 
for Critical Asset Protection (RAMCAP). RAMCAP 
allows the risk of a specific asset to be compared to the 
risk of assets from different critical infrastructure sectors, 
e.g., communications or energy. The goal of the process 
is to identify national assets that deserve more thorough 
assessment of risk. The water sector is working with DHS 
to ensure that water vulnerability assessment tools are 
“RAMCAP compliant,” meaning that the results can be used 
in RAMCAP rankings (U.S. DHS et al. 2007).

Most VA tools are based on the following six common 
elements: (1) characterization of the water system’s mission, 
objectives, facilities, and operations; (2) identification of 
potential adverse consequences and prioritization of the 
water quality, public health, and economic impacts; (3) 
determination of critical assets; (4) assessment in partnership 
with law enforcement of the likelihood of malevolent acts; 
(5) evaluation of existing countermeasures; and (6) analysis 
of risk and development of a risk reduction plan (U.S. EPA 
2002b). In general, a utility selects a team composed of 
employees, law enforcement and community officials, and 
consultants who share their expertise in order to identify 
collectively the most likely malevolent acts against the utility, 
its most vulnerable assets, and the actions that will optimally 
reduce the risk associated with these assets. The RAMCAP 
framework is a seven-step approach that includes all of the 
above steps with additional threat assessment performed by 
DHS (ASME-ITI 2005).

Need for Distribution System Vulnerability Framework
Drinking water distribution systems are large networks 
of storage tanks, valves, pumps, and pipes that transport 
finished water to customers over vast areas; typically 
hundreds to thousands of miles of pipe. A General 
Accounting Office (GAO) report found that 75% of the 
water experts interviewed believe distribution systems are 
the most vulnerable component of drinking water systems 
(U.S. GAO 2003). Moreover, EPA’s Office of Inspector 
General found that “neither EPA nor the different [VA] 
methodologies adequately emphasized distribution system 
threats as the most susceptible components of water 
systems to include in vulnerability assessments,” (U.S. 
EPA 2003). Thousands of drinking water systems across 
the country have completed vulnerability assessments 
and are using the results to plan security improvements 
to their facilities, but the existing VA methodologies 
lack a thorough analysis of distribution systems.

In particular, none of the VA methodologies adequately 
reflect the vulnerabilities of distribution systems to 
contamination. Contamination of distribution systems might 
occur through intentional terrorist or criminal acts, but could 
also occur accidentally. Many warfare agents have been 
noted as potential drinking water contamination threats 
(Burrows et al. 1999). Accidental human contamination 
of distribution systems with pesticides, toxic industrial 
chemicals, and other materials has been documented (Watts 
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2009). Distribution systems can also be contaminated 
during the course of normal operations; for example, metals, 
organic contaminants, and asbestos in pipe materials and 
linings can leach into the system, and soil and ground 
water contaminants can permeate plastic pipes, (U.S. EPA 
2002a). In addition, persistent or transient pressure loss 
can result in pesticides, insecticides, or other chemicals 
entering the system through accidental backflow incidents, 
and contaminated soil water entering through pipe breaks or 
leaking joints.

An adequate distribution system VA methodology should 
take into account the unique features of distribution systems: 
complicated networks of pipes, pumps, valves, tanks, and 
other physical components, dynamic and complex flows, the 
randomness of demand, and population mobility (Clark et 
al. 2001). Moreover, because of the uncertainties involved 
in predicting the characteristics of a contamination event 
and its consequences, a VA methodology should allow for 
a probabilistic assessment of potential public health and 

economic consequences. All these characteristics require the 
dynamic and probabilistic modeling of the vulnerability of 
distribution systems.

The Threat Ensemble Vulnerability Assessment 
Framework
To meet this need, EPA and its collaborators at Sandia 
National Laboratories, Argonne National Laboratory, and 
the University of Cincinnati developed a probabilistic 
framework for analyzing the vulnerability of drinking water 
distribution systems called Threat Ensemble Vulnerability 
Assessment (TEVA). Figure 1-1 outlines the major modules 
of the framework: the simulation of contamination incidents, 
the assessment of potential consequences of those incidents, 
and the design and evaluation of threat mitigation strategies. 
Together, these modules allow one to develop an integrated 
view of the vulnerability of a distribution system to a wide 
variety of contamination threats, and the potential to decrease 
this vulnerability through a set of mitigation strategies.

Figure 1-1. Threat Ensemble Vulnerability Assessment (TEVA) framework.
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Table 1-1. How TEVA supports the six basic vulnerability assessment elements.

VA Basic Element TEVA Element
Characterize water system Simulation of Incidents (development of EPANET network model)

Identify and prioritize adverse impacts Simulation of Incidents 
Consequence Assessment

Identify critical assets Consequence Assessment

Assess likelihood of adverse impacts Simulation of Incidents

Evaluation of existing countermeasures Threat Mitigation Analysis

Develop risk reduction plan or actions Threat Mitigation Analysis

Without specific intelligence information, one cannot predict 
exactly how terrorist groups might sabotage a water system. 
Therefore, the TEVA framework is based on a probabilistic 
analysis of a large number of likely contamination incidents. 
Although the number of possible variations on terrorist 
attacks is nearly infinite, by selecting a “large enough” set 
of likely incidents, the expected impacts of contamination 
incidents can be assessed. A single contamination incident 
can be defined by the type of contaminant, the amount and 
concentration of the contaminant, the location of the injection 
into the distribution system, and the start and stop time of 
the injection. A threat ensemble, then, is a large collection 
of distinct incidents. In the TEVA framework (as well as in 
previous work by Ostfeld et al. 2004), the vulnerability of a 
water system is based on an assessment of the entire threat 
ensemble. TEVA fits into the general VA structure as shown 
in Table 1-1.

Drinking Water Contamination Warning 
Systems
Research on methods to mitigate the impacts of 
contamination incidents have converged over the last  
several years on the concept of a contamination warning 
system (CWS). 

CWSs have been proposed as a promising approach for the 
early detection and management of contamination incidents 
in drinking water distribution systems (ASCE 2004; AWWA 
2005; U.S. EPA 2005a). EPA is piloting CWSs through the 
Office of Water’s Water Security (WS) Initiative, formerly 
called WaterSentinel, at a series of drinking water utilities.

The key to an effective response to a water contamination 
incident is minimizing the time between detection of a 
contamination incident and implementation of effective 
response actions that mitigate further consequences. 
Implementation of a robust CWS can achieve this 
objective by providing an earlier indication of a potential 
contamination incident than would be possible in the absence 
of a CWS. A CWS is a proactive approach that uses advanced 
monitoring technologies and enhanced surveillance activities 
to collect, integrate, analyze, and communicate information 
that provides a timely warning of potential contamination 
incidents.

The WS Initiative promotes a comprehensive CWS that 
is theoretically capable of detecting a wide range of 
contaminants, covering a large spatial area of the distribution 

system, and providing early detection in time to mitigate 
impacts (U.S. EPA 2005c). Components of the WS Initiative 
include:

• Online water quality monitoring. Continuous online 
monitors for water quality parameters, such as chlorine 
residual, total organic carbon, electrical conductivity, 
pH, temperature, oxidation reduction potential, and 
turbidity help to establish expected baselines for 
these parameters in a given distribution system. 
Event detection systems, such as CANARY (Hart et 
al. 2007), can be used to detect anomalous changes 
from the baseline to provide an indication of potential 
contamination. Other monitoring technologies can be 
used as well, such as contaminant-specific monitors, 
although the goal is to detect a wide range of possible 
contaminants.

• Consumer complaint surveillance. Consumer 
complaints regarding unusual taste, odor, or appearance 
of the water are often reported to water utilities, 
which track the reports as well as steps taken by the 
utility to address these water quality problems. The 
WS Initiative is developing a process to automate the 
compilation and tracking of information provided by 
consumers. Unusual trends that might be indicative of 
a contamination incident can be rapidly identified using 
this approach.

• Public health surveillance. Syndromic surveillance 
conducted by the public health sector, including 
information such as unusual trends in over-the-counter 
sales of medication, as well as reports from emergency 
medical service logs, 911 call centers, and poison 
control hotlines might serve as a warning of a potential 
drinking water contamination incident. Information 
from these sources can be integrated into a CWS by 
developing a reliable and automated link between the 
public health sector and drinking water utilities.

• Enhanced security monitoring. Security breaches, 
witness accounts, and notifications by perpetrators, 
news media, or law enforcement can be monitored and 
documented through enhanced security practices. This 
component has the potential to detect a tampering event 
in progress, potentially preventing the introduction of a 
harmful contaminant into the drinking water system.
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• Routine sampling and analysis. Water samples can 
be collected at a predetermined frequency and analyzed 
to establish a baseline of contaminants of concern. 
This will provide a baseline for comparison during the 
response to detection of a contamination incident. In 
addition, this component requires continual testing of 
the laboratory staff and procedures so that everyone is 
ready to respond to an actual incident.

A CWS is not merely a collection of monitors and equipment 
placed throughout a water system to alert of intrusion or 
contamination. Fundamentally, it is information acquisition 
and management. Different information streams must be 
captured, managed, analyzed, and interpreted in time to 
recognize potential contamination incidents and mitigate 
the impacts. Each of these information streams can 
independently provide some value in terms of timely initial 
detection. However, when these streams are integrated and 
used to evaluate a potential contamination incident, the 
credibility of the incident can be established more quickly 
and reliably than if any of the information streams were 
used alone. The primary purpose of a CWS is to detect 
contamination incidents, and implementation of a CWS is 
expected to result in dual-use benefits that will help to ensure 
its sustainability within a utility.

Many utilities are currently implementing some monitoring 
and surveillance activities, yet these activities are either 
lacking critical components or have not been integrated in a 
manner sufficient to meet the primary objectives of a CWS 
— timely detection of a contamination incident. For example, 
although many utilities currently track consumer complaint 
calls, a CWS requires a robust spatially-based system that, 
when integrated with data from public health surveillance, 
online water quality monitoring, and enhanced security 
monitoring, will provide specific, reliable, and timely 
information for decision makers to establish credibility and 
respond in an effective manner. Beyond each individual 
component of the CWS, coordination between the utility, the 
public health agency, local officials, law enforcement, and 
emergency responders, among others, is needed to develop 
an effective consequence management plan that ensures 
appropriate actions will occur in response to detection by 
different components. Critical to timely response is an 
advanced and integrated laboratory infrastructure to support 
baseline monitoring and analysis of samples collected in 
response to initial detections. In the absence of a reliable 
and sustainable CWS, a utility’s ability to respond to 
contamination incidents in a timely and appropriate manner is 
limited. Still, the challenge in applying a CWS is to reliably 
integrate the multiple streams of data in order to decide if a 
contamination incident has occurred.

Sensor Network Design Research and 
Application
The overall goal of a CWS is to detect contamination 
incidents in time to reduce potential public health and 
economic consequences. The locations of online sensors can 
be optimized to help achieve these goals as well as other 

objectives — for example, minimizing public exposure to 
contaminants, the spatial extent of contamination, detection 
time, or costs. These objectives are often at odds with each 
other, making it difficult to identify a single best sensor 
network design. In addition, there are many practical 
constraints and costs faced by water utilities. Consequently, 
designing a CWS is not a matter of performing a single 
optimization analysis. Instead, the design process is truly 
a multi-objective problem that requires informed decision 
making, using optimization tools to identify possible sensor 
network designs that work well under different assumptions 
and for different objectives. Water utilities must weigh the 
costs and benefits of different designs and understand the 
significant public health and cost tradeoffs.

There has been a large volume of research on techniques for 
sensor placement in the last several years, including a Battle 
of the Water Sensor Networks that compared 15 different 
approaches to this problem (Ostfeld et al. 2008). For a review 
of the large body of sensor placement research for water 
security, see Appendix A. Sensor placement strategies can 
be broadly characterized by the technical approach and the 
type of computational model used. The following categories 
reflect important differences in proposed sensor placement 
strategies:

• Expert Opinion: Although expertise with water 
distribution systems is always needed to design an 
effective CWS, here we refer to approaches that are 
solely guided by expert judgment. For example, Berry 
et al. (2005a) and Trachtman (2006) consider sensor 
placements developed by experts with significant 
knowledge of water distribution systems. These 
experts did not use computational models to carefully 
analyze network dynamics. Instead, they used their 
experience to identify locations whose water quality is 
representative of water throughout the network.

• Ranking Methods: A related approach is to use 
preference information to rank network locations 
(Bahadur et al. 2003; Ghimire et al. 2006). In this 
approach, a user provides preference values for the 
properties of a “desirable’’ sensor location, such as 
proximity to critical facilities. These preferences can 
then be used to rank the desirability of sensor locations 
throughout the network. Further, spatial information can 
be integrated to ensure good coverage of the network.

• Optimization: Sensor placement can be automated 
with optimization methods that computationally search 
for a sensor configuration that minimizes contamination 
risks. Optimization methods use a computational model 
to estimate the performance of a sensor configuration. 
For example, a model might compute the expected 
impact of an ensemble of contamination incidents, given 
sensors placed at strategic locations. See Appendix A 
for further discussion on sensor placement optimization 
literature.

This report focuses on the use of optimization to select sensor 
locations for a CWS. However, designing a CWS is not a 
matter of performing a single sensor placement analysis; 
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there are many factors that need to be considered when 
performing sensor placement, including utility response, 
the relevant design objectives, sensor behavior, practical 
constraints and costs, and expert knowledge of the water 
distribution system. In many cases, these factors can be 
at odds with one another (e.g., competing performance 
objectives), which makes it difficult to identify a single best 
sensor network design.

The TEVA Research Team has developed a decision-
making process for CWS design that is composed of a 
modeling process and a decision-making process that 
employs optimization (Murray et al. 2008b). This modeling 
process includes creating or utilizing an existing network 
model for hydraulic and water quality analysis, describing 
sensor characteristics, defining the contamination threats, 
selecting performance measures, estimating utility response 
times following detection of contamination incidents, and 
identifying a set of potential sensor locations. The decision-
making process involves applying an optimization method 

and evaluating sensor placements. The process is informed 
by analyzing tradeoffs and comparing a series of designs to 
account for modeling and data uncertainties. The subsequent 
chapters of this report discuss this process in detail and 
illustrate sensor placement optimization using the TEVA-
SPOT Toolkit (Berry et al. 2008b).

The TEVA-SPOT Software
The TEVA-SPOT software is an application of the TEVA 
framework. The software consists of three main software 
modules that follow the diagram that was shown in 
Figure 1-1, and more specifically, in Figure 1-2. The 
first software module simulates the set of incidents in the 
threat ensemble. The second software module calculates 
the potential consequences of the contamination incidents 
contained in the threat ensemble. The third software module 
optimizes for sensor placement. The software is described 
in more detail in Chapters 6 and 7 of this report, and briefly 
summarized here

Figure 1-2. Data flow diagram for the TEVA-SPOT software.
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Consequence assessment. Given a utility network model, 
and the set of parameter values determined in the modeling 
process, TEVA-SPOT calculates the consequences of each 
contamination incident in the design basis threat. The design 
basis threat is the set of incidents that the sensor network is 
designed to detect. The consequences are estimated in terms 
of one or more of the performance objectives, such as the 
number of people made ill or the length of pipe contaminated. 
Typically, TEVA-SPOT considers contamination incidents 
that occur at every node in the network model. TEVA-SPOT 
calculates consequences using EPANET for hydraulic and 
water quality calculations (Rossman 2000) and models for 
estimation of exposure and disease progression (Murray et al. 
2006b).

Optimization. For most utility applications, TEVA-SPOT 
has been used to place sensors in such a way as to minimize 
the mean consequences for a given objective (averaged over 
the ensemble of contamination incidents). Minimizing the 
mean value is equivalent to assuming that each contamination 
incident is equally likely, and therefore all are important to 
consider when selecting a sensor network design. TEVA-
SPOT does allow for user-specified weights that can be used 
to put more weight on locations with a higher likelihood of 
contamination; practically, this information is unlikely to be 
available with any certainty. If the user is most interested in 
protecting against a few catastrophic contamination incidents, 
TEVA-SPOT can also minimize the max-case impacts 
(Watson et al. 2004).

Multi-objective analysis. There are many competing CWS 
design objectives, e.g., the number of people made ill, the 
length of pipe contaminated, or the time to detection. TEVA-
SPOT can only optimize over one objective at a time, but it 
does allow the user to explore tradeoffs between different 
sensor network designs and to find designs that perform well 
for more than one objective with the use of side-constraints 
(see Chapter 7).

Fast, flexible solvers. To allow for the comparison of 
designs based on multiple performance objectives and model 
parameters, TEVA-SPOT needs to be fast and flexible. Fast 
heuristic methods, integer programming heuristics and 
exact solvers are included in the software tool. This enables 
users to choose faster methods while at the same time 
understanding the confidence bounds on the sensor placement 
selected by the method. For most networks, designs can be 
found in seconds to minutes.

Solver scalability. A variety of strategies have been 
developed to ensure that TEVA-SPOT works on large 
networks with tens of thousands of pipes and junctions: 
aggregation of problem constraints, aggregation of 
contamination incidents, and/or specification of a limited 
set of feasible junctions for sensor placement (Hart et al. 
2008b). Further, several of the TEVA-SPOT solvers have 
been modified to limit the memory required on standard 32-
bit workstations. For example, the heuristic solver includes 
options that explicitly tradeoff memory and run-time.

Application. TEVA-SPOT has been used to design 
sensor networks for several medium and large U.S. water 
distribution systems, (Morley et al. 2007). The tool has been 
shown to outperform utility experts in selecting good sensor 
locations, see for example Berry et al. (2005a) and Ostfeld 
et al. (2008).

Availability. The authors have developed two versions of 
TEVA-SPOT: the TEVA-SPOT toolkit, which contains a 
library of functions and command line executables; and the 
TEVA-SPOT User Interface, which includes a graphical 
users’ interface. For more information, see EPA’s website 
(http://www.epa.gov/nhsrc/).

http://www.epa.gov/nhsrc/
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2.
TEVA Decision Framework: Modeling

Designing a CWS is not as simple as performing a single 
optimization analysis. Instead, the design process requires 
informed decision making, using optimization tools to 
identify possible network designs that work well under 
different assumptions and for different objectives. Water 
utilities must weigh the costs and benefits of different 
designs and understand the significant public health and cost 
tradeoffs.

Chapters 2 and 3 of this report describe a decision framework 
for CWS design. This framework uses optimization to 
generate sensor placements that allow water utilities to 
understand the significant public health and cost tradeoffs. 
The first step is to develop a conceptual model of the sensor 
network that identifies all the important characteristics of the 
planned sensor network. To create the conceptual model, one 
needs to know the layout of the distribution system and the 
current operating rules (as given by a utility network model), 
a description of the sensor characteristics, a clearly defined 
design basis threat for the CWS, appropriate performance 
measures for the CWS, an understanding of the planned 
utility response to detection of contamination incidents, and 
the locations where sensor can be located feasibly.

The goal of the modeling process is to accurately describe 
and model the characteristics of the planned CWS. This 
chapter focuses on the data required to complete the sensor 
network design and the decisions a utility will have to make 
prior to the optimization process. Table 2-1 summarizes the 
data and information required; each component is described 
in more detail in the text. By gathering this data and making 

these decisions up front, simulation tools can be used to 
measure how well such a sensor network would perform, 
and optimization methods can be used to find the best sensor 
network design.

Utility Network Model
In order to determine system-specific sensor network designs, 
one needs a utility network model as input to a hydraulic and 
water quality modeling software package (e.g., EPANET). 
Sensor designs are based on minimizing the impacts of 
contamination incidents, which must be calculated using 
a utility network model. Therefore, an acceptable network 
model of the distribution system is needed in order to 
effectively design the sensor system. The following sub-
sections describe the various issues/characteristics of an 
acceptable network model for use in sensor placement 
optimization, and more generally, for most water security 
modeling applications.

Water Distribution System Models
Currently, most sensor placement optimization tools (e.g., 
TEVA-SPOT and PipelineNet) utilize EPANET to simulate 
flow and quality in water distribution systems. EPANET is 
a public domain water distribution system software package 
(Rossman 2000). Although sensor placement optimization 
tools are not dependent on features of EPANET, currently, its 
use requires the conversion of existing utility network models 
to EPANET input files.

Table 2-1. Information and data needed to perform sensor placement optimization.

Information and Data Needed for 
Sensor Placement

Description

Utility Network Model The model (e.g., EPANET input file) should be up-to-date, capable of simulating 
operations for a 3-10 day period, and calibrated with field data

Sensor Characteristics Type of sensors or sampling program, detection limits, and (if applicable) event detection 
system

Design Basis Threat
Data describing type of event that the utility would like to be able to detect: specific 
contaminants, behavior of adversary (quantity of contaminant, injection locations and 
durations), and customer behavior (temporal pattern of water consumption)

Performance Measures Utility specific critical performance criteria, such as time to detection, number of 
illnesses, etc. 

Utility Response Plan for response to a positive sensor reading, including total time required for the utility 
to limit further public exposure

Potential Sensor Locations List of all feasible locations for placing sensors, including associated model node/
junction
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Most commercial software packages utilize the basic 
EPANET calculation engine and contain a conversion tool 
for creating an EPANET input file from the files native to the 
commercial package. The user might encounter two potential 
types of problems when they attempt to make the conversion: 
(1) some commercial packages support component 
representations that are not directly compatible with 
EPANET such as representation of variable speed pumps, 
thus, the representation of these components might need to 
be modified in order to operate properly under EPANET; (2) 
conversion from the commercial software packages might 
also introduce some unintended representations within 
EPANET that could require manual correction. Following 
conversion, the output from the original model should be 
compared with the EPANET model output to ensure that the 
model results are the same or acceptably close (see section 
below on Model Testing).

An alternative to conversion is to use the commercial 
software to simulate contamination incidents and store the 
output in a properly formatted database. For example, as 
shown in Figure 1-2, TEVA-SPOT stores the EPANET 
output in the Threat Ensemble Database, which is then used 
independently by the sensor placement optimizer. Thus, it 
is possible to adapt output from a commercial tool into this 
format (for more details, see the TEVA-SPOT User Manual, 
Berry et al. 2008b).

Extended Period Simulation
In order to support modeling of contamination incidents, 
the network model must be capable of extended period 
simulation (EPS) that represents the system operation over 
a period of several days. Typically, a network model that 
uses rules to control operations (e.g., turn pump A on when 
the water level in tank B drops to a specified level) are more 
resilient and amenable to long duration runs than are those 
that use controls based solely on time clocks. Simulations 
should be performed over a long duration to ensure that tank 
water levels are not systematically increasing or decreasing 
over the course of the run, since that will lead to situations 
that are not sustainable in the real-world.

The required length of simulation depends on the size and 
operation of the specific water system. However, in general, 
the length of the simulation should be as long as the longest 
travel times from sources to customer nodes. This can be 
calculated by simulating water age. In determining the 
required simulation length, small dead-ends (especially 
those with no-demand nodes) can be ignored. Typically 
a run length of 7 to 10 days is required for contamination 
simulations, though shorter periods could suffice for smaller 
systems and longer run times might be required for larger or 
more complex systems.

Seasonal Models
In most cases, water security incidents can take place at 
any time of the day or any season of the year. As a result, 
sensor systems should be designed to operate during more 
than one representative time period in the water system. 

It should be noted that this differs significantly from the 
normal design criteria for a water system where pipes are 
sized to accommodate water usage during peak seasons or 
during unusual events such as fires. In many cases, the only 
available network models are representative of these extreme 
cases. Generally, modifications should be made to reflect a 
broader time period prior to sensor placement optimization. 
Suggestions for model selection are provided below:

• Optimal situation: The utility has multiple network 
models representing common operating conditions 
throughout the year, such as a typical high demand case 
(e.g., average summer day) and a typical low demand 
case (e.g., average winter day).

• Minimal situation: The utility has a single network 
model representing relatively “average” conditions 
throughout the year.

• Situations to avoid: The utility has a single network 
model representing an extreme case (e.g., maximum 
day model).

• Exceptions: (1) If a sensor system is being designed to 
primarily monitor a water system during a specific event 
such as a major annual festival, then one of the models 
should reflect conditions during that event; and (2) if 
the water system experiences little variation in water 
demand and water system operation over the course of 
the year, then a single representative network model 
would suffice.

Network Model Detail
A sufficient amount of detail should be represented in the 
network model to allow for the effective characterization 
of contaminant flow. This does not mean that an all-pipes 
network model is required nor does it mean that a network 
model with only transmission lines would suffice. At a 
minimum, all parts of the water system that are considered 
critical from a security standpoint should be included in 
the model, even if they are on the periphery of the system. 
The following guidance drawn from the Initial Distribution 
System Evaluation (IDSE) Guidance Manual of the Final 
Stage 2 Disinfectants and Disinfection Byproducts Rule 
provides a reasonable lower limit for the level of detail 
required (U.S. EPA 2006b).

Most distribution system models do not include every pipe 
in a distribution system. Typically, small pipes near the 
periphery of the system and other pipes that affect relatively 
few customers are excluded to a greater or lesser extent 
depending on the intended use of the model. This process is 
called skeletonization. Models including only transmission 
networks (e.g., pipes larger than 12 inches in diameter only) 
are highly skeletonized; models including smaller diameter 
distribution mains (e.g., 4 to 6 inches in diameter) are less 
skeletonized. In general, water moves quickly through 
larger transmission piping and slower through the smaller 
distribution mains. Therefore, the simulation of water age or 
water quality requires that the smaller mains be included in 
the model to fully capture the residence time and potential 
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water quality degradation between the treatment plant and 
the customer. Minimum requirements for physical system 
modeling data for the IDSE process are listed below.

• At least 50 percent of total pipe length in the 
distribution system.

• At least 75 percent of the pipe volume 
in the distribution system.

• All 12-inch diameter and larger pipes.

• All 8-inch diameter and larger pipes that connect 
pressure zones, mixing zones from different sources, 
storage facilities, major demand areas, pumps, 
and control valves, or are known or expected to be 
significant conveyors of water.

• All 6-inch diameter and larger pipes that connect remote 
areas of a distribution system to the main portion of 
the system or are known or expected to be significant 
conveyors of water.

• All storage facilities, with controls or settings applied to 
govern the open/closed status of the facility that reflects 
standard operations.

• All active pump stations, with realistic controls or 
settings applied to govern their on/off status that reflects 
standard operations.

• All active control valves or other system 
features that could significantly affect the flow 
of water through the distribution system (e.g., 
interconnections with other systems, pressure 
reducing valves between pressure zones).

Network Model Demand Patterns
The movement of water through a distribution system is 
largely driven by water demands (consumption) throughout 
the system. During higher demand periods, flows and 
velocities generally increase and vice versa. Demands are 
usually represented in a network model by daily averaged 
or typical demands at most nodes with (a) global or regional 
demand multipliers applied to all nodes to represent periods 
of higher or lower demand, and (b) temporal demand patterns 
to define how the demands vary over the course of a day.

Ideally, the demand at each node would be calculated based 
on recent billing data. However, in some network models, 
demands across a large area have been aggregated and 
assigned to a central node. When building a model, each 
demand should be assigned to the node that is nearest to 
the actual point of use, rather than aggregating the demands 
and assigning them to only a few nodes. Both EPANET and 
most commercial software products allow the user to assign 
multiple demands to a node with different demands assigned 
to different diurnal patterns. For example, part of the demand 
at a node could represent residential demand and utilize a 
pattern representative of residential demand. Another portion 
of the demand at the same node could represent commercial 
usage and be assigned to a representative commercial diurnal 
water use pattern.

Network Model Calibration/Validation
Calibration is the process of adjusting network model 
parameters so that simulated outputs generally reflect the 
true behavior of the system. Validation is the next step after 
calibration, in which the calibrated model is compared to 
independent data sets (i.e., data that was not used in the 
calibration phase) in order to ensure that the same model is 
valid over a wide range of conditions. There are no formal 
standards in the water industry governing how closely the 
simulated results need to match field results, nor is there 
formal guidance on the amount of field data that must be 
collected. Calibration methods that are frequently used 
include roughness (c-factor) tests, hydrant flow tests, and 
tracer tests. Simulation results for pressure, flow and tank 
water levels are compared to field data collected from 
SCADA systems or special purpose data collection efforts.

The IDSE Guidance Manual stipulates the following 
minimum criteria in order to demonstrate calibration: “The 
model must be calibrated in extended period simulation for 
at least a 24-hour period. Because storage facilities have 
such a significant impact upon water age and reliability of 
water age predictions throughout the distribution system, 
you must compare and evaluate the model predictions versus 
the actual water levels of all storage facilities in the system 
to meet calibration requirements.” Thus, the water utility 
should calibrate the network model so that it is confident that 
the network model adequately reflects the actual behavior of 
the water system. Some general guidelines for calibration/
validation are shown below:

• If the model has been actively in operation for several 
years and has been applied successfully in a variety 
of extended period simulation situations, then further 
substantial calibration might not be necessary. However, 
even in this case, it is prudent to demonstrate the 
validity of the model by comparing simulations to field 
measurements such as time-varying tank water levels 
and/or field pressure measurements.

• If the model has been used primarily for steady 
state applications, then further calibration/validation 
emphasizing extended period simulation is needed.

• If the model has been recently developed and not 
undergone significant application, then a formal 
calibration/validation process is needed.

Network Model Tanks
Most water distribution system models use a “complete 
mixing” tank representation that assumes that tanks are 
completely and instantaneously mixed. EPANET (and most 
commercial modeling software models) allow for alternative 
mixing models such as last in-first out (LIFO), first in-first 
out (FIFO), and compartment models. If a utility has not 
previously performed water quality modeling, they might 
not have determined the most appropriate tank mixing 
model for each tank. Since the tank mixing model can affect 
simulations of the fate and transport of contaminants, and 
thus the sensor placement decisions, tank mixing models 
should be specified correctly in the network model.
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Network Model Testing
The final step in preparing the model is to put it through a 
series of candidate tests. Following is a list of potential tests 
that should be considered.

If the model was developed and applied using a software 
package other than EPANET, then following its conversion to 
EPANET, the original network model and the new EPANET 
network model should be run in parallel under EPS and the 
results compared. Both simulations should give virtually the 
same or similar results. Comparisons should include tank 
water levels and flows in major pipes, pumps and valves 
over the entire time period of the simulation. If there are 
significant differences between the results, then the EPANET 
network model should be modified to better reflect the 
original network model or differences should be explained 
and justified.

The EPANET network model should be run over an 
extended period (typically 1 to 2 weeks) to test for 
sustainability. In a sustainable model, tank water levels 
cycle over a reasonable range and do not display any 
systematic drops or increases. Thus, the range of calculated 
minimum and maximum water levels in all tanks should 
be approximately the same in the last few days of the 
simulation as they were in the first few days. Typically, a 
sustainable model will display results that are in a dynamic 
equilibrium in which temporal tank water level and flow 
patterns will repeat themselves on a periodic basis.

If the water system has multiple sources, then the source 
tracing feature in EPANET should be used to test the 
movement of water from each source. In most multiple 
source systems, operators generally have a good idea as to 
how far the water from each source travels. The simulation 
results should be shown to the knowledgeable operators 
to ensure that the model is operating in a manner that is 
compatible with their understanding of the system.

In order to determine travel times, the network model 
should be run for a period of 1 to 2 weeks using the water 
age option in EPANET. Since the water age in tanks is not 
usually known before modeling, a best guess (not zero) 
should be used to set an initial water age for each tank. 
Then after the long simulation, a graph of calculated water 
age should be examined for each tank to ensure that it has 
reached a dynamic equilibrium and is still not increasing or 
decreasing. If the water age is still systematically increasing 
or decreasing, then the plot of age for each tank should be 
visually extrapolated to estimate an approximate final age 
and that value should be reinserted in the model as an initial 
age, and the model rerun for the extended period. Water age 
should be investigated for reasonableness. For example, are 
there areas where water age seems unreasonably high? This 
exercise will also help to define a reasonable upper limit for 
the simulation duration.

Following these test runs, any identified modifications should 
be made in the network model to ensure that it runs properly. 
Many utilities will not be able to make all of the above 

described modifications to their network model. In that case, 
sensor placement optimization can still be applied; however 
the overall accuracy of the results will be questionable 
and should only be considered applicable to the system as 
described by the network model.

Sensor Characteristics
In addition to a network model, other input data are needed 
to run sensor placement optimization tools. Characterization 
of sensor behavior is required to predict the performance of 
a CWS; in particular, the sensor type, detection limit, and 
accuracy need to be specified. For example, the analysis can 
specify a contaminant-specific detection limit that reflects the 
ability of the water quality sensors to detect the contaminant. 
Alternatively, the analysis can assume perfect sensors that 
are capable of detecting all non-zero concentrations of 
contaminants with 100% reliability. The latter assumption, 
though not realistic, provides an upper bound on realistic 
sensor performance. A slightly more realistic modeling 
assumption is to assume a detection limit for sensors: the 
sensor is 100% reliable above a specified concentration, but, 
below that concentration the sensor always fails to detect the 
contaminant.

In order to quantify detection limits for water quality 
sensors, one must indicate the type of water quality sensor 
being used, as well as the disinfection method used in the 
system. Generally, water quality sensors are more sensitive 
to contaminants introduced into water disinfected with 
chlorine than chloramines. As a result, contaminant detection 
limits might need to be increased in the design of a sensor 
network for a chloraminated system; and, in particular, 
chlorine residual might not be an effective parameter for 
chloraminated systems.

Ongoing pilot studies for EPA’s Water Security Initiative use 
a platform of water quality sensors, including free chlorine 
residual, total organic carbon (TOC), pH, conductivity, 
oxidation reduction potential (ORP), and turbidity (U.S. EPA 
2005c). The correlation between contaminant concentration 
and the change in these water quality parameters can be 
estimated from experimental data, such as pipe loop studies 
(Hall et al. 2007; U.S. EPA 2005b). Of these parameters, 
chlorine residual and TOC seem to be most likely to respond 
to a wide range of contaminants.

Detection limits for water quality sensors can be defined in 
terms of the concentration which would change one or more 
water quality parameters enough to be detected by a water 
utility operator or an event detection system (e.g., Cook et al. 
2005; McKenna et al. 2006; McKenna et al. 2008). A utility 
operator might be able to recognize a possible contamination 
incident if a change in water quality is significant and rapid. 
For example, if the chlorine residual decreased by 1 mg/L, 
the conductivity increased by 150 µSm/cm, or TOC increased 
by 1 mg/L.

It is possible to represent the accuracy of sensors in terms 
of the likelihood of sensor failure. For example, Berry et al. 
(2009) explored sensor placement for sensors with known 
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false negative and false positive rates. These rates might 
also be parameterized by concentration level. However, such 
assumptions make the sensor placement problem significantly 
harder to solve on desktop computers.

The Design Basis Threat 
A design basis threat identifies the type of threat that a water 
utility seeks to protect against when designing a CWS. In 
general, a CWS is designed to protect against contamination 
threats; however, there are a large number of potentially 
harmful contaminants and a myriad of ways in which a 
contaminant can be introduced into a distribution system. 
Some water systems might wish to design a system that can 
detect not only high impact incidents, but also low impact 
incidents that might be caused by accidental backflow or 
cross-connections. It is critical to agree upon the most 
appropriate design basis threat before completing the sensor 
network design.

Contamination incidents are specified by a specific 
contaminant(s), the quantity of contaminant, the location(s) 
at which the contaminant is introduced into the water 
distribution system, the time of day of the introduction, and 
the duration of the contaminant introduction. Given that it is 
difficult to predict the behavior of adversaries, it is unlikely 
that anyone will know, with any reasonable level of certainty, 
the specific contamination threats one might face. Most of 
these parameter values cannot be known precisely prior to 
an incident; therefore, the modeling process must take this 
uncertainty into account.

For example, probabilities can be assigned to each location 
in a distribution system indicating the likelihood that the 
contaminant would be introduced at that location. The 
default assumption is that each location is equally likely to 
be selected by an adversary (each has the same probability 
assigned to it). A large number of contamination incidents (an 
ensemble of incidents) are then simulated and sensor network 
designs are selected based on how well they perform for the 
entire set of incidents.

Performance Measures for CWS
A sensor network design can be selected that best minimizes 
one of the following performance objectives, as estimated 
through modeling and simulation:

• the number of people who become ill from exposure to 
a contaminant

• the percentage of incidents detected

• the time to detection

• the length of pipe contaminated

Other objectives such as the costs of a CWS or the economic 
impacts to a water system could be considered as well. In 
order to quantify these objectives, a set of contamination 
incidents (an ensemble defined by the design basis threat) 
must be simulated.

Public health and economic impacts are contaminant-
specific. Contaminants behave differently in water 
distribution systems: some can be modeled as tracers, but 
other contaminants might react with disinfectant residuals, 
attach to biofilms, or adsorb to pipe walls. These cases 
require more sophisticated models (Shang et al. 2008). 
Human health impacts are also contaminant-specific, and 
require assumptions about human consumption patterns: for 
example, estimates of the spatial and temporal distribution 
of the people that have been exposed; calculations of 
the number of people that might become ill according to 
contaminant-specific dose-response curves; and predictions 
of the time evolution of health impacts (Murray et al. 2006b).

It is also possible to consider multiple objectives in a sensor 
network design analysis. If one has several priorities in the 
area of performance measures, these can be accounted for by 
assigning the relative importance (weight) to each measure. 
In addition, one might have non-security related objectives 
that could also be considered. For example, one might wish 
to co-locate sensors with current monitoring stations that are 
in place to meet regulatory requirements.

Utility Response to Detection of Contamination 
Incidents
In designing the WS Initiative, EPA has said that “the key 
to an effective response to a water contamination threat is 
minimizing the time between indication of a contamination 
incident and implementation of effective response actions 
to minimize further consequences,” (U.S. EPA 2005a). 
Modeling the human response to the detection of a 
contamination incident is difficult because of the site-specific 
logistics of response and because of uncertainty in the 
confidence attributed to detection of contamination incidents.

The following response activities are likely following 
detection of potential contamination incidents (Bristow et al. 
2006; U.S. EPA 2004):

• Credibility determination: Integrating data to improve 
confidence in detection; for example, by looking for 
confirmation from other sensor stations, or detection 
by a different monitoring strategy, and checking sensor 
maintenance records.

• Verification of contaminant presence: Collection of 
water samples in the field, field tests and/or laboratory 
analysis to screen for potential contaminants.

• Public warning: Communication of public 
health notices to prevent further exposure to 
contaminated water.
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• Utility mitigation: Implementing appropriate utility 
actions to reduce the likelihood of further exposure, 
such as isolation of contaminated water in the 
distribution system or other hydraulic control options.

• Medical mitigation: Public health actions to reduce 
the impacts of exposure, such as providing medical 
treatment and/or vaccination.

Computational models of CWS performance typically 
make the assumption that there is a response time after 
which contaminants are no longer consumed or propagated 
through the network. Response time is the time between 
initial detection of an incident and effective warning of the 
population. The response time, then, is the sum of the time 
required to implement various activities, and is typically 
considered to be between 0 and 48 hours. A zero-hour 
response time is obviously infeasible but can be considered 
the best-case scenario, which reflects the upper bound 
on sensor network performance. Water utilities should 
assess their own emergency response procedures and their 
acceptable risk tolerance in terms of false negative and false 
positive responses in order to define a range of response 
times to be used in the network design analysis.

Potential Sensor Locations
The primary physical requirements for locating sensors at 
a particular location are accessibility, electricity, physical 
security, data transmission capability, sewage drains, and 
temperatures within the manufacturer specified range for the 
instrumentation (ASCE 2004). Accessibility is the amount of 
space required for installation and maintenance of the sensor 
stations. Electricity is necessary to power sensors, automated 
sampling devices, and computerized equipment. Physical 
security protects the sensors from natural elements and 
vandalism or theft. Data transmission sends sensor signals 
to a centralized SCADA database via wireless cellular, 
radio, land-line, or fiber-optic cables. Sewage drains are 

required to dispose of water and reagents from some sensors. 
Temperature controls might be needed to avoid freezing or 
heat damage.

Most drinking water utilities can identify many locations that 
satisfy the above requirements, such as pumping stations, 
tanks, valve stations, or other utility-owned infrastructure. 
Many additional locations might meet the above 
requirements for sensor locations or could be easily and 
inexpensively adapted. Other utility services, such as sewage 
systems, own sites that likely meet most of the requirements 
for sensor locations (e.g., collection stations, wastewater 
treatment facilities, etc.). In addition, many publicly-owned 
sites could be easily adapted, such as fire and police stations, 
schools, city and/or county buildings, etc. Finally, many 
consumer service connections would also meet many of the 
requirements for sensor placement, although there could be 
difficulties in securing access to private homes or businesses. 
Nevertheless, the benefit of using these locations might be 
worth the added cost. Compliance monitoring locations could 
also be feasible sites.

The longer the list of feasible sensor sites, the more likely 
one is to design a high-performing CWS. With that said, 
the authors’ experience with water utilities suggests that 
for various reasons, some locations truly are infeasible. 
Therefore, the authors typically restrict the sensor placement 
analysis to three sets of feasible locations: all locations 
(represented by the nodes in a network model), all public-
owned facilities, and all utility-owned facilities. These lists 
can be further refined by field verification of sites to ensure 
that sites meet all of the requirements discussed here. Finally, 
it is important to note that field verification is needed after 
selection of sites in order to verify that the hydraulics at the 
site match the hydraulics simulated in the network model. 
Some models might not be detailed enough to show service 
connections and thus field verification is needed to show that 
the sensor can be installed on the correct line.
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3.
TEVA Decision Framework: Decision Process

This chapter describes the second part of a decision 
framework for CWS design (Murray et al. 2008b). This 
decision framework is composed of a modeling process 
and a decision-making process. The modeling process is 
described in Chapter 2, and its goal is to accurately describe 
in a conceptual model the characteristics of the planned 
CWS. The decision process is an incremental approach for 
applying optimizers in order to generate a sequence of sensor 
network designs, the merits of which are then compared 
and contrasted. The ultimate goal is to enable utilities to 
understand the significant public health and cost tradeoffs 
between designs, and to ultimately select the one that best 
meets the goals of the utility.

Optimization methods can be used to determine sensor 
network designs for water distribution systems. However, 
there are a series of questions that must be answered prior 
to the optimization regarding the type of sensors, the design 
basis threat, and the utility response time. Thus, there is 
uncertainty associated with these utility decisions and their 
impact on the final CWS design.

The decision process begins by finding a sensor placement 
under ideal conditions and simplifying assumptions. 
The assumptions are then removed one by one in order 
to make the results more realistic. At each iteration, the 
performance of the given sensor network design is compared 
quantitatively and visually with previous designs in order 
to understand what has been gained or lost with each 
assumption.

This process is illustrated and discussed in this chapter with 
an analysis of an example water distribution system shown 
in Figure 3-1: EPANET Example 3. This example network 
is supplied by two surface water sources — a lake provides 
water for the first part of the day and a river for the remainder 
of the day. Example 3 has 3 tanks, 2 pumps, and serves 
approximately 79,000 people (assuming a usage rate of 200 
gallons per person per day). This simple example is used to 
illustrate the decision process, but this same approach has 
been applied to larger networks serving up to several million 
customers (see for example, Murray et al. 2008b).

Figure 3-1. Map of the network model used for the sensor placement analysis. The system is 
served by both a river and a lake. The colors of the nodes indicate the relative base demand 
and the colors of the pipes indicate the bulk flow rates.



16

A Preliminary Sensor Network Design
A preliminary sensor network design is generated using the 
TEVA-SPOT optimization software to illustrate the steps 
involved. First modeling decisions must be made.

Modeling Information
Assume that the following information was collected by 
the water utility during the modeling process for this CWS 
design application:

• Utility Network Model. EPANET Example 3 network 
is used for sensor placement analysis in this chapter. 
This network has 92 junctions, 2 reservoirs, 3 tanks, 117 
pipes, and 2 pumps. The sources include a river and a 
lake which provides water to the system for 14 hours a 
day. The average residence time in the network is 13.5 
hours, while the maximum residence time is 130 hours. 
Assuming a typical usage rate of 200 gallons per person 
per day, the population served is 78,823 people. This 
model simulates seven days of flow.

• Sensor Characteristics. The sensor stations are multiple 
parameter water quality sensor stations (modeled with 
contaminant-specific detection limits that reflect the 
ability of water quality sensors to detect the chemical 
contaminant). The sensors are assumed to perform with 
100% accuracy (i.e., no failures).

• Design Basis Threat. The design basis threat is the 
scenario in which a large quantity of a highly toxic 
chemical contaminant is injected over a 1-hour period 
starting at midnight with a rate of 17,333 mg/min. The 
location of the attack is not known, so every location 
in the model is considered a possible source. Thus, 
92 nodes were considered potential points of entry, 
resulting in a total of 92 contamination incidents in the 
design basis threat.

• Performance Measures. Public health impacts that 
might result from a contamination incident are the 
highest priority and therefore the performance measure 
selected is the number of people who become ill from 
exposure to a contaminant (hereafter, referred to as PE).

• Utility Response. It is assumed that it would take two 
hours for the utility to respond effectively to a positive 
detection, eliminating further exposures. Note that two 
hours is quite optimistic and more realistic response 
times could vary from 6 to 24 hours.

• Potential Sensor Locations. It is assumed that there are 
20 locations that are feasible sites for locating sensors, 
made up of public and utility-owned facilities. These 
locations are specified by nodes 208, 209, 1, 169, 143, 
231, 219, 101, 184, 127, 275, 129, 125, 145, 237, 20, 
183, 601, 271, and 189.

• Number of Sensor Locations. Three sensor locations 
will be selected.

Quantifying the Potential Consequences 
A variety of impact measures are used to compare and 
contrast sensor network designs in this example. PE is the 
number of people sickened due to the exposure, EC is the 
number of pipe feet contaminated, MC and VC are the mass 
of contaminant and volume of contaminated water removed 
from the system by consumer demand, TD is the time of 
detection, and NFD is the number of failed detections (shown 
here as a percentage).

Figure 3-2 shows the distribution of public health impacts 
for the set of chemical incidents. It was assumed that there 
were no sensors in the system to detect the contaminants 
and that the public health system or the water utility had 
taken no actions to reduce the impacts. For each of the 92 
incidents that were simulated, the public health impacts were 
calculated. The majority of contamination incidents result 
in less than 5% of the population being impacted but there 
were four incidents that impacted more than 20,000 people. 
Over all the 92 incidents, on average 6,444 people would 
become ill (or 8% of the population), with a median of 4,041 
people, and a maximum of 21,244 people. Node 203 serves 
more than 32,000 people; injections at this or at one of the 
nearby nodes (201, 199, and 173) impacted a large number 
of people. Similarly, the average length of pipe contaminated 
was 9.6 miles (50,527 feet), with a median of 6.6 miles, and a 
maximum of 38 miles (see Table 3-1).

The mean values can be interpreted in the following way: if 
one randomly selected a location from which to introduce 
the chemical contaminant, one could expect that 6,444 
people would become ill and 9.6 miles of pipe would be 
contaminated.
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Figure 3-2. Histogram of public health impacts resulting from the chemical threat ensemble 
in the absence of a CWS (i.e., no sensors). The x-axis is the number of people made ill after 
exposure to the chemical. The left y-axis is the number of incidents resulting in that number 
of illnesses. The right y-axis is the cumulative percentage of incidents resulting in less than 
the given number of illnesses. Note that 34 of the 92 incidents resulted in less than 3,000 
illnesses.
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Table 3-1. Summary of impact statistics resulting from the chemical scenario (in the absence of a CWS). For each 
impact measure, this table shows the mean impact, as well as various percentiles of the distribution of impacts 
for all simulated incidents. PE is the number of people sickened after exposure, EC is the number of pipe feet 
contaminated, and MC and VC are the mass of contaminant and volume of contaminated water removed from the 
system by consumer demand.

Performance Measure/Statistic Mean 25th 50th (median) 75th 100th (max)

PE (people) 6,444 1,460 4,041 10,335 21,244

EC (pipe feet) 50,527 5,100 34,629 82,390 200,280

MC (mass) 1.12E6 9.91E5 1.09E6 1.28E6 2.02E6

VC (gallons) 3.14E7 4.28E4 3.69E6 7.25E7 9.55E7

Selecting the Sensor Design
The TEVA-SPOT Toolkit Version 2.2 (Berry et al. 2008b) 
was used to select 3 sensor locations from the list of 20 
potential locations. The other modeling assumptions listed 
previously in the subsection on Modeling Information were 
used for this analysis. The following locations were selected 
and are shown in Figure 3-3: Nodes 209, 1, and 184. This 
design reduced the average number of people exposed from 
6,444 to 4,318, for a 33% reduction. Table 3-2 shows the 
performance statistics for this design, which can be compared 

with the results to the base-case with no sensors in Table 3-1. 
The statistics shown include the mean (average) over all the 
contamination incidents, the 0th percentile incident (or the 
minimum value), the 25th percentile incident (i.e., 75% of the 
incidents have greater values), the 50th percentile incident 
(or the median value), the 75th percentile incident, and the 
100th percentile (or maximum value). The NFD performance 
measure indicates that 58% of the 92 incidents are detected 
with this sensor network design.
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Figure 3-3. Map of the network model with the three selected sensor locations in red (one 
tank and two nodes) and the remaining 17 potential locations in yellow.

Table 3-2. Summary of impact statistics resulting from the chemical incidents with three optimally 
placed sensors. PE is the number of people sickened after exposure, EC is the number of pipe feet 
contaminated, and MC and VC are the mass of contaminant and volume of contaminated water 
removed from the system by consumer demand.

Performance Measure/Statistic Mean 25th 50th (median) 75th 100th (max)

PE (people) 4,318 741 2,158 4,985 21,244

EC (pipe feet) 39,996 1,960 18,574 61,340 155,250

MC (mass) 917,344 681,524 978,488 1.14E6 2.02E6

VC (gallons) 717,662 19,810 134,453 1.19E6 2.98E6

TD (minutes) 4359 120 180 10,080 10,080

NFD (fraction) 0.42 0 0 1 1

Table 3-3 lists the sensors selected when optimizing the six 
performance metrics. Note that the designs for the PE, MC, 
and VC metrics were very similar and tended to place all 
three sensors near the center of the network. The locations 
were not identical, but upon inspection of the map, one 
would find that they are very close. In contrast, the designs 
for TD and NFD placed sensors near the end of the flow 

paths in the southern and eastern boundaries of the network. 
Also notably different, the design metric EC minimizes the 
extent of contamination and placed one sensor near the lake 
source, one in between the river source and the northeastern 
tank, and one near the central tank. The selection of the most 
appropriate performance metric, then, is quite important.
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Table 3-3. Sensor designs for six performance measures. 
PE is the number of people sickened after exposure, 
EC is the number of pipe feet contaminated, and 
MC and VC are the mass of contaminant and volume 
of contaminated water removed from the system by 
consumer demand.

Performance 
Measure Selected Optimal Sensor Locations

PE Nodes 1, 184, 209

EC Nodes 1, 20, 101

MC Nodes 1, 237, 209

VC Nodes 1, 189, 237

TD Nodes 143, 219, 231

NFD Nodes 143, 219, 231

 
A More In-Depth Investigation of Sensor 
Network Design
In the last section, all of the input data was well known. 
Suppose that the utility did not know how many sensor 
stations to install and wanted to consider anywhere between 
1 and 10 sensor stations. In addition, the utility wanted 
to protect against a large scale biological contamination 
scenario in addition to the chemical scenario. The utility 
also wanted to consider the extent of contamination as an 
optimization objective. Finally, the utility was uncertain 
about the response time and wanted to examine a range 
between 0 and 12 hours (0 is analyzed in order to understand 
the best case scenario). The new range of parameter values to 
be considered is listed below.

Modeling Decisions
• Utility Network Model. The same network is used — 

EPANET Example 3.

• Sensor Characteristics. The sensor stations are multiple 
parameter water quality sensor stations (modeled with 
contaminant-specific detection limits that reflect the 
ability of water quality sensors to detect the chemical 
and/or biological contaminant).

• Design Basis Threat. The system is designed for a 
large quantity of a highly toxic chemical contaminant 
injected over a 1 hour period and for a large quantity 
of an infectious biological agent injected over a 24-
hour period, both starting at midnight. The location 
of the attack is not known, and so every location in 
the model is considered a possible source. Thus, 184 
contamination incidents are simulated.

• Performance Measures. In this analysis, both PE and 
EC are considered.

• Utility Response. It was assumed that it would take 
between 0 and 12 hours for the utility to respond 
effectively to a positive detection, eliminating further 
exposures. The 0 hour response case is considered even 
though it is not physically possible because it gives an 
upper bound on performance.

• Potential Sensor Locations. It is assumed that sensor 
locations can be selected from all 92 nodes or from the 
set of 20 feasible locations identified in the last section. 

• Number of Sensor Locations: 1–10 sensor locations 
will be selected.

Table 3-4 lists all of the sensor network designs that will be 
generated as part of the investigation in this chapter. Designs 
are created both for the chemical and biological incidents, 
four performance measures (PE, NFD, TD, and EC), and 
for four different response times (0, 2, 6, and 12 hours). For 
the chemical the accurate detection limit is assumed to be 
0.001 mg/L; for the biological, 1,000 organisms/L. The list of 
potential sensor locations was first allowed to be all possible 
locations, and later restricted to the 20 locations determined 
by the utility.

Table 3-4. List of sensor designs and associated parameter values analyzed in TEVA-SPOT decision-
making application. PE is the number of people sickened after exposure, EC is the number of pipe 
feet contaminated, and MC and VC are the mass of contaminant and volume of contaminated water 
removed from the system by consumer demand.

Sensor 
Design Design Basis Threat

Performance 
Objective

Response Time 
(hours)

Detection Limit 
(org/L)

Potential 
Locations

1 Chemical PE 2 0.001 ALL

2 Biological PE 2 1,000 ALL

3 Biological NFD 2 1,000 ALL

4 Biological TD 2 1,000 ALL

5 Biological EC 2 1,000 ALL

6 Biological PE 0 1,000 ALL

7 Biological PE 6 1,000 ALL

8 Biological PE 12 1,000 ALL

9 Biological PE 2 1,000 20 Locs
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Quantifying the Potential Consequences
Figure 3-4 shows the predicted distribution of impacts for the 
chemical and biological incidents when there are no sensors 
in the system to detect the contaminants and where the public 
health system and/or the water utility have taken no actions 
to reduce the magnitude of impacts. For each contaminant, 
92 incidents were simulated, and the public health impacts 
were calculated. Table 3-5 lists the statistics for the number 
of people sickened, the extent of contamination, the mass of 
contamination consumed, and the volume of contaminated 
water consumed.

Note the difference in impacts between the chemical and 
biological scenarios. The average number of people made 
ill from the chemical threat ensemble was 6,444, and the 
average was 12,383 for the biological threat ensemble. 
The max case incident impacted 21,244 people for the 
chemical threat ensemble and 31,788 for the biological threat 
ensemble.
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Figure 3-4. Histograms of public health impacts resulting from the chemical (left) and 
biological (right) incidents

Table 3-5. Summary of impact statistics resulting from the chemical and biological incidents in the 
absence of a CWS. For each impact measure, this table shows the mean impact, as well as various 
percentiles of the distribution of impacts for all simulated incidents. PE is the number of people sickened 
after exposure, EC is the number of pipe feet contaminated, and MC and VC are the mass of contaminant 
and volume of contaminated water removed from the system by consumer demand.

Chem Performance Measure/Statistics Mean 25th 50th (median) 75th 100th (max)

PE (people) 6,444 1,460 4,041 10,335 21,244

EC (pipe feet) 50,527 5,100 34,629 82,390 200,280

MC (mass) 1.12E6 9.91E5 1.09E6 1.28E6 2.02E6

VC (gallons) 3.14E7 42,817 3.69E6 7.25E7 9.55E7

Bio Performance Measure/ Statistics Mean 25th 50th (median) 75th 100th (max)

PE (people) 12,833 1,720 10,887 22,811 31,778

EC (pipe feet) 55,395 12,444 39,603 82,390 200,281

MC (mass) 2.04E13 2.04E13 2.08E13 2.10E13 2.27E13

VC (gallons) 1.93E7 642,438 7.79E6 2.29E7 9.20E7
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Comparison of Design Basis Threats
Ideally, a sensor network design would be based on a very 
large threat ensemble (set of contamination incidents). 
However, in practice, computer memory limits the number of 
incidents that can be included. In this case, the chemical and 
biological incidents were separated into two threat ensembles 
and two different sensor network designs were generated. 
In this section, the biological and chemical designs are 
compared to one another. The TEVA-SPOT toolkit software 
version 2.2 was used to generate two sensor designs, Designs 
1 and 2 listed in Table 3-4. The first design was based on the 
chemical threat ensemble, and the second design was based 
on the biological threat ensemble. Figure 3-5 illustrates 
the tradeoff between the number of sensors and the benefit 
provided by each of the two designs. The performance of 
each sensor network design is measured in the percentage 
reduction in the number of illnesses relative to the baseline 
case with no sensors. As the number of sensors increased, 
the benefit of the sensor network increased with diminishing 
marginal returns. Note that for a given performance level, 
fewer sensors were needed to detect the 24-hour biological 
contamination incidents than were needed for the 1-hour 
chemical incidents (i.e., to achieve a 40% reduction, 19 
sensors were needed for the chemical incidents and only one 
sensor was needed for the biological incidents).

Why are these two curves different? The differences are not 
due to hydraulics or operations since they were the same for 
chemical and biological incidents. The contaminants were 

both modeled as tracers, so the differences in the curves 
are not due to reaction with disinfectant residual or other 
materials. The differences in Figure 3-5 result from three 
factors: the difference in the injection times (1 hour for the 
chemical versus 24 hours for the biological), the different 
detection limits for each contaminant (0.001 mg/L for the 
chemical and 1,000 organisms/L for the biological), and the 
toxicity characteristics of the contaminants (specifically, 
the potency of each attack measured for instance by the 
number of lethal doses introduced to the system and/or the 
slope of the dose-response curve for each contaminant). It is 
much more difficult to detect a quick pulse of highly toxic 
chemicals at low concentrations than a long slow pulse of 
less toxic biological organisms at higher concentrations.

Figure 3-5 can be used to make an initial decision on the 
number of sensors. This decision can be refined later in the 
process after considering the effect of the various parameters 
on sensor network design performance. From looking at 
Figure 3-5, one can see that the greatest gains for both 
threat ensembles occurred with only a few sensors. With six 
sensors, Design 1 reduced the number of people sickened 
by 36% and Design 2 by 71%. Focusing on raw numbers 
rather than percentages, if the utility decided that the sensor 
network should be designed so that the mean number of 
people sickened for both threat ensembles should be less 
than 4,000 people, then five sensors would be needed for the 
biological threat ensemble and 11 sensors for the chemical 
threat ensemble.
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Figure 3-5. Performance curve showing the tradeoff between the number of sensors and 
the benefit provided (in terms of the percent reduction in illnesses for a given number of 
sensors). Design 1 is based on the chemical threat ensemble. Design 2 is based on the 
biological threat ensemble.
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If six sensors were selected, Design 1 would include Nodes 
61, 184, 191, 211, 263, and Tank 1. Design 2 would include 
Nodes 40, 61, 105, 113, 141, and 247. Figure 3-6 shows 
the two sensor designs with 6 sensors each on spatial plots. 
One can see that the designs are different but there are some 
similarities. Node 61 is common to both designs (just below 
the river). Among the six selected nodes for Design 1, Node 
211 (near the bottom of the map) provides the most benefit, 
but Node 40 is the most effective sensor location for Design 
2 (near the central tank). It is challenging to look at locations 
on the map and try to determine how well they will protect 
the population. Therefore, a “regret analysis” was completed 
to answer the question: “If the chemical and biological 
incidents are equally likely to occur, which sensor design is 
preferable?” It is called a regret analysis because it reveals 
how much one might regret selecting the sensor design for 
the chemical threat ensemble when the biological threat 
ensemble actually occurs (or vice versa).

For this (and subsequent regret analyses), it was assumed 
that six sensors (or sensor stations containing multiple water 
quality parameters) were utilized as part of the CWS. The 

results of the regret analysis are given in Table 3-6. For 
example, if the biological incident occurred, then Design 2 
performed best. It reduced the number of people sickened by 
71%, while Design 1 reduced that number by 66%. The error 
measure, or measure of regret, was calculated by summing 
the square of the differences between the performance 
measure of the given sensor design and the performance 
measure of the optimal sensor design. Table 3-6 shows that 
both designs performed fairly well for both threat ensembles, 
yet Design 2 had a slightly lower regret measure.

Table 3-6. Regret analysis comparing Designs 1 and 2. 
Higher percentages reflect better performance.

Threat Ensemble/Sensor Design Design 1 Design 2
Chemical 36% 34%

Biological 66% 71%

Error measure (regret) .05 .02

Figure 3-6. Design 1 with six sensors is shown on the left based on the chemical threat 
ensemble, while Design 2 with six sensors is shown on the right and is based on the 
biological threat ensemble.
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Comparison of Performance Objectives 
Sensor network designs can also be developed based on other 
objectives, such as the number or percent of incidents not 
detected (NFD), the detection time (TD), and EC. Sensor 
Designs 2–5 (from Table 3-4) were optimized over the 
biological incidents, assuming a response time of 2 hours, 
and results are shown in Figure 3-7 and in Table 3-7.

The tradeoff curves in Figure 3-7 show that for this example 
network, it was much more difficult to reduce the number 
of illnesses (Design 2) or the length of contaminated pipe 
(Design 5) than it was the detection time (Design 4) or the 
number of failed detections (Design 3). The flow paths in the 
network were connected enough so that only 11 sensors were 
needed to detect all incidents. The flow was fast enough that 
detection times were fairly short. However, with a response 
time of two hours, the number of illnesses and the extent of 
contamination could not be reduced to zero regardless of the 
number of sensors.

The regret analysis results are given in Table 3-7, helping to 
answer the question “If the chemical and biological incidents 
are equally likely to occur, which objective for sensor design 
is preferable?” The second column of Table 3-7 shows the 
performance of Design 2 which minimized the number 
of illnesses over all incidents. For the biological threat 
ensemble, that design was able to reduce the average number 
of illnesses by 71%, the average number of failed detects by 
84%, the average detection time by 83%, and the length of 
contaminated pipe by 43%. Design 2 (based on minimizing 
illnesses) and Design 5 (based on minimizing extent of 
contamination) had the lowest regret measures, performing 
well across all incidents. It is important to note that the 
result might not be the same for different utility networks. 
Subsequent analyses in this paper use the minimization of 
illnesses as the main objective for optimization.

Figure 3-7. Performance of four sensor network designs that minimize different performance 
objectives. Design 2 minimized the number of illnesses, Design 3 minimized the number of 
failed detections, Design 4 minimized the time of detection, and Design 5 minimized the 
length of contaminated pipe. All designs were optimized over the biological incidents.
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Table 3-7. Regret analysis for four sensor network designs that minimize different performance objectives: 
number of illnesses, number of failed detections, time of detection, and the length of contaminated pipe 
(in terms of percent reduction). Higher percentages reflect better performance. A lower regret measure is 
better. PE is the number of people sickened after exposure. NFD is the number or percentage of incidents 
not detected. TD is the time of detection. EC is the number of pipe feet contaminated.

Performance Measure/Sensor Design Design 2 Design 3 Design 4 Design 5
PE (bio) 71% 53% 55% 71%

NFD (bio) 84% 95% 95% 84%

TD (bio) 83% 92% 93% 83%

EC (bio) 43% 23% 27% 43%

PE (chem.) 34% 28% 29% 34%

NFD (chem) 76% 88% 88% 76%

TD (chem) 75% 85% 86% 75%

EC (chem) 38% 23% 27% 38%

Error measure (regret) .24 .33 .27 .24

Figure 3-8. Performance of sensor network designs with four different response times: 0 
hours (Design 6), 2 hours (Design 2), 6 hours (Design 7), and 12 hours (Design 8). All 
designs minimized the number of illnesses over all biological incidents. Designs defined in 
Table 3-4.
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Comparison of Response Times
Thus far, the analysis has been based on a utility response 
time of two hours. In this section, response times of 6 and 
12 hours were added to the detection time. For comparison 
purposes and to establish the upper bound on sensor network 
performance, a response time of zero hours was also 
considered. These response times represent the time between 
detection by a sensor and an effective public order that halts 
further consumption of water, as described in Chapter 2. 
TEVA-SPOT was used to select the sensor locations that 
optimally minimize the mean number of illnesses, given one 
of four response times.

Figure 3-8 demonstrates the tradeoff between the number 
of sensors and the likely benefits provided by Designs 2 and 
6-8. Again, as the number of sensors increased, the benefit 
of the sensor network increased, and the benefit provided 

by the first few sensors was significant. It is clear that as 
the response time increased, the overall performance of the 
sensor network decreased dramatically. With a residence 
time of only 13 hours in the network, the time available 
to reduce exposures was relatively short. Note that just by 
adding additional sensors (given the upper bound of 20), the 
benefits achieved at a given response time could never equal 
the benefits of a smaller response time. This figure shows the 
importance of reducing utility response time.

Although a utility will attempt to minimize its response time, 
the exact response time cannot be predicted precisely prior to 
an incident and could vary between 0 and 24 hours or more. 
How then should the response time parameter for sensor 
network design be selected? To answer this question, a regret 
analysis was performed as shown in Table 3-8. The regret 
analysis answered the question, “If the response times of 2, 
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6, and 12 hours were equally likely to occur, which sensor 
network design would be preferable in all cases?” Note that 
the zero case was eliminated as it would be impossible to 
achieve. Table 3-8 shows that Design 2 had the lowest regret 
over all incidents, and therefore, a 2-hour response time was 
used for all further analyses.

Sensors Restricted to Subsets of Locations
In this section, the set of possible sensor locations was 
restricted to the set of 20 locations: Nodes 208, 209, 1, 169, 
143, 231, 219, 101, 184, 127, 275, 129, 125, 145, 237, 20, 
183, 601, 271 and 189. These locations were randomly 
selected from the list of 92 total locations. In practice, 
however, a utility usually selects locations that are publicly 
owned and accessible to water utility staff 24 hours a day. 
For example, police and fire stations, public buildings, and 
utility facilities are good locations to consider. The effect 

of restricting the potential locations to a smaller subset of 
locations on sensor placement is demonstrated below in 
Figure 3-9 and the regret analysis is shown in Table 3-9. 
TEVA-SPOT was used to select the sensor locations that 
optimally minimized the mean number of illnesses, given 
the restricted locations. The regret analysis shows the 
performance lost by restricting the potential sensor locations.

The TEVA-SPOT software can also be used to rank the 20 
locations in order of the benefit they provide to the sensor 
design. In this case, the locations were ranked from best to 
worst nodes as follows: 208, 189, 127, Tank 1, 101, 601, 143, 
237, 271, 184, 169, 275, 209, 125, 145, 183, 219, 129, 20, 
and 231. If the utility decided to install 20 sensors, but could 
only install five this year because of budget constraints, then 
they could start with sensors at nodes 208, 189, 127, 101 and 
Tank 1, and install the rest later.

Table 3-8. Regret analysis for four sensor network designs based on minimizing illnesses for 
different response times (0, 2, 6, and 12 hours). Higher percentages reflect better performance.

Threat Ensemble/Sensor Design Design 2 Design 6 Design 7 Design 8
Bio – 2 hr response 71% 66% 68% 68%

Bio – 6 hr response 45% 44% 47% 46%

Bio – 12 hr response 26% 26% 29% 29%

Chem – 2 hr response 34% 32% 33% 33%

Chem – 6 hr response 28% 28% 28% 28%

Chem – 12 hr response 26% 26% 26% 26%

Error measure (regret) .037 .073 .043 .051

Figure 3-9. Performance of two sensor network designs. Design 2 selected sensors from all 
nodes in the model while Design 9 selected sensors from a list of 20 possible locations.
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Table 3-9. Regret analysis for sensor network designs with potential sensor locations 
selected from all possible locations and 20 selected locations. Higher percentages reflect 
better performance.

Threat Ensemble/Sensor Design Design 2 Design 9
Bio – 2 hr response 71% 64%

Bio – 6 hr response 45% 44%

Bio – 12 hr response 26% 27%

Chem – 6 hr response 34% 33%

Chem – 12 hr response 28% 27%

Chem – 24 hr response 26% 26%

Error measure (regret) 0.037 0.082

Selecting the Sensor Network Design
Several sensor network designs have been presented based 
on chemical and biological contamination threat ensembles, 
different design objectives, and different assumptions about 
the utility and public health response time to a sensor signal, 
and the available locations for sensor station installation. The 
decision process followed above determined that the sensor 
design that performed best across all incidents considered 
in this analysis was the design for the biological threat 
ensemble, with a 2 hour response delay, accurate detection 
limits, and unrestricted locations, Design 2. In most cases, 
however, not all locations are feasible for placing sensors, 
either due to installation costs or operational restrictions. 
As a result, the designs must be restricted to a smaller set of 
feasible locations (Design 9).

Without sacrificing significant performance of the CWS 
design, a sensor network design was selected that meets the 
many goals of the water utility in designing the CWS. This 
sensor network design protected against both the chemical 
and biological incidents, performed well over a range of 
response times (0–12 hours) and performance objectives, 
and reduced costs by limiting the sensor locations to a subset 
of feasible facilities. Of the parameters considered in this 
report, the major factor in limiting overall sensor network 
performance was the utility and public health response time. 
No number of sensors can counteract the need for a fast 

response. To a lesser yet still significant degree, restricting 
the potential sites for locating sensors to a small subset of all 
locations (e.g., only utility owned locations) also limited the 
performance of a sensor design.

Once a sensor network design is selected, there are a number 
of additional factors to consider. In the authors’ experience 
utilizing this design process, the steps listed above are only 
the first steps; additional modeling and decision-making 
iterations will follow. For example, once the locations are 
selected by the model, field investigations need to take 
place to ensure that the selected locations: (1) have the same 
hydraulics as described by the network model (the location 
is on the correct pipe), (2) allow enough space for locating 
and maintaining sensor stations, (3) can be accessed 24 hours 
a day, seven days a week by utility personnel. If not, certain 
locations might need to be removed from the list of feasible 
locations, and the optimization procedure re-run.

The framework for determining sensor placement presented 
here shows that a water utility can meet a variety of 
objectives by optimizing the CWS design. Specifically, while 
restricting locations to a set preferred by the water utility, 
sensor locations can be selected to match the performance 
characteristics of the utility sensor platforms, protect against 
a variety of contamination threats, optimize the performance 
measures important to the utility, and accommodate a range 
of likely utility response times.
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4.
Real-World Applications

The TEVA-SPOT software was used to help nine partner 
utilities design sensor networks for Contamination Warning 
Systems (CWS). The modeling process described in 
Chapter 2 of this report was utilized: identifying the specific 
types of sensors to be deployed, the design objectives, and 
the possible locations of the sensor stations. Some utilities 
already had sensors in place; in such situations, the objective 
was to identify a few supplemental locations; however, most 
utilities had no existing sensors.

The decision-making process described in Chapter 3 was 
iterative and involved applying the optimization software to 
select optimal locations, and then verifying the feasibility 
of those locations with field staff. The software quantified 
the tradeoffs between the locations selected optimally by the 
software and the “near-by” locations selected by the utility 
for practical reasons. In addition, the software was used to 
develop cost-benefit curves for each utility, see Figure 4-1.
In order to quantify the benefits to each utility, a simulation 
study was completed (Murray et al. 2009). Two realistic 
terrorist contamination threat ensembles were considered: 
contamination with an infectious biological agent introduced 
over a 24-hour period; and contamination with a toxic 

chemical agent introduced over a 1-hour period. Figure 4-2 
illustrates the estimated reduction in economic impacts due 
to the CWSs deployed or planned for the nine utilities. These 
economic savings can be attributed to the reduction in the 
number of fatalities that resulted from early detection and 
rapid response as part of the CWS.

A large set of realistic contamination incidents was 
considered for these utilities; this plot shows the reduction 
of the mean and 95th percentile of the impact distribution. 
Fatalities were computed based on contaminant-specific 
data, after calculating how much contaminant customers at 
various locations and times throughout the network would 
consume. Economic impacts as a result of fatalities were 
computed using a Value of Statistical Life (VSL). VSL is the 
average value society is willing to pay to prevent a premature 
death. It does not refer to the value of an identifiable life, but 
rather the summed value of individual risk reductions across 
an entire population. In the Groundwater Rule, EPA used a 
value of $6.3 million in 1999 dollars and $7.4 million in 2003 
dollars. To be conservative in this analysis, a VSL value of 
$6.3 million was used (ATSDR 2001).

Figure 4-1. The cost-benefit curves for three utilities show that the benefits of a CWS design 
increased as the number of sensors (cost) increased.
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Figure 4-2. The graph shows economic savings because of reduced fatalities (billion $); 
it illustrates mean economic savings and corresponding savings for the 95th percentile 
of contamination incidents. Two data points, which represent biological and chemical 
contamination threat ensembles (not distinguished in the graph), are included for each utility.
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Figure 4-3. The graph illustrates the relationship between the economic savings from the 
reduced fatalities and the percentage reduction of fatalities. These data points are for the 95th 
percentile impacts for fatalities and associated economic effects. For each utility, data points 
are included for a biological and chemical threat ensemble (not distinguished in the graph).
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As Figure 4-2 shows, a CWS can significantly reduce 
economic consequences of fatalities for biological and 
chemical incidents. Over the nine utilities, the mean 
savings are estimated to vary from $1 billion to $33.4 
billion with a median of $5.8 billion. However, because 
an informed terrorist would attempt to maximize the 
impact of an attack, the mean impacts might not be 
the best measure. Although the sensor placements 
were optimized to minimize mean impacts, Figure 4-2
shows that 95th percentile economic savings were also 
significant: the 95th percentile savings range from $1 
billion to $171.7 billion with a median of $19 billion.

Figure 4-3 shows the relationship between the percent 
reduction of economic impacts because of fatalities and the 
percentage reduction in fatalities. These are independent, but 
related measures for CWSs. Points at the top of Figure 4-3 
represent utilities that have a significant reduction in the 
number of fatalities. However, this percentage reduction is 
relative to the total number of fatalities without sensors (or, 
in some cases, with the set of existing sensors). Thus, the 

reduction of economic impacts in these utilities could vary 
dramatically because of differences in the total number of 
fatalities in these systems.

Finally, economic impacts incurred by the water utility 
were estimated. Following a contamination incident, 
contaminants might be difficult to remove from pipe walls 
and fittings. In the worst cases, utilities might have to reline 
or replace contaminated pipes. Therefore, the CWS designs 
were evaluated to determine the fraction of the distribution 
network that might need to be replaced. A CWS can reduce 
the cost of replacement by enabling a utility to quickly 
contain the spread of a contaminant. This study estimated that 
using CWSs will reduce the expected decontamination and 
recovery costs for these nine utilities by up to $340 million. 
For many utilities, these savings are greater than their annual 
operating budget.

In the rest of this chapter, case studies are presented for 
several partner water utilities, including Greater Cincinnati 
Water Works, New Jersey American Water, Tucson Water, 
and the City of Ann Arbor.
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Sensor Network Design for Greater Cincinnati 
Water Works
In 2006, EPA’s Office of Water received funding to deploy 
CWSs at several U.S. utilities as part of the Water Security 
(WS) Initiative. The WS Initiative promotes a comprehensive
CWS that is theoretically capable of detecting a wide 
range of contaminants, covering a large spatial area of the 
distribution system, and providing early detection in time 
to mitigate impacts (U.S. EPA 2005c). Components of the 
WS Initiative include: online water quality monitoring, 
consumer complaint surveillance, public health surveillance, 
enhanced security monitoring, and routine sampling and 
analysis. Information from these five monitoring strategies is 
combined to increase contaminant coverage, spatial coverage,
timeliness of detection, and reliability of CWS performance.

Greater Cincinnati Water Works (GCWW) was selected 
as the first WS Initiative pilot city. EPA’s report, “Water 
Security Initiative Cincinnati Pilot Post-Implementation 
Status,” provides extensive detail on the contamination 
warning system installed at GCWW (U.S. EPA 2008). 
The sensor network design component of the project is 
summarized here. In this first WS pilot, EPA had an active 
and direct role in the design and implementation of the CWS.
The online monitoring component for GCWW was designed 
to expand the existing monitoring capabilities. Prior to the 
WS Initiative, GCWW had forty chlorine analyzers, three 
pH meters, and two turbidimeters located at 22 sites in the 
distribution system that transmitted data over telephone lines 
to the utility’s operations center.

The existing water quality monitoring did not meet all of the 
objectives of the WS Initiative; for example, spatial coverage,
timely detection of contamination incidents, or degree of 
automation necessary for real-time detection. Therefore, 
additional sensor stations were installed at locations identified
through an analysis using the TEVA-SPOT software. The 
sensor stations measured multiple water quality parameters 
including free chlorine, TOC, ORP, conductivity, pH, and 
turbidity. Figure 4-4 shows a schematic of the sensor stations
installed at GCWW. The new sensor network was designed 
to minimize average public health consequences over a large 
set of possible contamination incidents. The sensor network 
design process involved three steps: validating the utility 
network model, applying the TEVA-SPOT software, and field
investigations to finalize sensor station locations.

To validate the model, a tracer study was performed in 
the field. A tracer (calcium chloride) was injected at four 
locations in the distribution system. Each injection consisted 
of at least six 1-hour pulses over a 24-hour period. Following 
each injection, conductivity meters were used to measure and
record the conductivity signal at approximately 

40 locations throughout each study region. The field data was 
then compared to model predictions in order to assess the 
accuracy of the model and identify needed improvements.

The validated model was utilized by the TEVA-SPOT 
software to help identify a set of optimal sensor locations.  
GCWW identified several hundred potential sensor locations 
that included all utility owned sites (including office 
buildings), all police and fire stations in the county, as well as 
certain schools and hospitals. Using geographic information 
systems (GIS), these facilities were identified in the utility 
network model by the nearest node. Initially, the design was 
based on selecting up to 30 sensors stations, although in 
the end, 17 stations were deployed. The utility located two 
stations at its treatment plants and the software was used to  
help identify the best locations for the remaining 15 stations.

The design and implementation was an iterative process. 
TEVA-SPOT was used to select a list of optimal locations 
from the list of several hundred potential locations. The 
hydraulic connectivity of each location was verified on GIS 
and/or AutoCAD® (Autodesk, Inc.) maps to ensure that the 
model representation of the facility was correct. Finally a 
site visit was conducted to locate the exact installation 
location within the facility, estimate the hydraulic retention  
time in the pipes from the distribution system main to the 
monitoring equipment inside the facility, and address any 
outstanding concerns with that specific location. Sites 
were also verified to ensure accessibility, physical security, 
available sample water and drainage, a reliable power supply, 
and data communications. If at any point a site was deemed 
to be unsuitable, it was discarded and the TEVA-SPOT 
analysis re-run.

The retention time from the distribution system main to the 
monitoring equipment inside the facility was calculated by 
taking the quotient of the service pipe volume and the water 
demand by that facility. The pipe volume is the product of the 
pipe radius squared, the length of the pipe and the constant 
. If the retention time was greater than two hours, then a 

water bypass to the sensor station had to be installed (which 
is not always feasible). A service connection of smaller radius 
was considered favorable, as was choosing a sensor tap-in 
location near the point where the service connection met the 
building (to reduce pipe length). A retention time over two 
hours was not recommended, as it has a negative impact on 
utility response time, and might require adjustment to the 
TEVA-SPOT analysis.

All 17 sensor stations were installed at the locations 
determined by the above process and have been in operation 
since 2007. In addition, GCWW is testing the performance of 
event detection systems — automated data analysis tools that 
convert real-time water quality data into alarms that indicate 
the likelihood of contamination incidents. 
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Figure 4-4. Schematic of one type of sensor station installed at the GCWW Pilot.

Sensor Network Design for New Jersey 
American Water
In the Burlington-Camden-Haddon system of New Jersey 
American Water (NJAW), eleven online monitors were 
installed as part of a collaborative study between EPA,  
U.S. Geological Survey (USGS) and NJAW. The purpose of 
the study was to understand the field performance of water 
quality monitors and the normal variability in background 
water quality, as well as to identify calibration requirements 
arising from fouling and sensor drift. These practical lessons 
learned would later inform the installation of online water 
quality sensors to support contamination warning systems. 
In addition, the data gathered over several years at these 
locations was used to help develop the CANARY event 
detection software.

Prior to this study, USGS had already worked with NJAW 
to install two sensor stations to monitor source water as well 
as two stations in the distribution system. The TEVA-SPOT 
software was used to select an additional seven monitoring 
locations in the distribution system. The three main 
objectives for sensor design were:

1. To obtain accurate measurements of the true range 
and variation in water quality in the AW distribution 
system.

2. To provide protection and early warning of 
contamination events.

3. To meet the additional needs and interests of 
NJAW (operational needs, costs, ease of access and 
maintenance, etc.).

Because one of the goals of this study was to better 
understand the variability of water quality within the 
distribution system, EPANET simulations were performed to 
predict chlorine residuals throughout the distribution system 
over a 10-day period, and the nodes were separated into 
three categories of low, medium, or high chlorine variability. 
Low variability nodes had a standard deviation of chlorine 
concentration in the lowest 33%; medium variability nodes 
fell between 33 and 66%; and high variability nodes were in 
the upper 33% of nodes.

NJAW and USGS provided a list of seven locations where 
they wanted to locate sensors in the distribution system. 
EPA used the TEVA-SPOT software to analyze the expected 
performance of this “utility design” (UD), and to select three 
additional designs for comparison. One design was optimized 
solely for public health protection (PH) and selected 
locations from all possible nodes in the model. Another 
design optimized for public health protection, but also for 
water quality (WQ) variability. The WQ&PH design required 
that two nodes have low variability in residuals, three with 
medium variability, and two with high variability. Finally 
the third design was a compromise between the UD and the 
WQ&PH (compromise utility design, CUD) that selected 
three locations from the list provided by the utility, and 
allowed the software to select the additional four locations 
from all the nodes in the model.
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Figure 4-5. Benefit of each of the four sensor design for biological and chemical design basis 
threats. (UD=Utility Design, CUD=Compromise Utility Design, WQ&PH=Design for Water 
Quality and Public Health Objectives, and PH=Optimal Public Health Design).
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Figure 4-5 shows the performance of each of the four 
designs as measured against biological and chemical 
incidents. The UD was estimated to reduce the mean public 
health impacts associated with biological incidents by 34% 
and chemical incidents by 19%. In comparison, the optimal 
designs for public health protection reduced impacts by 
48% and 45% respectively. Table 4-1 shows for each sensor 
network design the number of sensors in each category of 
variability. With the information provided by this analysis, 
the utility was able to make a final decision on locating 
sensors that met both the objectives of the study to measure 
water quality but also the needs for public health protection 
as part of a future contamination warning system.

Following installation of YSI® (YSI Incorporated) multi-
parameter sensors at various locations, the USGS was 
responsible for maintaining the sensor calibrations, manual 
collection and quality assurance of the data. Data has been 
collected for several years, and has subsequently been 
utilized by both EPA and Sandia National Laboratories to 
develop and refine tools for automated sensor data processing 
and event detection.

Table 4-1. Number of sensor locations in each chlorine 
variability category.

Sensor 
Design

Low Chlorine 
Variability

Medium 
Chlorine 

Variability

High 
Chlorine 

Variability
UD 2 3 4

PH 3 1 5

WQ&PH 3 3 3

CUD 3 3 3

Sensor Network Design for Tucson Water
Tucson Water is an innovative and advanced municipal 
drinking water system that serves nearly 700,000 customers. 
Through an EPA Environmental Monitoring for Public 

Access and Community Tracking (EMPACT) grant, online 
monitors have been providing near real-time water quality 
data to the public for several years. Tucson Water is currently 
considering the expansion of the online monitoring program 
to meet its security objectives.

EPA began working with the Tucson Water utility in early 
2005. The goal of the Tucson Water TEVA study was to 
identify new and/or existing EMPACT locations that could 
be used for monitoring for contamination incidents. The 
preliminary analysis was performed to answer the following 
questions:

• What are the best locations for sensor stations in the 
Tucson Water system?

• What are the best EMPACT locations for sensor 
stations?

• What are the tradeoffs between the two different sensor 
designs?

In order to use TEVA-SPOT, Tucson Water’s multiple 
pressure zone models had to be integrated into a single 
system-wide model. Separate pressure zone models are 
sufficient for many utility needs, but water security analyses 
require a systems-engineering approach, focusing on the 
entire distribution system as a whole.

Sensor designs were generated assuming that the goal of the 
monitoring program was to provide public health protection 
against a long release of a biological agent or a rapid release 
of a chemical from any service connection in the distribution 
system. The sensors were assumed to be water quality 
sensors capable of detecting changes caused by the two 
contaminants. The sensor designs are sensitive to response 
time, or the time it takes a utility to effectively respond to a 
positive detection. Therefore, response time was allowed to 
vary from 2 to 48 hours.

Optimal locations were selected from all possible locations 
in the model as well as from the 22 Tucson Water EMPACT 
monitoring locations based on minimizing mean public 
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health impacts from contaminant releases across the network 
model. All sensor designs were selected using response times 
of 0, 2, 6, 12, 24, and 48 hours. A total of 48 different sensor 
network designs were developed and analyzed.

Figure 4-6 provides sensor tradeoff curves for sensor 
network designs based on the assumption that sensors can 
be located anywhere in the distribution system (diamond) or 
only at EMPACT sites (square). These curves demonstrate 
the tradeoff between the number of sensors and the 
performance of the sensor design, as measured by the percent 
reduction in mean public health impacts. The results for 
three different response times are also shown in Figure 4-6, 
where the blue line is a response time of 0, the pink line is a 
response time of 12 hours, and the green line is a response 
time of 48 hours. The optimal design can reduce the public 
health impacts from contamination from 10 to 92%. The 
EMPACT design reduces impacts from 6 to 80%. In addition, 
it is possible to improve the performance of the EMPACT 
design by selecting one or two additional locations that are 
not EMPACT locations.

Tucson Water is evaluating how to effectively use the designs 
recommended by TEVA-SPOT to create and implement a 
sustainable and cost-effective contamination warning system. 
In addition to the number and placement of sensors, Tucson 
Water is also evaluating vulnerability information provided 
by EPA researchers to better understand the sensitivity of 
response time in mitigating public health impacts following a 
contamination event.

Sensor Network Design for the City  
of Ann Arbor
The City of Ann Arbor undertook a study in order to design 
an online monitoring program that could both minimize 
public health exposures resulting from a contamination 
incident and detect water quality degradation due to naturally 

occurring processes, such as nitrification, iron corrosion, 
bacterial re-growth. The results of this study can be found in 
Skadsen et al. (2008) and are summarized briefly here.

The City of Ann Arbor’s water system provides treated water 
to about 130,000 customers and encompasses approximately 
49 square miles. The average system demand is 15 MGD 
(million gallons per day) with a range from 7 to 30 MGD 
depending on the season. The Huron River bisects the City 
of Ann Arbor. The distribution system is divided into five 
major pressure districts that have elevated tanks and storage 
reservoirs to adequately serve the population over a varied 
topography. The pressure districts are typically operated 
independently, but include interconnects that are sometimes 
used to control pressure and flow. The distribution system 
has an estimated average retention time of two and one-half 
days, with a maximum of up to 10 days. This long retention 
time can sometimes result in water quality degradation. 
Although the distribution system piping consists mainly of 
cement lined ductile iron, there are areas of unlined cast iron 
pipe that remain in service. These areas are often heavily 
tuberculated resulting in problems with rusty water. The 
utility’s grab sample program addresses distribution system 
water quality and regulatory concerns.

The study involved four steps: (1) analysis of the distribution 
system, (2) parameter selection and instrument pilot testing, 
(3) estimation of costs, and (4) proposal of an online 
monitoring design. The analysis of the distribution system 
began with an assessment of the accuracy of the existing 
network model. Following a series of improvements to the 
model, it was used in both the TEVA-SPOT software and 
the PipelineNet software (Pickus et al. 2005) to identify 
good locations for online monitoring. The analysis from 
both models was overlaid with staff expertise and practical 
knowledge to determine the final proposed monitoring 
locations.

Figure 4-6. Tradeoff curves for number of sensors versus percent reduction for all 
locations (diamond) and EMPACT locations (square) at three different response times.
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The utility identified a list of 27 potential locations that 
included water utility facilities (pump stations, reservoirs, 
tanks, and pressure monitoring locations), other city facilities 
(fire stations, parking structures), and a limited number 
of private property sites. Each of these field locations was 
visited to determine its feasibility as a monitoring location. 
The sites were ranked based on the ownership of the site, 
availability of a connection to the distribution system, 
availability of power, communications, and sanitary sewer. 
Also, access and existing heating, ventilation, and air 
condition units (HVAC) were included in the assessment. 
In addition, the availability of historical water quality data 
was a factor, and one location was selected because of the 
abundance of such data.

The TEVA-SPOT software was used to select the best 
locations for security monitoring from the list of 27 
potential locations. The analysis was performed with 
a variety of response delay times, 0, 4, 12, 24, and 48 
hours. Two different contaminants were considered: a fast 
acting chemical contaminant and a slow acting biological 
contaminant. The selected locations were spatially distributed 
throughout the pressure zones ensuring good distribution 
system coverage.

The TEVA-SPOT analysis found that a small number of 
monitors provided significant benefits as measured by the 
percent reduction in public health impact. Four monitors 
were found to be sufficient — only small incremental benefits 
were estimated for adding more than four monitors. Given 
the size of the Ann Arbor distribution system (130,000 people 
over 49 square miles), this low number of monitors was a 
surprising outcome. It should be noted, however, that the 
percentage reduction in health impacts plateaus at about 75% 
to 80% protection. Therefore, with four monitors, over 20% 
of the population could still be impacted on average.

PipelineNet was used to evaluate potential sensor locations 
in order to protect sensitive facilities (schools and hospitals) 
and high population areas from contaminant attack. This 
was done by assuming that the contaminant introduction 
could only occur within a certain distance of critical 
facilities. Not surprisingly, this resulted in PipelineNet 
clustering sensor locations around the largest of these 
facilities. Although this might result in increased protection 
for these sensitive facilities, the remainder of the potential 
target population was not protected to the extent provided 
by the TEVA-SPOT methodology. Additionally, TEVA-
SPOT provides the ability to quantitatively evaluate 
and compare potential sensor locations against different 
objectives (e.g., minimizing public health impacts, and 
constraints, e.g., number of sensors), and different threats 
(e.g., different contaminants and/or release locations).

The PipelineNet software was also used to determine 
areas with the highest water quality concern based on 
the criteria established by Ann Arbor staff, and these 
were matched against the 27 available monitoring 
locations. The results found that areas of impacted water 
quality clustered along the edges of the system and 

along pressure boundaries, consistent with predictions 
of high water age areas and previous tracer studies.

The results of the TEVA-SPOT analyses, the PipelineNet 
results for water quality, and staff knowledge of the system 
were integrated. Four sites were selected for security 
monitoring and four locations were selected for water quality 
monitoring. One of the sites selected for security was the 
same as a site selected for water quality. This general lack of 
co-located sites was expected due to the different drivers for 
security monitoring (protect as much population as possible) 
versus water quality monitoring (find the areas of high 
water age usually associated with remote or isolated parts 
of the distribution system). However, this was considered 
an important finding by the authors, suggesting that security 
monitoring locations might not show significant dual benefit 
in a system where operational concerns are based on water 
quality effects such as nitrification. The project team was 
originally interested in the possibility of achieving efficiency 
in operations and cost savings if the security and quality 
locations over-lapped. However, this was not a requirement 
for the project.

A set of parameters were selected for potential monitoring 
(Hall et al. 2007) using a variety of information, including 
data from U.S. EPA’s Test and Evaluation Facility in 
Cincinnati, Ohio, other research studies, utility surveys, 
and a workshop. Chlorine and TOC were the most highly 
recommended parameters to address water security concerns. 
TOC was ultimately not selected due to the instrument cost 
and complexity of operations. Ultraviolet (UV)-254 was 
selected instead, since it is often used as an alternative for 
TOC because both measure the organic content of water. 
Since the utility uses combined chlorine for final disinfection, 
the utility desired a total chlorine monitor that did not 
use reagents. Prior experience with analyzers requiring 
reagents had shown that they worked well at the treatment 
plant, but routine maintenance in the distribution system 
proved to be a challenge. Other parameters selected for 
testing included dissolved oxygen, ammonia, chloride and 
conductivity. Ammonia was selected as an indicator of water 
quality, because of nitrification due to the release of free 
ammonia from the decomposition of chloramines. Chloride 
was recommended as a general indicator ion of potential 
contamination. Dissolved oxygen was deemed useful for 
detection of nitrification, corrosion and contamination. 
Conductivity was selected as a general parameter for 
detection of contamination events.

In order to select specific instruments, a variety of criteria 
were developed to assess instrument performance and 
acceptability. Of these criteria, accuracy (agreement between 
lab testing and online instrument results), sensitivity (low 
level measurement ability), and variability (presumed normal 
fluctuation in water quality) proved the most important 
factors. Other factors, such as calibration ease, frequency, and 
maintenance are also important but the ability of the units 
to deliver useful data was deemed the most critical function. 
Based on pilot testing, chloride and ammonia were eliminated 
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as parameters for monitoring. This analysis concluded 
that total chlorine and dissolved oxygen were important 
parameters for measuring water quality degradation, but total 
chlorine, UV absorbance, conductivity, and dissolved oxygen 
are important for water security.

In Ann Arbor, the costs for monitor acquisition were 
estimated at $25,000 per installation assuming that each 
location had four instruments: total chlorine, dissolved 
oxygen, conductivity, and UV-254 absorbance with the 
selected manufacturers. Installation costs, including 
infrastructure and communications, were estimated at an 
average of $40,000 per location. However, this figure could 
vary widely depending on the extent of services available. 
Installation might include building a suitable structure, 
tapping a water main, installing electrical, sanitary and other 
support features. Operations and maintenance costs were 
estimated at $7,000 per installation per year. This estimate 

did not factor in the time needed to provide initial data 
handling and interpretation to develop response protocols. 
This consisted primarily of staff time to visit the site and 
perform routine maintenance and calibration activities. A 
10-year life span was assumed for the equipment. Based on 
these estimated figures, the utility plan included an initial 
capital investment of approximately $500,000 for eight 
sensor locations with an annual operating budget, including 
replacement costs of $106,000. These costs do not include 
initial design and pilot testing work of approximately 
$200,000. These figures are important when considering the 
cost/benefit ratio versus the number of monitors installed. 
Figures given are for approximate planning purposes only.

Finally, this study resulted in a specific design that  
was proposed to the City of Ann Arbor. The availability  
of funding will determine the schedule and implementation 
of the plan.
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5.
Challenges for Real-World Applications

There are many outstanding research questions in the sensor 
placement field (Hart et al. in review). Current application of 
sensor network design optimization, then, can be challenging 
and sometimes requires imagination in addition to technical 
skill. In this chapter, several common questions that could 
arise when applying sensor network design optimization 
software are addressed. For example,

1. What is the best objective to use for sensor placement?

2. How many sensors are needed?

3. Should a CWS be designed to protect against high 
impact incidents only?

4. How can I make sensor placement algorithms work on 
typical desktop computers even for very large utility 
network models?

Discussions of these questions and suggestions for using 
the TEVA-SPOT software to help answer these questions 
are presented; however, in practice, there are no clear-cut 
answers because these questions involve policy concerns in 
addition to good science.

For demonstration purposes, these questions are addressed 
through analysis of a simple example network model: 
EPANET Example 3 network with 92 junctions, 2 reservoirs, 
3 tanks, 117 pipes, and 2 pumps. This network is supplied 
by two surface water sources — a lake provides water for 
the first part of the day and a river for the remainder of the 
day. The average residence time for the network is 14 hours, 
and the maximum is 130 hours. Based on the average base 
demands, the total population served by this network is 
78,800. The total length of pipe in the system is 215,712 feet.

In these analyses, sensors are assumed to be “perfect” in the 
sense that they have a zero detection limit and are always 
accurate and reliable (no false positives or false negatives and 
no failures). Utility response to detection of contamination 
incidents is also assumed to be perfect and instantaneous, 
meaning that following detection, a “Do Not Use” order is 
issued and made effective immediately, preventing all further 
consumption. These assumptions are referred to as “perfect 
sensors and perfect response.” These assumptions are applied 
in order to provide an upper bound on sensor network 
performance — the best that is theoretically possible. Even 
with perfect sensors and perfect response, a sensor network 
might not detect every event, detect events in a timely 
manner, prevent all exposure to contaminants, or prevent 
contamination of pipes. To achieve this perfect performance, 
in most networks, sensors would need to be placed at almost 
every junction. This is clearly not feasible in practice; thus, 
the importance of optimally selecting a small number of 
sensor locations using optimization software.

Selecting the Best Objective
The performance objective is one of the most important 
parameters to select when optimally designing a CWS. For 
example, should a sensor network be based on minimizing 
the population exposed or minimizing the detection time? 
In practice, the authors have found that sensor network 
designs based on the various objectives can be very different 
from one another. Thus, it is important to understand the 
differences between the objectives when designing a CWS. 
The TEVA-SPOT software can be used to analyze and 
visualize the tradeoffs between different objective designs.

The following six performance objectives are available 
in TEVA-SPOT: population exposed (PE), extent of 
contamination (EC), volume consumed (VC), mass 
consumed (MC), number of failed detections (NFD), and 
time of detection (TD). [Note that an additional objective, 
population dosed (PD), has been added recently.] TEVA-
SPOT works by simulating contamination incidents at a set 
of the nodes in the network specified by the user. For this 
chapter, contamination incidents were simulated at each 
of the 59 nodes with positive user demands. TEVA-SPOT 
calculates the performance objective for each incident, and 
then finds a single sensor that will best minimize the mean 
of the performance objective across all of the incidents. Each 
of the performance objectives is calculated using different 
equations (see Chapter 6); therefore the sensor that is selected 
is likely to be different.

Figure 5-1 displays the sensor locations selected by each of 
the six objectives for the example network. Note that there is 
overlap only in two of the six objectives.

When the optimization method selects a sensor location 
based on PE, locations are likely to be selected in areas of the 
network which would detect incidents that impact the largest 
number of people. In this case, the sensor location that best 
minimized PE is Junction-271 (red circle in Figure 5-1), 
which is one node upstream of the node with the largest user 
demand. Thus, the sensor located at Junction-271 would 
detect all incidents that are along the flow path to the largest 
demand node. With this single sensor, over all of the 59 
contamination incidents, the mean number of people exposed 
is reduced by 64% from approximately 11,000 people to 
4,000 people.

Extent of contamination is another important performance 
objective for sensor network design, since knowing the length 
of pipes which become contaminated during an incident is 
essential in order to effectively decontaminate the system and 
return it to service. The flow in this network is from the two 
sources at the top to the bottom and to the right side of the 
network. The EC sensor location, Junction-189 (blue circle in 
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Figure 5-1), is in the middle of the network, thereby cutting 
the largest flow paths in half. A sensor at this node would 
detect incidents that have the potential to contaminate larger 
portions of the network. For all 59 contamination incidents, 
this sensor reduces the mean EC by 47% from approximately 
46,800 feet to 25,000 feet.

The NFD metric aims to detect as many contamination 
incidents as possible. In this case, Junction-253 (orange circle 
in Figure 5-1) was selected as the best sensor location for 
NFD. This location detects the majority of the contamination 
incidents, since it is at the bottom edge of the network and 
the majority of the flow paths end here. Thus, at some time 
in the simulation, water originating from most injection 
locations will travel to this node. With this single sensor, 39 
of the 59 incidents are detected (and 20 are not detected), 
resulting in a 66% reduction in the number of failed detects.

The TD objective selected the same junction. This might 
seem counterintuitive since this is near the end of the flow 
path for many incidents, and the time of detection would 
be quite large. This problem is due to the way that the TD 
objective is calculated in TEVA-SPOT. It greatly penalizes 
sensor network designs for not detecting an incident. If an 
incident is not detected, the performance metric assigns the 
detection time to the total length of the simulation. Therefore, 
a shorter simulation time can be used to generate more 
realistic designs using TD. In addition, there is an advanced 
option in TEVA-SPOT that does not penalize a design for the 
incidents that are not detected (see Berry et al. 2008b). This 
one sensor shown in Figure 5-1 reduces average detection 
times from 192 hours to 69 hours for a 64% reduction in 
detection times.

Figure 5-1. Sensor designs for EPANET Example 3 network based on different 
performance measures.
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If one performance objective is selected for sensor network 
design, what does that mean about the performance of the 
design in terms of the other metrics? For example, if a utility 
decides to design a sensor network based on minimizing 
public health exposures, what are the detection times for 
that sensor network? This question can be addressed by 
evaluating the performance of each design in terms of all 
the other performance objectives. The results of such an 
analysis are presented in Table 5-1. The first column shows 
the performance of the PE design in terms of each objective. 
Although the PE design performs well for both the PE and 
VC measures (achieving a reduction in impacts greater than 
60% for both), it reduces the other impact measures by only 
36 to 44%. If all the performance objectives are equally 
important, the regret score (defined first in Chapter 3) can be 
used to compare them. The lowest regret score means that the 
sensor design in that column performed better than the others 
over all performance objectives. In this case, either the MC 
or VC sensor designs perform best over all objectives.

Thus, when designing contamination warning systems, it is 
important to understand the different objectives, since sensor 
designs based on one objective might not perform well in 
terms of the other objectives.

Number of Sensors
Another essential parameter to the sensor placement 
optimization problem is the number of sensors. As the capital 
costs of sensors can be in the tens of thousands of dollars, 
and the operation and maintenance costs can add up to 15 to 
30% of capital costs each year, the number of sensors that 

can be installed as part of a CWS is usually limited by utility 
budget constraints. Sensor placement tools like TEVA-SPOT 
can be used to develop tradeoff curves that demonstrate the 
relationship between the number of sensors (cost) and the 
benefit provided by the sensor network (calculated for a 
single objective) and can be used to help decision making. 
However, the question of how many sensors a utility needs in 
order to reliably reduce the risks of contamination incidents 
has not been answered definitively, and requires a difficult 
policy decision.

Figure 5-2 shows such a tradeoff curve based on the 
PE objective for the EPANET Example 3 network. In 
the absence of a sensor network, an average of 11,000 
people would be exposed to the contaminant out of a total 
population of approximately 114,200. A single sensor, 
optimally located, reduces exposures to 4,000 people 
on average (for a 64% reduction). Thus, the first sensor 
prevents an average of 7,000 exposures. This can also be 
stated by saying that the first sensor provides a marginal 
benefit of 7,000. Two sensors, optimally located, reduce 
exposures to 2,700 people. The second sensor, then, 
provides a marginal benefit of 1,300. The third sensor 
provides a marginal benefit of 500 people. After 10 sensors 
have been placed, the average number of exposures is 
reduced to 900 people, but it takes 59 sensors to reduce 
the average exposure to zero. Note that this would mean 
placing a sensor at every possible injection location (the 59 
nodes with user demands). Each additional sensor yields 
less and less benefit, reflecting the diminishing marginal 
returns of sensor placement optimization algorithms.

Table 5-1. Percent reduction achievable for the sensor designs (in each row) based on each 
performance objective. The percentages in bold represent the best performance for the sensor 
design specified in that row. Higher percentages reflect better performance.

Performance Measure PE MC VC TD NFD EC
Mean PE 64 55 62 44 44 64

Mean MC 36 56 44 56 56 35

Mean VC 91 94 95 92 92 88

Mean TD 38 63 48 64 64 37

Mean NFD 39 64 49 66 66 37

Mean EC 44 22 43 15 15 47

Regret Score 0.43 0.27 0.27 0.38 0.38 0.45
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Figure 5-2. Sensor network design tradeoff curve for EPANET Example 3 network 
based on the number of people exposed (PE) objective. The blue diamonds 
correspond to the left axis which shows the number of people exposed decreases 
with the number of sensors. The pink squares correspond to the right axis which 
shows the benefit of the sensor network (percent reduction in the number of 
people exposed) increases with the number of sensors.

 

0

3000

6000

9000

12000

15000

0 10 20 30 40 50 60

Number of Sensors

M
ea

n 
N

um
be

r 
of

 P
eo

pl
e 

E
xp

os
ed

0

20

40

60

80

100

Pe
rc

en
t R

ed
uc

tio
n 

in
 M

ea
n 

E
xp

os
ur

es
Figure 5-3. Histograms of the percentage of incidents resulting in a given number 
of people exposed for the case with no sensors (left side) and the case with a five-
sensor design (right side).
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Policy makers could make reasonable yet conflicting 
conclusions from Figure 5-2. For instance, a policy maker 
could say that given budget concerns, placing five sensors 
provides substantial public health benefit to the system 
but that no additional costs can be justified (because the 
marginal benefits decrease dramatically after 5 sensors). 
Another policy maker could say that designing a system that 
would still expose more than 1,600 people (or 1.4% of the 
population) on average is not acceptable in any circumstance.

If the utility selected a sensor network with five sensors, the 
number of people exposed is reduced by 85%. Figure 5-3 
shows the distribution of PE over the 59 contamination 
incidents, first in the absence of sensors and then for the 
five-sensor design. The shape of the two distributions is 
quite different — the mean and maximum number of people 

exposed is reduced significantly by five sensors. For this 
design, 81% of the incidents are detected with the five 
sensors (i.e., 19% are not), and an average of 18,000 pipe feet 
are contaminated. Is this level of risk reduction acceptable? 
Are there additional criteria that should be considered?

In order to answer this question, eight real-world water 
distribution networks that serve from 6,000 to 1.2 million 
people are examined. The goal is to look for trends among 
the networks that would help inform the question of how 
many sensors are needed. Trends are considered for multiple 
metrics of acceptable risk that impose specific limits on 
public health objectives (PE), coverage objectives (NFD), 
and economic objectives (EC). The characteristics of the 
additional networks can be found in Murray et al. (2008a).
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Table 5-2 lists the number of sensors needed to meet each 
of several public health metrics for the 8 networks based 
on results from TEVA-SPOT version 1.2. The results show 
the number of sensors needed to meet specific public health 
objectives. The first row shows the number of sensors needed 
to ensure that public health impacts will be less than 10,000 
people on average. If a utility is only concerned with limiting 
exposures to less than 10,000 people, the results show 
that only 1 or 2 sensors might be necessary. However, for 
lower levels of risk, the number of sensors needed might be 
dependent upon population.

Figure 5-4 plots the results for PE<1,000. The number of 
sensors needed to satisfy this metric is plotted against the 
population of each network (blue diamonds). There does 
appear to be a trend although there are two obvious outliers. 
Upon further examination, it appears that the level of detail 
in the model might be affecting these results. The right axis 

is the number of nodes in the model. The two outlier cases 
represent an extremely detailed model (high number of 
nodes compared to population – Net 4) and an extremely 
skeletonized model (low number of nodes compared to 
population – Net 8).

Similarly, Table 5-3 lists the number of sensors needed 
to meet several coverage objectives for the networks. The 
coverage metrics measure the percentage of contamination 
incidents detected (i.e., 1 – NFD) by the sensor network, 
from 40 to 90% of incidents. Net 4 gives anomalous results 
for these metrics, requiring significantly more sensors 
than the other networks. This is the extremely detailed 
network that produced anomalous results in Figure 5-4. 
As the number of nodes increases, so does the number of 
incidents, therefore, this metric should vary with the level of 
skeletonization.

Table 5-2. Number of sensors needed to achieve public health objective. *This metric is 
beyond the resolution of the utility network model because of skeletonization.

Metric/Network Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8
Population 6.2K 7.6K 114K 142K 200K 450K 840K 1,200K

Mean PE < 10,000 0 0 1 0 0 0 1 2

Mean PE < 1,000 1 1 3 19 6 10 38 154

Mean PE < 500 1 2 5 85 21 47 125 *

Mean PE < 100 5 5 11 * * * * *

Mean PE < 10 24 7 24 * * * * *

Figure 5-4. Number of sensors needed to satisfy PE<1,000 for each of the 8 
networks versus population (blue diamonds) and number of network nodes (pink 
squares).
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Table 5-3. Number of sensors needed to achieve coverage objective (number of incidents 
detected). +Note that the sensor placements were only calculated for up to 100 sensors, and 
these metrics required more than 100 sensors.

Metric/Network Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8
Incidents 79 9 90 11,000 1,800 2,200 7,000 1,400

Mean ID > 40% 1 1 1 8 2 1 1 1

Mean ID > 50% 2 1 1 30 2 2 3 2

Mean ID > 60% 2 1 1 90 2 4 6 5

Mean ID > 70% 2 1 2 + 4 5 21 11

Mean ID > 80% 3 1 2 + 25 15 75 28

Mean ID > 90% 5 2 6 + + + + 80

Table 5-4. Number of sensors needed to achieve economic objective. *This metric is beyond 
the resolution of the utility network model given existing pipe lengths.

Metric/Network Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8
Total pipe miles 123K 64K 216K 5.6M 4.1M 2.7M 9.4M 7.5M

EC < 100 miles 0 0 0 0 1 0 1 1

EC < 10 miles 0 0 0 7 12 10 25 27

EC< 1 mile 7 4 16 * * * * *

Finally, Table 5-4 lists the number of sensors needed to 
meet several economic objectives for the networks. The 
economic metric is measured in terms of the length of pipe 
contaminated, from 1 to 100 miles.

Typically, water utilities use a combination of budget 
constraints and sensor network design performance curves in 
order to determine the appropriate number of sensor stations 
to install in a distribution network. An analysis of Figure 5-2 
might lead one to determine that 5 sensors is the most 
appropriate number for Net 3. However, Tables 5-2, 5-3 and 
5-4 show that with only 5 sensors, a contamination incident 
would be likely to result in more than 1 mile of contaminated 
pipe, 10% of incidents not detected, and 300 people exposed. 
Using acceptable risk criteria might persuade the utility to 
install additional sensors.

The number of sensors needed in a water distribution system 
is a question of acceptable risk. Acceptable risk must be 
defined by the water utility, and thus is highly dependent 
on the detection goals of the community. The risk reduction 
goals of communities can vary widely from striving to detect 
only catastrophic incidents, to detecting as many incidents 
as possible (including accidental cross connections). The 
utility might have broad goals, such as widespread coverage 
of the distribution system (for example, sensors in every 
pressure zone), detection of a large number of contaminants, 
and specific goals, such as preventing events that would be 
expected to impact more than 100 people. Using a multi-
objective analysis might help to improve the performance 
of sensor designs across several objectives; however, there 
will always be a tradeoff in performance when balancing 
performance with costs. In order to design and implement 
an effective contamination warning system, utilities must 
explicitly consider the performance tradeoffs of the system 
they design.

Sensor Network Design Based on High-impact 
Incidents
Frequently, water utilities wonder why most sensor 
placement strategies focus on reducing mean consequences; 
they ask, “Why not design for high-impact contamination 
incidents only?” An optimal sensor network design based 
on minimizing the mean value of a performance measure 
can still allow many high-impact contamination incidents 
to occur. Further, most sensor placement optimization is 
done with the assumption that all incidents are equally likely 
(uniform event probabilities). This assumption is made 
because, typically, one does not have information about 
terrorist intentions; however, this results in an unintended de-
emphasis of high-impact incidents.

It is possible to develop sensor networks based on high-
impact contamination incidents. Rather than minimizing the 
mean, the optimization process can attempt to minimize the 
maximum value, or other robust statistic. A robust statistic 
is insensitive to small deviations from assumptions (Huber 
2004). For example, the mean statistic is not robust to 
outliers because a single large value can significantly change 
the mean.

Although the final determination of the design statistic 
ultimately rests with policy-makers at a utility, the 
aforementioned factors strongly suggest that, at a minimum, 
there is a need to understand the differences between and 
implications of both mean-based and robust sensor designs.

To illustrate the relative tradeoffs that are possible between 
mean-case and robust sensor network designs, sensor 
placement designs that minimize PE with five sensors 
were examined for EPANET Example 3 network (for a full 
treatment of this topic on real-world networks, see Watson 
et al. 2009). Histograms showing the simulated number of 
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Figure 5-5. Histograms of the frequency of incidents resulting in a given number 
of people exposed for the case with a five-sensor network design designed by 
minimizing the mean-case (left side) or the max-case (right side).
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people exposed during each contamination incidents (in this 
case, there are 59 incidents) if the mean-case or max-case 
sensor network designs is in place are shown in Figure 5-5. 
The distribution of impacts under the mean-case design 
is shown on the left side of Figure 5-5. With 5 sensors 
selected to minimize mean impacts, the mean was reduced 
from 11,000 to 1,600 people and the max-case reduced from 
32,000 to 9,200 people. The distribution on the left side of 
Figure 5-5 exhibits a key feature of sensor network designs 
that minimize the mean-case: the presence of non-trivial 
numbers of contamination incidents that yield impacts that 
are much greater than that of the mean. Even with these 
five sensors in place, there was one contamination incident 
that exposed more than 9,000 people, and an additional 15 
contamination incidents that exposed between 2,000 and 
9,000 people.

The right side of Figure 5-5 shows the distribution of 
the number of people exposed for the case when a sensor 
network design was in place that minimized maximum 
impacts. With this design, there were not as many high 
impact incidents as there were with a sensor network 
design that minimized the mean number of people exposed. 
In particular, the highest-impact incident exposed 7,600 
individuals, in contrast to 9,200 individuals under the optimal 
mean-case sensor design (Table 5-5). However, there were 
more small-to-moderate impact incidents. The max-case 
design yielded a mean impact of 2,300 people exposed, 
representing a 42% increase relative to the mean-case design 
which only impacted 1,600 people.

Thus, there is a tradeoff involved in switching from the 
mean to max case statistic for optimization — if the mean 
value is reduced, high impact incidents can still occur; if the 
max case value is reduced, the mean value will increase. In 
this case, the question for decision-makers in water security 
management is then: Is an 18% reduction in the max-case 
impact worth the 42% increase in the mean?

Table 5-5. Performance of mean-case and max-case for 
the five-sensor network designs in terms of the number 
of people exposed.

Performance Measure
Objective to Minimize

Mean Max
Mean 1605 2287

Max 9223 7600

The qualitative characteristics of mean-based and max-case 
designs for this network can also be compared and contrasted. 
The locations of the respective sensor network designs are 
respectively shown in the left and right sides of Figure 5-6. 
To compare the two sensor network designs, characteristics 
such as the size and number of pipes connected to the sensor 
junctions, the demand at sensor junctions, the number of 
contamination events that are detected by each design, the 
average impact of these contamination events, and the time 
of detection are considered.
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Figure 5-6. Diagrams of the five sensor network designs for the mean-case (left 
side) and max-case (right side).

In both designs, the majority of sensors were located at 
junctions along relatively large diameter pipes, which are 
often connected to more than 2 pipes; 9 of the 10 sensors 
were located at junctions with large demand. Specifically, 
all sensors were located on junctions connected to 8-inch 
or larger diameter pipes. Moreover, the majority of sensor 
junctions were connected to 24-inch pipes or greater (7 of 
the 10). One difference in the two designs, however, is that 
the max-case design put all 5 of the sensors on junctions 
connected to 24-inch or larger pipes, while only 2 of the 
sensors in the mean-case design were connected to 24-inch 
pipes or larger.

It appears from examination of Figure 5-6 that sensors in the 
max-case design were somewhat closer together, possibly 
resulting in less spatial coverage of the distribution network. 
Forty-eight contamination events out of 59 were detected by 
the mean-case design; 31 events were detected by the max-
case design. The average detection time of each design was 
different; 120 hours for the mean-case design and 270 hours 
for the max-case design. In addition, the average impact 
of the contamination events at the time of detection by the 
mean-case design was about 1,600 people, in contrast to 
2,300 for the max-case design.

It should be noted that it is possible to gain significant 
reductions in the number and degree of high-consequence 
events at the expense of moderate increases in the mean 
impact of a contamination event. This can be accomplished 
through the use of side-constraints during the optimization 
process (see Chapter 7 for more information about side 
constraints). For example, if the mean is minimized, the max-
case can be constrained to be less than some maximum value, 
so that the resulting sensor network design performs well 
both in minimizing mean and max-case consequences.

Sensor Placement for Large Networks
Many optimization methods for sensor placement were 
developed and tested on small test networks; however, 
applying them to large real-world networks has proven to be 
a challenge. TEVA-SPOT has a number of effective strategies 
available to assist users in developing sensor network designs 
for large networks. When a sensor placement problem is so 
large that TEVA-SPOT runs out of memory using standard 
approaches, there are a number of strategies to produce 
sensor network designs using less memory. These strategies 
might result in designs that are not optimal but close to 
optimal. This section contains a qualitative discussion 
of the options, followed by a case study on runtimes for 
large networks. Refer to Chapter 7 for more quantitative 
descriptions of methods to reduce memory usage. The 
discussion in this section refers to optimizing the mean of a 
single objective function.

Options for Reducing Memory
There are two main strategies for handling large networks:

1. Carefully choose the optimization solver.

2. Reduce the size of the problem by shortening the list 
of potential sensor locations, the list of contamination 
incidents simulated, or by using skeletonization or 
aggregation.

These methods are described in more detail in what follows.

One approach to managing large sensor placement problems 
is to carefully choose an optimization solver. There are three 
solvers available in TEVA-SPOT: an integer programming 
solver (IP), a heuristic solver (GRASP), and a Lagrangian 
solver (LAG). Chapter 7 describes these solvers and their 
tradeoffs in more detail. The heuristic solver is generally a 
good first choice, since it runs quickly and has been proven 
to produce good designs. If the heuristic fails on a real-
world network, but only needs a small amount of additional 
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memory to run, then running the heuristic in sparse mode 
might be sufficient (see the TEVA-SPOT toolkit User Manual 
for more information: Berry et al. 2008b). If this does not 
work, try the Lagrangian solver. LAG uses the least amount 
of memory. The sensor designs it produces, however, are 
not as close to optimal as those produced by GRASP. Yet, 
as described in Chapter 7, LAG gives a lower bound on the 
optimal value of the objective. No sensor placement can 
be better than this lower bound. If the lower bound is close 
to the value of the objective for the sensor placement LAG 
finds, then this is a good solution.

If running the Lagrangian solver on the large network still 
requires too much memory, the next step is to create a 
smaller problem. Most methods to create smaller problems 
will remove information or restrict options. That means 
the solution, even if optimal for the reduced problem, will 
only approximately solve the full-sized problem. The first 
approach to creating a smaller problem is to change the 
input to TEVA-SPOT. Reducing the number of potential 
sensor locations reduces the memory requirements for all 
the solvers. This size reduction introduces no error if the 
locations that are removed in reality cannot host sensors. For 
example, if some nodes cannot host a sensor because they 
are on large mains or are otherwise inaccessible, these nodes 
should be marked infeasible. Utility owners may initially 
choose to consider all locations infeasible except for those 
explicitly evaluated and deemed feasible based on cost, 
access, or other considerations.

Another way to change the input is to reduce the number 
of contamination incidents in the design basis threat. The 
selected incidents should represent the original set as much 
as possible. For example, injection locations should cover 
all the geographic regions of the network. Currently TEVA-
SPOT does not automate this process of reducing the number 
of contamination incidents. However, Chapter 7 describes 
one special case in which TEVA-SPOT can recognize an 
extremely similar pair of incidents and merge them into one.

Users can also change the input by coarsening the network 
through skeletonization, using, for example the techniques 
in Walsk et al. (2004) or a commercial skeletonization code. 
This merges pipes and nodes that are geographically close 
to create a smaller graph that approximates the hydraulic 
behavior of the original. However, it will introduce error by 
dropping some pipes of sufficiently small diameter.

TEVA-SPOT also provides an option, called aggregation, for 
automatically reducing the size of the problem. As described 
in Chapter 7, aggregation methods group potential sensor 
locations based on their performance for each incident. This 
effectively reduces the amount of memory needed to solve 
the sensor network design problem. When simulations are run 
with a coarse reporting step, aggregation can save some space 
without introducing error. The IP solver, for example, will do 
this automatically. However, if that is not sufficient then users 
can direct TEVA-SPOT to group nodes with differing, but 
approximately similar quality. The loss of information means 
the solver can only approximately solve the full problem. 
Aggregation is only available for the IP and LAG solvers. By 

selecting ratio aggregation with ratio , the resulting sensor 
network design could have an objective as much as a factor 
of  higher than the optimal. A user will need to use trial and 
error to determine the smallest value of  that produces a 
problem that can be solved.

Finding and evaluating methods for effectively solving 
large problems is an area of ongoing research. There are 
planned improvements for TEVA-SPOT in the near future. 
For example, TEVA-SPOT will have a built-in skeletonizer. 
Future aggregation methods may involve several steps, 
using solvers such as GRASP to do sensor placements on 
compressed and/or restricted instances. Future versions of 
TEVA-SPOT will allow the users more freedom in specifying 
how aggregated values are computed, allowing more options 
for approximately solving large instances. Users with difficult 
large instances should consult the TEVA-SPOT release 
notes and documentation to learn about new options as they 
become available.

Case Study on Runtimes for Large Networks
The execution of TEVA-SPOT on large utility network 
models can be time consuming. Figure 1-2 showed the 
data flow for the TEVA-SPOT software. Each of the major 
computational steps takes time: simulating incidents, 
assessing consequences, and optimizing sensor placement. 
Computational runtimes for all three steps are determined 
by: (1) network topology and hydraulics (e.g., the number 
of nodes or junctions and the flow paths); (2) EPANET 
simulation options (e.g., simulation length, water quality and 
hydraulic time steps, and reporting time step); (3) the design 
basis threat (e.g., the number of contaminants, the number of 
injection locations and times).

Here a case study is presented for a large utility network 
model using the TEVA-SPOT User Interface which 
contains a distributed processing capability. The software 
distributes EPANET simulations, consequence assessment 
calculations, and sensor placement optimization when 
sufficient memory and processors are available. A 
minimum of two gigabytes (GB) of random access 
memory (RAM) are required per processor.

For the case study, the runtimes are reported for a single 
processor computer, a dual processor (dual core), and 
a dual, quad core processor. The large utility network 
model consists of approximately 50,000 nodes, which 
includes approximately 10,000 non-zero demand 
nodes, about 10 reservoirs, and numerous valves, 
pumps, and tanks. A single water quality simulation 
in EPANET 2.00.12 takes about a minute.

Sensor placement is a challenge for this network because 
it requires large amounts of memory. The problem size 
must be reduced in order to use either the GRASP or LAG 
algorithms. The first strategy used in this case study was to 
reduce the number of feasible sensor locations from 50,000 
to about 1,000 locations. The problem size was also reduced 
by skeletonizing the network. MWH Soft’s Skeletonizer was 
used to preferentially remove pipes and connected nodes by 
the “Trim,” “Reduce,” and “Merge,” skeletonizer routines.



44

Using a single processor, Table 5-6 shows runtimes are 
reported for each step of the computation: EPANET 
simulations, consequence assessment, and sensor placement 
optimization. The total simulation time is calculated by 
multiplying the number of injections (10,000) by the sum 
of the second and third columns (EPANET simulation and 
consequence assessment runtimes) plus the fourth column 
(GRASP runtime) plus the sixth column (sensor placement 
summary runtime). Total runtimes are on the order of tens 
of days on a single processor. It should be noted that in this 
case, only a single sensor placement analysis was completed; 
in practice, several are usually analyzed which would further 
elongate runtimes.

The performance objective used here was PD — the 
number of people receiving a dose above a fixed threshold. 
Results are presented in Table 5-6 where runtimes are 
reported in seconds. This table shows how the runtimes 

are reduced when the problem size is reduced by: (1) 
reducing the number of potential sensor locations, 
(2) reducing the EPANET simulation duration, or (3) 
reducing the number of nodes and pipes in the network 
through skeletonization. Increasing the number of 
feasible sensor locations increased the corresponding 
runtime for both the GRASP and LAG algorithms.

In Table 5-7, total runtimes are reported for 3 single 
workstation configurations: (1) single processor, (2) a dual 
processor with 4 or more GB RAM, and (3) a dual, quad core 
processor with 8 or more GB RAM. Reported runtimes are 
for the mean statistic using the PD objective and the GRASP 
algorithm and 100 sensor network designs were generated 
(in which the number of sensors, the response time, and 
detection time were varied). Finally, the runtimes reported 
should be considered as only likely estimates of run times; 
newer and faster processors will have shorter runtimes.

Table 5-6. Runtimes for each component of the sensor network design process using the TEVA-
SPOT User Interface. The simulation options include the simulation duration (168 or 240 
hours), the number of potential sensor locations (10,000 or 1,000), and the original model or a 
skeletonized model. The sensor placement summary step is unique to the User Interface and is 
the time required to report results to files and output tables.

Simulation Duration/Injection 
Nodes/Number of Feasible Sensor 
Locations/Skeletonization

Single 
EPANET 
Simulation 
(seconds)

Cons. 
Assess. 
Simulation 
(seconds)

Sensor Placement 
GRASP vs. LAG 
(seconds)

Sensor 
Placement 
Summary 
(seconds)

Total 
Simulation 
Time 
(seconds)

240 Hours; 50,000 nodes; 
1,000 locations; original model 479 93 1,600 4,800 210 5,721,810 

(66 days)

240 Hours; 10,000 nodes; 
10,000 locations; original model 479 93 1,000 1,600 152 5,721,152 

(66 days)

168 Hours; 10,000 nodes; 
10,000 locations; original model 338 93 831 1,400 116 4,310,947 

(50 days)

240 Hours; 10,000 nodes; 
10,000 locations, 8-inch skeletonized 239 50 610 1,224 80 2,890,690 

(33 days)

240 Hours; 10,000 locations, 
12-inch skeletonized 203 44 463 1,156 65 2,470,528 

(29 days)

240 Hours; 10,000 nodes; 
10,000 locations, 16-inch skeletonized 185 59 414 1,134 73 2,440,487v 

(28 days)

Table 5-7. Approximate total runtimes (in days) for three different computing platforms: a single 
processor, a dual processor, and a dual quad core processor.

Simulation Duration/Injection Nodes/Number of Feasible Sensor 
Locations/Skeletonization

Total Computational Time

Single 
Processor

Dual 
Processor 
(4 GB +)

Dual, Quad 
Processor 
(8 GB +)

240 Hours; All Nodes; 1,000 locations; original model 321 134 54

240 Hours; NZD Nodes; 10,000 locations, original model 62 26 10

168 Hours; NZD Nodes; 10,000 locations, original model 47 18 8

240 Hours; NZD Nodes; 10,000 locations, 8-inch Skeletonized model 27 11 5

240 Hours; NZD Nodes; 10,000 locations, 12-inch Skeletonized model 23 10 4

240 Hours; NZD Nodes; 10,000 locations, 16-inch Skeletonized model 23 9 4
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6.
Impact Assessment Methodology

This chapter presents the technical details of the methodology 
underlying the simulation and consequence assessment 
modules of TEVA-SPOT. Figure 6-1 shows the data flow in 
the TEVA-SPOT software.

The simulation module of the TEVA-SPOT software 
simulates a set of contamination incidents in a specific water 
utility distribution system network. The user must provide 
a utility network model (e.g., an EPANET input file), and 

an input data that defines the set of contamination incidents. 
Incidents are specified by a single injection location in the 
distribution system, the assumed volume and concentration of 
the contaminant, and the start and stop time of contaminant 
introduction. The EPANET software is used to simulate the 
transport of each contaminant through the water distribution 
network. Concentration profiles from each contamination 
incident are stored in an output database for further analysis.

Figure 6-1. Data flow diagram for the TEVA-SPOT software.



46

Figure 6-2. Data flow diagram for the simulation module of TEVA-SPOT.

The consequence assessment module of TEVA-SPOT 
reads in the database output from the simulation module 
and calculates the potential impacts of each contamination 
incident. This module calculates impacts in terms of 
the number of people becoming ill from exposure to a 
contaminant, the volume or mass of contaminant removed 
from the network, or the length of contaminated pipe in the 
distribution system. The results of this analysis are store in 
an output file for further analysis. The rest of this chapter 
describes these methodologies in more detail and refers the 
reader to additional background material when needed.

The Simulation Module of TEVA-SPOT
Given a utility network model, the simulation module 
simulates a set of contamination incidents. The set of 
incidents make up the “design basis threat” for the sensor 
network design — the set of contamination incidents that 
the water utility would like to be able to detect with a sensor 
network. Given that there are a wide variety of potential 
contamination threats to water distribution systems, and it 
is difficult to predict the exact incident adversaries might 
try to enact, TEVA-SPOT supports the simulation of a large 
number of threat incidents (as shown in Figure 6-2).

The utility must provide a network model as input (see 
Chapter 2 for more discussion on the model requirements). 
Incidents are defined by the location at which a contaminant 
is introduced, the start and stop time for contaminant 
introduction, and the mass injection rate. When using the 
TEVA-SPOT User Interface, this data is input in a window 
(U.S. EPA 2009); if using the TEVA-SPOT toolkit, this 
information is specified in an input file (Berry et al. 2008b).

Selecting Incidents
Location. Contaminant injections can be simulated for a 
single location, a set of locations, or at all possible locations 
(all the nodes defined in a utility network model).

Start and Stop Time. The start and stop time, or the 
duration (D) of the contamination injection must be specified. 
In practice, the authors generally have used durations 
between 1 and 24 hours. For more information about the 
influence of the timing of the contamination incidents on the 
consequence assessment, see Murray et al. (2006b) and Davis 
and Janke (2008).

Mass Injection Rate. The mass injection rate is the rate at 
which mass enters the distribution system. One can choose 
an arbitrary value (e.g., 1,000 mg/min), or one can calculate 
this value based on assumptions about a specific contaminant. 

Contaminants of interest for water security could include 
chemicals (household, toxic industrial, and chemical warfare 
agents), biotoxins (such as botulinum toxin or ricin), 
biological pathogens (bacteria, viruses, or protozoa), and 
radiological (e.g., Cs-137).

The mass injection rate can be calculated based on a 
contaminant stock concentration (C) and volume (V) and 
the duration (D) over which the contaminant is introduced. 
The concentration and volume can be estimated based 
on the availability and technical feasibility of acquiring 
or producing the contaminants. For example, some toxic 
industrial contaminants can be purchased at large quantities 
at a known concentration. Some bacterial cultures are known 
to require a relatively low level of skill and equipment to 
produce at a particular concentration and volume.

A target mass release rate (MR) can be calculated by:

  

D
VCMR =  (6-1)

Simulating Incidents with EPANET
TEVA-SPOT simulates contamination incidents using 
EPANET (Rossman 2000). EPANET utilizes the system 
specific data related to utility operations and customer 
demands provided in the utility network model to simulate 
the hydraulics of pipe flow and water quality throughout the 
distribution network.

Contaminant injections are simulated as mass sources, 
thereby adding mass to the system without directly changing 
the hydraulics at the point of introduction. Typically, all 
contaminants are treated as conservative tracers. This results 
in both overestimation and underestimation of contaminant 
concentrations at specific locations, because fate and 
transport processes such as hydrolysis, oxidation, adsorption, 
and attachment to biofilm are not considered. It is possible to 
assume constant first order decay for contaminants, although 
it is difficult to determine appropriate decay constants that 
lump together all of these processes. (Later versions of 
TEVA-SPOT will run with EPANET-MSX (Shang et al. 
2007), which allows for more complex fate and transport 
modeling.)

Each incident is run separately and the contaminant 
concentration time series (averaged over each reporting time 
interval) for each node in the network model are stored in an 
output database. The TEVA-SPOT User Interface supports 
distributed processing of the EPANET runs. For a dual-core 
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machine with sufficient memory, TEVA-SPOT can run two 
simulations simultaneously, thereby reducing the run time by 
a factor of two. Quad-core or dual quad-core workstations 
would offer even greater computational efficiency. The 
TEVA-SPOT software can also be run on a distributed server-
based computing system (U.S. EPA 2009).

Output Database
Simulation results are stored in a binary database for later 
analysis by the consequence assessment module (see 
Figure 6-2). This is a structured database that efficiently 
stores a large volume of numerical data. The database 
includes header information, hydraulic information, and the 
concentration matrix. The concentration matrix combines 
the time series of contaminant concentrations at all nodes 
in the network model. For a more detailed description of 
the output database, see the TEVA-SPOT User’s Manual 
(Berry et al. 2008b).

Consequence Assessment Module
The Consequence Assessment module of TEVA-SPOT 
calculates the potential consequences of each incident 
simulated. In particular, the module calculates the potential 
public health impacts, the extent of contamination in the 
pipe network, and the mass or volume of contaminant that 
has been removed from the pipe network. The results of 
the consequence assessment calculations are then stored 
in impact files. The impact files are utilized by the sensor 
placement optimization module.

Public Health Impacts
Public health impacts can be estimated by combining the 
contamination concentration time series with exposure 
models. Contaminant-specific data is needed to accurately 
estimate the health endpoints. For many threat agents, 
reliable data are lacking, and the ensuing uncertainty in the 
results must be understood.

Population models. In order to calculate exposure to 
contaminants, an estimate of the population consuming 
water at each node is required. In TEVA-SPOT, the default 
is to calculate the population at each network node based on 
the total amount of water consumed at that node over a 24-
hour period:
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where q is the demand (or total water usage) and Rpc is the 
per capita consumption rate per day. A USGS report provides 
usage rates by state and gives a nationwide average of 179 
gallons per capita per day (USGS 2004). For simplicity, 200 
gallons per capita per day is often used for TEVA-SPOT 
calculations.

If detailed population information is available for each node 
in a network model, users can input a population file (see 
U.S. EPA 2009). The file-based approach allows users to 
input accurate numbers from utility billing records or from 
census data.

Population is assumed to be constant over time. Population 
mobility is ignored, and so effects related to commuting to 
work and attending school or daycare are not evaluated.

Routes of exposure. Exposure to contaminants in domestic 
drinking water supplies is possible through multiple routes 
depending on water usage and the specific characteristics 
of the contaminant. Municipal water is used for drinking, 
showering, washing clothes, brushing teeth, cooking, bathing, 
cleaning, watering the lawn, and more. Through such 
activities, there is the potential for exposure to contaminants 
in drinking water through three primary routes: inhalation, 
dermal contact with the skin or eyes, and ingestion. An 
individual could be exposed to some contaminants through 
all three exposure routes.

Inhalation exposure might occur if a contaminant is 
volatilized or aerosolized. Pathogens, biotoxins, chemicals, 
and other contaminants could be inhaled in the form of 
finely dispersed mists, aerosols, or dusts during showering, 
bathing, cooking, or lawn work. Household appliances such 
as dishwashers and washing machines may also contribute 
significantly to the inhalation exposure pathway for volatile 
organic compounds (VOCs) (Howard-Reed et al. 1999; 
Jacobs et al. 2000). Highly water-soluble gases and vapors 
and larger mist or dust particles (greater than 10 microns in 
diameter) generally are deposited in the upper airways. Less 
soluble gases and vapors and smaller particles can be inhaled 
more deeply into the respiratory tract. Inhaled substances 
can be absorbed into systemic circulation, causing toxicity to 
various organ systems (ATSDR 2001).

Skin and eye contact can occur when handling contaminated 
water or by using contaminated water for laundry, 
recreational activities, bathing, or washing. Corrosive agents 
can cause direct damage to tissues by various mechanisms 
including low or high pH, chemical reaction with surface 
tissue, or removal of normal skin fats or moisture. Chemicals 
also can be absorbed systemically through the skin. This 
is more likely to occur when the normal skin barrier is 
compromised through injury or when the chemical is highly 
fat-soluble such as organophosphate and organochlorine 
pesticides (ATSDR 2001).

Ingestion is the most likely route of human exposure to 
contaminants from the drinking water supply. Ingestion of a 
corrosive agent can cause severe burns to the mouth, throat, 
esophagus, and stomach. Chemicals also can be aspirated 
into the lungs (e.g., liquid hydrocarbons), causing a direct 
chemical pneumonia (ATSDR 2001). A study from England 
reported that pathogens ingested from contaminated water 
are a major contributor to the estimated 1 in 5 people in 
the general population that develop an infectious intestinal 
disease each year (Wheeler et al. 1999). Many of the 
biological agents can also be dangerous ingestion risks.
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Some studies indicate that even small doses of contaminants 
could result in higher combined inhalation, oral, and dermal 
exposures from daily water use (Shehata 1985; Weisel et al. 
1996). Several studies have concluded that skin absorption 
or inhalation of contaminants in drinking water has been 
underestimated and that ingestion might not constitute the 
sole or even primary route of exposure (Andelman 1985a, 
1985b; Brown et al. 1984). Another study estimated that the 
uptake of VOCs from household inhalation may be from 
1-6 times the uptake of ingestion exposure. In addition, the 
uptake of VOCs from dermal exposure during baths and 
showers could be from 0.6-1 times the uptake of ingestion 
exposure (McKone 1989).

The design basis threat for sensor placement is often 
based on high impact contamination incidents that would 
involve contaminants that have rapid and/or acute health 
impacts. It is assumed that the volume and concentration 
of contaminants introduced into the drinking water system 
would be selected to maximize the health impacts to the 
population; therefore, the quantities would be sufficient to 
cause harm from ingestion alone. Long-term exposure to 
low levels of contaminants through multiple exposure routes 
would certainly increase the overall public health impacts, 
but currently the consequence assessment module only 
estimates exposure to contaminants through ingestion. Future 
versions of TEVA-SPOT could include the capability to 
model exposure from inhalation and dermal routes.

Modeling exposure. The Consequence Assessment Module 
estimates exposure to contaminants at each node, xi, i=1..N, 
where N is the total number of nodes, in a drinking water 
distribution system. At each node, there are many people 
being served water, the total number is given by pop(xi ). The 
cumulative dose of a contaminant ingested by the population 
at xi at time t is calculated according to:
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where d is measured in number of organism or number of 
milligrams, C is the contaminant concentration in water 
at node xi at time t as predicted by EPANET, PW is the 
probability of a person consuming water at time t, VW is 
the volumetric rate of water consumption, and T is the time 
period of interest.

The assumption that the dose is accumulating over the 
entire simulation period can result in an overestimation of 
the health impacts. Some toxic chemicals, such as cyanide, 
are effectively removed from the body quite rapidly; thus, a 
lethal or harmful dose would need to be accumulated over 
a very short period of time — before the body had time to 
render the substance harmless.

The volumetric rate of water consumption, VW , is commonly 
assumed to be 2 Liters/day for risk assessment purposes (U.S. 
EPA 1997); however, studies show that the average quantity 
of tap water ingested in the U. S. is less than 2 Liters/day 
(Jacobs et al. 2000). A survey conducted in 2002 by the 

International Bottled Water Association found that the mean 
daily water consumption by Americans is 1.25 Liters per 
day. This figure takes into account variations between age 
group, sex, and regions. The survey found that adults over 24 
years old drank more water than those 18–24, women drank 
more water than men, and those residing in the western part 
of the country drank more than those in the northeast, south, 
and Midwest (IBWA 2002). The Consequence Assessment 
Module allows users to select a fixed value for VW, or to 
select a probabilistic model for volumetric rate that selects 
from a distribution (Jacobs et al. 2000).

The probability that an individual at node xi consumes water 
at time t, PW , can be estimated by one of three “timing” 
models (see Table 6-1). The simplest model, labeled D24 
in Table 6-1, assumes that the timing of water consumption 
is proportional to the timing of network demands. The 
probability of consuming water at time t is assumed to be 
proportional to the ratio of the demand q at time t to the 
average demand over the time period T,
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This demand-based timing model is probably not accurate for 
a single person, but instead reflects the average usage patterns 
of all the people being served at a particular node. This model 
was used in Janke et al. (2006) and Murray et al. (2006b).

Network demands quantify the total amount of water used 
over time. However, demand accounts for both ingestion of 
water as well as water usage for washing dishes, laundry, 
showering, and watering the lawn. It is estimated that less 
than 1% of water demand is actually consumed, and the 
timing of consumption might not be correlated with the 
timing of water usage overall (Jacobs et al. 2000). Therefore, 
timing models based on other information than demands 
could be more accurate.

Little information has been collected on the times of day 
at people ingest tap water. Studies in the U.S. and England 
have shown that 68 to 78% of the daily intake of water 
is consumed when people eat (de Castro 1988; Engell 
1988; Phillips et al. 1984). The quantity of water ingested 
is determined primarily by how much food is ingested, 
and this does not vary with age among 20 to 80 year-olds 
(de Castro 1988, 1992). Models for the timing of eating, 
therefore, might be useful for predicting the timing of water 
consumption. A simple ingestion model is based on three 
conventional meals per day (Ma et al. 2005). In 2003 and 
2004, the American Time Use Survey (ATUS), sponsored by 
the Bureau of Labor Statistics (BLS) and conducted by the 
U.S. Census Bureau, reported on the starting times for eating 
(BLS et al. 2005).

Another timing model, labeled F5 in Table 6-1, assumes that 
tap water is ingested at five fixed times a day corresponding 
to the typical starting times for the three major meals on 
weekdays (7:00, 12:00, and 18:00 hours) and times halfway 
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between these meals (9:30 and 15:00 hours). A third model, 
P5 in Table 6-1 also assumes that tap water is ingested five 
times per day at major meals and halfway between them, 
but uses a probabilistic approach to determine the actual 
times. Both of these models are based on the ATUS data. For 
more information about these models, see Davis and Janke 
(2008; 2009).

Table 6-1. TEVA-SPOT consumption timing models.

Name Description
D24 Demand based, every time step

F5 Ingestion based, fixed times (5 events)

P5 Ingestion based, probabilistic (5 events)

Dose-response models. Equation 6-3 predicts the dose 
received by each individual at a given node. Dose-response 
curves can be used to predict the percentage of people 
who might experience a particular health outcome after 
receiving a specific dose. For chemicals, often the outcome 
of utmost concern is fatalities. For biologicals, the outcome 
can be infection or fatalities. Dose-response curves can be 
considered the probability of a representative individual 
dying as a function of exposure.

An example dose response curve is given in Figure 6-3; note 
that the ID50 shown is 100,000 organisms.

The consequence assessment module includes two dose-
response functions. The first is the log-probit model, which 
is a toxicity model frequently used for a wide range of 
contaminants. Results of toxicity studies of both chemical 
and infectious agents often fit the shape of this model 
(Covello et al. 1993); however, this model does not work well 
for biological contaminants with health outcomes that occur 
at very low doses (Haas et al. 1999). The model is based on 
the assumption that the tolerance (dose at which response is 
first observed, or threshold) to exposure to a harmful agent of 
members of a population follows a log-normal distribution. 
The model is also referred to as the log-normal dose-response 
model. The log-probit model predicts the probability of 
fatality at a given dose d by:

  )ln()( 21 ddr ββ +Φ=  (6-5)

where  is the cumulative distribution function of a standard 
normal random variable, 2 is related to the slope of the 
curve, 1 is the product of 2 and the log of the LD50 (the dose 
at which 50% of the population would die).

The log-probit model produces a symmetrical sigmoidal 
curve when log dose is plotted against cumulative response, 
with the LD50 lying at the inflection point of the curve. 
When this curve is put though a probit transformation, which 

Figure 6-3. Example dose-response curve for a biological agent.
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Figure 6-4. At one node, the concentration of contaminant, the consumption 
patterns, the cumulative dose, and the percent health response over time.

converts cumulative response to probit units, or number 
of standard deviations, a straight line is formed, the slope 
of which is represented by beta. Probit plots are used for 
comparing the relative sensitivity (slopes) of populations to 
different toxic agents.

The second dose response curve is a more generic logistic 
function with a sigmoidal shape given by 
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where  is a parameter that controls the slope of the response 
curve. This parameter can be used to fit this model to 
available data. Other dose response models might be more 
appropriate for specific contaminants; however, at this time 
equations (6-5) and (6-6) are the only models contained in 
the consequence assessment module.

Figure 6-4 shows plots of several of the quantities used in 
Equations 6-2, 6-3, and 6-4 as predicted in one particular 
example incident. The figure shows how one location in the 
system (downstream of the introduction location) would 
experience a specific contamination event. The figure shows 
four plots: the concentration of contaminant (C) that passes 
by the consumers at one node, the water consumption 
patterns of consumers (PW), the cumulative dose received 
by consumers (d), and the response function (r) (cumulative 

percent of population experiencing a health response) over 
time. Note that the concentration profile is very complicated 
since the spatial location is under the influence of a nearby 
tank. The contaminant is drawn inside the tank as the tank 
fills and is transported out as the tank drains.

Dynamic disease progression models. Equations 
(6-2)–(6-6) are used to predict the number of people at 
each node who become infected or ill. For water security 
applications, knowledge of the timeline of events is 
critical in order to provide rapid response to reduce the 
impacts. Understanding the timeline of public health 
impacts can allow utilities and public health departments 
to plan for effective interventions that reduce further 
exposures and/or treat the people who have been exposed. 
To this end, TEVA-SPOT combines the dose-response 
model with dynamic disease progression models in 
order to predict how the illnesses progress over time.

Given the percentage of people at each node who become ill 
after being exposed to the contaminant, disease transmission 
models predict how the disease progresses over time. Disease 
models are used to predict the number of people at each node 
susceptible (S) to illness from the contaminant, exposed 
to a lethal or infectious dose (I), experiencing symptoms 
of disease (D), and either recovering (R) or being fatally 
impacted (F). These quantities are predicted at each node 
over time according to the following differential equations:
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where v is the per capita recovery rate (1/v is the mean 
duration of illness),  is the inverse of the mean latency 
period,  is the per capita untreated death rate, and  is the 
per capita rate of loss of immunity. Parameter  is the per 
capita rate of acquisition of illness. In general, for any route 
of transmission, it can be written as the product of the rate 
of exposure to the contaminant and the probability of illness 
given that exposure. The rate of exposure to the contaminant 
is the partial derivate of the dose function with respect to 
time, and the probability of illness given that exposure is the 
partial derivative of the response function with respect to 
dose. This formulation of  is a generalization of that used by 
Chick et al. (2001).

Equations (6-7) are applied at each spatial node xi in the 
network model. If the number of births in the population is 
assumed to exactly balance the number of deaths not due to 
exposure to contamination over the time period of interest, 
then the total population at each node is given by:

  FRDISPopi ++++=  (6-8)

The populations can be summed in order to estimate the total 
number of infected, diseased, recovered, and fatally impacted 
in the total population at any point in time, for example:
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Figure 6-5 shows the output from modeling equations 
(6-7) for a biological agent over time. The curves show the 
percentage of infected people (I), the number of symptomatic 
people (D), and the percentage of fatalities (F) over the entire 
network. The slope of the infections curve is directly related 
to , the rate of acquisition of illness. This was calculated 
through equations (6-2)–(6-6) which incorporate all of the 
hydraulics of the contamination incident. The number of 
susceptible people who become infected quickly increases 
and then drops off to a very small number (not shown). 
The number of infected people increases rapidly, sustains 
itself as the disease is latent (for one week), and then drops 
quickly as the infected people transition into the diseased 
stage. Similarly, the number of symptomatic people increases 
rapidly, sustains itself for the duration of the illness (an 
additional week), and then a proportion of the symptomatic 
population recovers, and the remaining die (30% untreated 
fatality rate). Over the entire network, 25% of the population 
is infected after consuming contaminated water.

The health impacts methodology described here allows users 
to estimate the spatial and temporal distribution of health 
impacts resulting from ingestion of contaminated drinking 
water. The method is flexible enough to accommodate most 
types of acute illnesses from chemical or biological sources. 
The model could be extended to incorporate exposure 
through dermal and inhalation routes, and to incorporate 
person to person transmission. For more information about 
this methodology, see Murray et al. (2006b).

Figure 6-5. The spread of disease over time in a population exposed to a 
biological agent through drinking water.
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Modeling Other Consequences. In addition to estimating 
the public health consequences, three other consequence 
measures are included in TEVA-SPOT.

The extent of contamination, or the number of feet of pipe 
contaminated during a contamination incident, is a useful 
measure of the economic impacts of an incident. It is an 
indication of the length of pipe that might need to be super-
chlorinated, decontaminated, re-lined, or replaced following 
a contamination incident with a persistent contaminant. This 
consequence metric can be estimated according to:
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where L is a pipe with flow starting at node xi.

The mass consumed metric is the mass of contaminant that is 
removed from the distribution system by consumer demand. 
This includes the mass of contaminant that is ingested by 
consumers, and also the mass of contaminant present in the 
water used for watering lawns, washing clothes, or any other 
consumer use. Mass consumed for each incident is calculated 
according to:
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where C is the concentration of the contaminant, q is the 
demand, and t is the time step.

The volume consumed is the volume of contaminant that is 
removed from the distribution system by consumer demand. 
Volume consumed for each incident is given by:
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List of Variables
q Demand at a node [Volume/Time]

MR Mass injection rate [Mass/Time]

V Volume of the contaminant [Volume]

C Concentration of the contaminant [Mass/Volume]

D Duration of the contaminant injection [Time]

Pop Population at a node [.]

Rpc Per capita daily rate of water consumption [Volume/
Day]

d Cumulative dose of contaminant ingested by consumers 
at a node [Mass]

PW Probability of a consumer ingesting water at time t [.]

VW Volumetric rate of water consumption at time t 
[Volume/Time]

r Response at a given dose [.]

Φ Cumulative distribution function of a log-normal 
distribution

β1 Parameter in the log-probit dose response curve

β2 Parameter in the log-probit dose response curve

τ Parameter in the logistic dose response curve

S Number of people at each node susceptible to illness [.]

I Number of people at each node exposed to a lethal or 
infectious dose [.]

D Number of people at each node experiencing the 
symptoms of illness [.]

R Number of people recovered from illness [.]

F Number of fatalities resulting from illness [.]

v Per capita recovery rate (1/v is the mean duration of 
illness), [1/Time]

σ Inverse of the mean latency period, [1/Time]

α Per capita untreated death rate, [1/Time]

γ Per capita rate of loss of immunity [1/Time]

λ Per capita rate of acquisition of illness [1/Time]

L Pipe link in model

EC Extent of contamination [Length]

MC Mass consumed [Mass]

VC Volume consumed [Volume]
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7.
Optimization Methodology

This chapter describes several fundamental sensor placement 
methods that are included in the TEVA-SPOT software. 
The model formulations are presented without going into 
extensive detail regarding the actual solution techniques, 
and references to additional information are provided. The 
implications of algorithmic choice are also considered 
in terms of running time, memory (size of the machine 
necessary to run the optimization), and confidence in the final 
sensor placement solution.

As described in Chapter 6, TEVA-SPOT simulates 
contamination incidents in the Simulation Module and 
calculates impacts in the Consequence Assessment module. 
The Sensor Placement Module, then, optimizes sensor 
locations. Appendix A discusses other possible approaches 
to the sensor placement problem, including some that model 
contamination movement as part of the optimization problem. 
To date, such models have used average velocities or other 
approximations that are likely to be much less realistic than 
the approach used in TEVA-SPOT.

Sensor Placement Problem
The Consequence Assessment Module output file contains 
a list of all the contamination incidents and the calculated 
impacts of those incidents over time in terms of a 
specific performance measure. As described in Chapter 2, 
performance measures can include the number of incidents 
detected, the number of people exposed to contaminants, 
the length of pipe contaminated, among others. The sensor 
placement problem is described as locating a set of sensors in 
order to best minimize this set of impacts; e.g., minimizing 
detection times.

When selecting sensor locations that minimize the 
mean impacts over a set of contamination incidents, this 
problem is equivalent to a well-known problem from 
the facility location literature: the p-median facility 
location problem (Mirchandani et al. 1990), in which p 
facilities must be located in such a way that the distance 
from each facility to its customers is minimized. The 
specific structure of sensor placement problems in water 
distribution networks leads to p-median problems that 
are relatively easy to solve, even if the networks have 
tens of thousands of junctions (Berry et al. 2006b). This 
is fortunate, since there are examples in the p-median 
literature of much smaller instances using other applications 
that have proven much harder to solve in practice.

The classic p-median facility location problem can be 
illustrated as follows. Consider the layout of a city, and 
imagine that p fire stations must be located in order to best 
serve the city’s residents and infrastructure. Each house 
and building in the city is a customer, and each fire station 
a facility. Given a proposed set of locations, the p-median 

objective is to minimize the average distance from a 
customer to the nearest facility. One could assign fire stations 
using nothing more than eyesight and a city map, but the 
optimization techniques described below do much better.

For the drinking water sensor placement problem, the sensors 
are facilities analogous to the fire stations. However, the 
analogue to customers is more subtle. Each contamination 
incident is a single “customer.” A contamination incident 
propagates contaminated water through the network and is 
“served” from the network users’ point of view, by the first 
sensor facility that detects the contamination. By modeling 
sensor placement as a p-median problem, the actual network 
topology (which pipes are connected to which junctions) 
is not required for optimization. These topological details 
are only considered during the water quality simulations 
that produce the impact information (the Simulation 
and Consequence Assessment modules). The p-median 
formulation merely requires a list of potential facilities for 
each customer (locations where sensors could observe an 
incident) and the associated service costs. For the fire station 
example, these costs are distances and for the water sensor 
placement problem, the costs are contamination impacts to 
people and/or infrastructure. TEVA-SPOT measures these 
impacts in terms of performance objectives like the time of 
detection or the number of people exposed.

Solution Options
Given a p-median problem, there are many possible ways to 
solve it. TEVA-SPOT provides three general optimization 
methods: mixed-integer programming (MIP), a Greedy 
Randomized Adaptive Search Procedure (GRASP) heuristic, 
and a Lagrangian relaxation method. These optimizers vary 
in runtime, the amount of computer memory required, and 
the guarantee provided for solution quality. Generally, a 
method that gives a stronger quality guarantee will require 
more time and/or memory.

The MIP solvers for the p-median algorithms are exact. 
They produce solutions that are provably optimal, given the 
input data. The GRASP solvers are heuristic, meaning that 
their solutions tend to be good, but not provably optimal. 
The Lagrangian method produces a lower bound, a value 
guaranteed to be no larger than the optimal objective. A 
lower bound can provide higher confidence in the quality of 
a heuristic solution. For example, when a heuristic method 
returns a value with a small percentage difference from a 
lower bound, then decision makers can be confident the 
heuristic solution is good.

The great challenge of the drinking water sensor placement 
problem is that the set of contamination incidents can be 
much larger than the set of customers in a more conventional 
facility location problem. Threat ensembles that attempt 
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to be comprehensive for location, time of day, season, day 
of the week, and contamination type can be very large. 
Consequently, solution methods applied to corresponding 
p-median problems can easily exceed the memory available 
on a standard desktop computer or Unix/Linux workstation. 
TEVA-SPOT includes methods to reduce memory 
requirements; however, this is usually at the price of reduced 
solution quality.

Because the Simulation Module and Consequence 
Assessment Module are distinct from the Optimization 
Module, users can try multiple types of solution methods 
on any particular large problem without repeating these 
simulation/assessment runs. For example, one can experiment 
with different objectives, different solvers, or search over 
error parameters with a single objective until the system 
returns a satisfactory solution. Even if simulation methods 
or incident generation methods improve, the optimization 
methods remain viable, since the optimization can be rerun 
with the new input.

Mixed-integer programming
A MIP is the optimization (minimization or maximization) of 
a linear objective function subject to linear constraints. Some 
of the variables must take on integer values (no fractional 
parts), but others can take on continuous values. There 
is a large body of theoretical work in operations research 
supporting MIP solution technology. When usable, this 
technology will do the best possible job of optimization — it 
will find optimal solutions.

MIP technology is usable if the problem instances are not too 
large, and if MIP solvers of sufficient power are available. 
Commercial MIP solvers are generally the fastest and most 
reliable. However, they cost tens of thousands of dollars for 
a license. Typically, free MIP software like the PICO solver 
available in TEVA-SPOT is sufficient to optimize p-median 
problems for moderate-sized water networks.

The MIP formulation for sensor placement (SP) is essentially 
a p-median formulation:

 (SP) minimize  ∑∑
∈∈ aLi

aiai
Aa

a xdα  (7-1)

Where:
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and A is the set of contamination incidents. The SP MIP 
(equations (7-1)–(7-2)) minimizes the expected impact of a 
set of contamination incidents; this is a weighted average. 
Since dividing by the number of incidents does not change 

the optimal set of locations (only the value), that division is 
not represented here.

For each incident, a∈ A, a is the weight of incident a. This 
weight could be a probability of that incident occurring or 
it might represent a relative frequency (e.g., an incident that 
could occur on Monday–Friday might have a weight of 5/7 
while a weekend incident might have a weight of 2/7). The 
set of locations denoted L is the set of network junctions 
with nonzero concentrations for one or more incidents (as 
determined by EPANET simulations). For each incident a, 
 La ⊆ L is the set of locations that can be contaminated 
by a. Thus, a sensor at a location  i∈ La  can detect 
contamination from incident a when contamination first 
arrives at location i. Each incident is said to be “witnessed” 
by the best (lowest impact) sensor that sees it. For each 
incident  a∈ A  and location  i∈ La , dai is the impact of 
the contamination incident a if it is witnessed by location 
i. This impact measure assumes that as soon as a sensor 
witnesses contamination, any further contamination impacts 
are mitigated, perhaps after a suitable delay that accounts 
for the response time of the water utility. The xia variable is 
1 if incident a is witnessed by a sensor at location i and is 0 
otherwise. The si variables indicate where sensors are placed 
in the network (si = 1 if there is a sensor placed at location i 
and 0 otherwise). There is a sensor budget p (place at most 
p sensors). SP allows placement of, at most, p sensors; 
p-median formulations generally enforce placement of all 
p facilities. In practice, the distinction is irrelevant unless p 
approaches the number of possible locations.

All contamination incidents might not be witnessed by a 
given set of sensors (unless every node has a sensor). To 
account for this, L contains a dummy location. This dummy 
location is in all subsets  La . The impact for this location for 
a given incident is the impact of the contamination incident 
after the entire contaminant transport simulation has finished, 
which corresponds to the impact that would occur without an 
online CWS.

The first constraint in equations (7-2) ensures that exactly 
one location witnesses each incident. This could be the 
dummy location. The second constraint in (7-2) ensures that 
only locations with sensors can witness incidents. The third 
constraint in (7-2) enforces the sensor budget. The sensor 
placements variables are binary: they can only be 0 or 1. 
The witness variables are continuous, but must be between 0 
and 1. In practice, there is always an optimal solution where 
the witness variables are binary. If they are ever fractional, 
then two or more equally good (best) locations have sensors.

Linear-programming lower bound
A linear program (LP) is a MIP with no integrality 
constraints. That is, all variables can take continuous values 
not just integer values. If the binary constraints for the si 
variables in the SP formulation (i.e., si=0 or 1) are replaced 
with linear constraints (0 ≤ si ≤ 1) then the problem becomes 
linear. It is called the LP relaxation of the MIP, because the 
integrality constraints have been “relaxed.” Linear programs 
can usually be efficiently solved. The LP relaxation of SP 

, 



55

is not directly useful, because one cannot place a fractional 
portion of a sensor at a location and then receive a fractional 
portion of the benefit. However, any real sensor placement 
is also feasible for the LP, so the LP relaxation method can 
be used to find a lower bound on the optimal value for any 
integer solution.

Reducing MIP size via aggregation
The size of the SP formulation is largely a function of the 
number of non-zero values in the impact matrix, d. This 
number is determined by the number of contamination 
incidents simulated and the number of locations 
contaminated by each incident. It is the dominant term in 
the number of constraints, the number of variables, and the 
number of non-zeros in the constraint matrix. Typical water 
distribution network models have 1,000s to 100,000s of pipes 
and junctions. The number of locations contaminated by an 
incident can be highly variable. Although many incidents 
impact a small number of locations, some large networks 
have many incidents that contaminate a large fraction of 
the network. Many of the SP analyses performed by the 
TEVA Research Team have had millions of impact values. 
Even with relatively small numbers of times per day in the 
threat ensemble — and not accounting for other sources of 
variability — typical problems can have tens of millions 
of impacts. More comprehensive threat ensembles will be 
considerably larger.

The SP MIP model provides a generic approach for 
performing sensor placement with a variety of design 
objectives. However, the size of this MIP formulation 
can quickly become prohibitively large, especially for 
32-bit computers (yielding a maximum of 4GB of RAM 
for UNIX systems, and, in practice, 3GB of RAM for 
Windows systems).

For any given contamination incident a, there are often many 
impacts dai that have the same value. If a contaminant reaches 
two junctions at about the same time, then the total impacts 
across the network would be identical for both junctions. 
Arrival times can be indistinguishable when using a typical 
reporting time-step, such as a small number of minutes, for 
the water quality simulation. Even though the contamination 
plume may pass nodes at different times within a 5-minute 
period, EPANET reports them all as occurring at the end of 
the 5-min water quality time-step.

This observation leads to a revised formulation that 
treats sensor placement locations as equivalent if their 
corresponding contamination impacts are the same for a 
given contamination incident. Define  aiL  as a maximal set 
of locations in A that all have the same impact for incident 
a (that is, this set contains all the locations with a particular 
shared impact value for incident a). Recall that a witness is 
a sensor that can detect a contamination incident because 
it is on the same travel path. By considering any witness 
in  aiL  as equivalent to any other, the set of effective 
witness “locations” for incident a is reduced to a new set 
 

aL̂ . Each group of equivalent locations (for an incident) 
is a superlocation for that incident. The locations grouped 

in a superlocation for an incident are not necessarily 
located physically close in the network even though the 
contamination for incident a reaches them at approximately 
the same time. The new MIP formulation is:

 (waSP) minimize  ∑∑
∈∈ aLi

aiai
Aa

a xd
ˆ

α  (7-3)

Where:
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The waSP model (equations (7-3)–(7-4)) revises SP to 
exploit structure that can make the MIP formulation smaller. 
The “wa” stands for “witness aggregation,” the term that 
describes this type of problem compression. This MIP selects 
both a superlocation to witness an incident and an actual 
sensor from the group in the superlocation. The fundamental 
structure of this formulation changes only slightly from 
SP, but in practice this MIP often requires significantly 
less memory. Specifically, grouping k equivalent locations 
removes k-1 entries from the objective, k-1 variables, 
and k-1 constraints. Every feasible solution for SP has 
a corresponding solution in waSP with the same sensor 
placement. The selected observation (witness) variable can 
always be mapped to a real sensor with the same impact. 
Because the impact for each incident is the same, the 
objective value is the same, so waSP can be used to find 
optimal sensor placements.

The waSP formulation can be generalized to consider 
location values as equivalent if their impact values are 
approximately equal. For each incident a, consider a list 
of locations in  La  sorted by impact. A superlocation is a 
contiguous sublist of this sorted list. Generally, locations are 
grouped into a superlocation if the difference in their impact 
values meets a given threshold. For waSP, that threshold 
was equality. Berry et al., (2006b), describes two ways for 
creating superlocations: (1) the ratio of largest to the smallest 
impact in the superlocation is small [ratio aggregation], and 
(2) the total number of witnesses for any incident is small. 
The first type keeps the error low, but might not provide a lot 
of compression. The second type guarantees compression, 
but might introduce large errors.

TEVA-SPOT also allows grouping with an absolute 
threshold, where the difference between the largest and

 smallest impact is small. Recall L̂ai  is the set of

superlocations for incident a, and  L~ai ⊆ La is the set of (real) 
locations in the ith superlocation for incident a.

Define  d~ai to be the largest impact value for incident a if

witnessed by any location in  L~ai (that is,  
~dai = ma~x dai). i∈Lai

aL⊆
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Then, define xai as a binary variable that is 1 if incident a is

witnessed by some location in  L~ai and 0 otherwise. Then the 
MIP for general witness aggregation is the waSP formulation

where dai is replaced by  d~  
ai and L̂  ~

ai  by Lai.

Berry et al. (2006b) proved that the optimal solution 
to a problem with ratio aggregation is guaranteed to be 
an approximation for the original problem with quality 
proportional to the ratio. However, a user must determine 
a good threshold via careful experimentation.

Incident Aggregation
In some cases, one can replace a pair or a group of 
contamination incidents with a single new incident that is 
equivalent. Berry et al. (2006b) describes one such strategy 
(called scenario aggregation in that paper for historical 
reasons). This aggregation strategy combines two incidents 
that contaminate the same locations in the same order, 
although one incident might stop before the other. For 
example, two injected contaminants should travel in the same 
pattern if they differ only in the nature of the contaminant, 
though one might decay more quickly than the other. Two 
such incidents can be combined into one by simply averaging 
their impacts and adding their incident weights.

Effectiveness of Aggregation
These aggregation techniques significantly improved the 
ability to apply MIP solvers to real-world sensor placement 
applications. One might need to use the waSP formulation 
to solve large sensor placement problems, even on high-end 
workstations with large memory. For example, Berry et al. 
(2007), describe the use of witness aggregation on sensor 
placement models derived from water networks with over 
3,000 pipes and junctions. These results are summarized 
in Table 7-1. The  value varies from 0 to 1 and indicates 
the ratio used to control witness aggregation. When  is 
nonzero, witnesses are aggregated into groups such that the 
ratio of best-to-worst impact values does not exceed rho. 
(Note that when  is one, all of the witnesses are aggregated 
together.) When  is zero, witnesses with the same impacts 
are aggregated, which can reduce the number of non-zeros 
in the MIP model by almost a factor of three. Similarly, the 
runtime is reduced by a factor of three. An appropriate level 
of aggregation significantly reduces the size of the MIP 
model and the corresponding runtime. However, the solution 
quality deteriorates as the sensor placement model becomes 
more approximate.

aL⊆

aL⊆

The GRASP Heuristic
A combinatorial heuristic exploits properties of combinations 
of objects. In our context, these objects are sensors and the 
combinations are the possible ways to place those sensors in 
a water network. TEVA-SPOT contains the current state-
of-the-art combinatorial heuristic for p-median problems, 
an adaptation of Resende and Werneck’s GRASP algorithm 
(Resende et al. 2004). GRASP finds good solutions to 
p-median problems by systematically exploring the space 
of possible sensor layouts. It usually (experimentally) 
produces solutions as good as MIP solutions, but much faster. 
However, there is no provable performance guarantee.

GRASP randomly constructs a set of starting points, 
using greedy bias to make these solutions reasonable 
approximations. Then for each candidate solution, it 
considers ways to move a single sensor to a location that 
improves the objective. It makes the best swap of this type 
repeatedly until no improving swap exists. The general 
GRASP technique normally considers combinations of these 
local optima, but generally taking the best solution suffices 
for this sensor placement application.

The GRASP heuristic can find solutions to very large 
p-median instances (with over 10,000 facilities and 50,000 
customers) in approximately ten minutes on a modern 
workstation-class computer (Ostfeld et al. 2008). This is 
approximately 5 to 10 times faster than the commercial MIP 
code CPLEX® (CPLEX Optimization, Inc.) could solve the 
waSP MIP formulation. The GRASP solutions were often 
optimal, as verified by comparison with exact solutions to the 
MIP formulation. The only drawback to the GRASP heuristic 
is the memory requirements, which reached 16GB of RAM 
for these large instances. This capacity is beyond the limits 
of what is available in most end-user environments for which 
CWS design is targeted.

Because the cost of determining the decrease in total impact 
during a local search move is dominated by the lookup cost 
of specific dai impact values, the GRASP heuristic creates 
a dense matrix of all impacts. The dense matrix represents 
unnecessary zeros, but it gives fast (constant-time) lookup of 
the dai. An alternative sparse representation simply stores, for 
each  Aa∈ , a tree containing pairs (i, dai) for all i touched 
by incident a. The trees require logarithmic (in the number 
of defined dai for a given a) time to look up an impact value. 
In practice the slow-down is less than 50%, and the memory 
requirements are reduced by a factor of four or more.

Table 7-1. Reduction of MIP problem size using witness aggregation with different ratios ( ). The 
IP value shows the value predicted by the aggregated problem, and the true value is the value of 
that solution evaluated in the original non-aggregated -dependent problem.

# variables # constraints # nonzeros Runtime (sec) IP value True value
None 16854011 16850654 67334870 79504 1186 1186

0 2506339 2502982 23770968 22415 1186 1186

0.125 31323 27966 12169827 722 25 2060

0.25 18025 14668 9842434 322 6 2743

0.5 7179 3822 3416662 17 0.1 9302
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TEVA-SPOT provides variants of the GRASP heuristic using 
the dense and sparse storage schemes for the dai. Even with 
the sparse representation, there are large real-world problems 
too large for 32-bit workstations. Users can reduce the 
problem size further by, for example, restricting the number 
of locations for sensors. This can help the GRASP heuristic 
considerably, since it reduces the search space during 
iterations of the swapping portion. This space-reducing 
measure requires the users to expend effort to determine 
infeasible locations, rather than determining feasibility as 
necessary during network design.

The Lagrangian Heuristic
A Lagrangian method works by removing a set of 
“difficult” constraints, leaving behind a problem that 
is easy to solve. It then applies pressure to satisfy the 
relaxed (dropped) constraints by adding penalties to the 
objective function. These penalties are proportional to 
the constraint violations. Thus there is no penalty if a 
constraint is met, a small penalty for a small violation, and 
a larger penalty for a larger violation. By manipulating 
the penalty weights (called Lagrange multipliers), 
an iterative algorithm can drive the solution towards 
feasibility. Using the TEVA-SPOT Lagrangian solver, 
each optimal solution to such a relaxed problem gives 
a lower bound for the original p-median problem.

The Lagrangian solver is composed of a Lagrangian-based 
lower-bounding procedure and an approximation heuristic. 
This solver requires memory proportional to n + D, where n 
is the number of sensor locations and D is the total number 
of impacts. This is within a constant factor of the smallest 
possible memory requirement for a program that does not 
explicitly move data back and forth from secondary memory 
(like disk farms).

The Lagrangian-based lower-bounding method is based 
on the method described by Avella et al. (2007). Given a 
set of Lagrange multipliers, one can compute the optimal 
solution for that particular relaxation quickly. Based on 
work for a similar problem by Barahona and Chudak 
(2005), the Barahona and Anbil’s subgradient search 
method, called the Volume Algorithm (Barahona et al. 
2000), is used to find Lagrangian multipliers that produce 
progressively higher lower bounds. This search converges 
to a set of Lagrange multipliers for which the optimal 
solution to the relaxed problem is an optimal solution to 
the p-median LP relaxation. Thus the Lagrangian solver 
computes the LP relaxation using considerably less 
memory than an LP solver would. Finally, the Lagrangian 
solver uses a constrained rounding algorithm to randomly 
select p sensor locations biased by the LP relaxation.

The Lagrangian relaxation model relaxes the first set of 
constraints in the SP formulation — those that require each 
incident be witnessed by some sensor. Recall that this might 
be the dummy sensor which indicates a failure to detect the 
incident. This constraint is written as an equality, because 
that is a more efficient integer programming formulation. 
However, the difficult part of the constraint is insuring that at 

least one sensor witnesses each incident. The objective will 
prevent over-witnessing, so for the sake of the Lagrangian 
relaxation, these constraints are treated as inequalities. For 
some incident a, this constraint is violated for a proposed

 setting of the si and xai variables if ∑ xai <1 giving a
i∈L

violation of ( 1−∑ x
a

ai ). Each such violation is weighted
i∈La

with its own Lagrange multiplier a, which allows some 
violations to be penalized more than others.

Adding a penalty term a( 1−∑ xai ) to the objective for
i∈La

each incident a, the Lagrangian model becomes:
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For a fixed set of a the optimal value of LAG can be quickly 
computed using low memory with a slight variation on 
the method described by Avella et al. (2007). The optimal 
solution to LAG gives a valid lower bound on the value 
of an optimal solution to the p-median (SP) problem. This 
is because any feasible solution to the p-median problem 
is feasible for LAG. It has a zero violation for each of the 
lifted (relaxed) constraints and a value equal to the original 
p-median value.

Given a fractional solution to the p-median LP, the fractional 
values are treated as probabilities and sensors are selected 
randomly according to this probability. However, one is 
unlikely to get precisely p sensors this way. A variant of 
conditional Poisson sampling is used to efficiently sample 
over the “lucky” distribution where exactly k sensors are 
selected. If necessary, the dummy location is selected.

In preliminary tests with a moderate-sized problem (the 
same size as those Avella et al. (2007) call “large-scale”), 
the Lagrangian method required approximately one third 
the memory of the GRASP heuristic, and usually found 
a solution almost as good while running up to 2.5 times 
longer. For example, on a problem with 3358 locations, 1621 
incidents, and 5 sensors, considering four different types of 
objectives, the Lagrangian solver required 45 megabytes 
(MB) of memory and the GRASP heuristic required 154 MB 
of memory. The GRASP heuristic found the optimal solution 
in all four cases as verified by the MIP. The Lagrangian 
heuristic was within 0.5% of this for three out of the four 
objectives (PE, EC, MC). Running times for GRASP ranged 
from 33.8 seconds to 44 seconds. The Lagrangian ran in 
less than 86 seconds for these 3 objectives. For the fourth 
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objective (VC), Lagrangian ran for 105 seconds and had a 
gap of 64%, showing that the Lagrangian behavior can be 
less stable than GRASP.

Witness aggregation can be used to further reduce the 
memory required for the Lagrangian method, particularly 
aggregation of locations that have the same impact values. 
However, the set-cover constraints (the second set of 
constraints in the waSP formulation) cannot be used without 
altering the Lagrangian model. The current version in 
TEVA-SPOT runs the heuristic with the aggregated witnesses 
where the superlocations are not directly associated with 
their constituent locations. This creates a straight p-median 
problem for the Lagrangian solver that now no longer has the 
same optimal solution. Because there are fewer opportunities 
to witness incidents, this revised formulation has a higher 
optimal impact, and therefore the current Lagrangian solver 
does not give a valid lower bound. However, a heuristic 
solution can still be computed by solving this modified 
problem and mapping superlocations back to real locations. 
The current version simply selects the first real location in a 
superlocation list.

For a large-scale problem with 42,000 junctions, the 
Lagrangian heuristic required only 100Mb for the aggregated 
problem where we equated only witnesses of equal impact. 
This is a considerable reduction from the 1.8GB the 
Lagrangian method required with no witness aggregation, 
even of equal impact (the SP version). The GRASP heuristic 
required 17GB; there is no value for witness aggregation in 
the GRASP heuristic, so this is the memory requirement for 
the SP version. However, the objective of the Lagrangian 
solution is 60% worse than the solution found by GRASP.

Alternative Objectives and Multiple Objectives
TEVA-SPOT also provides solvers for variations on 
the average-impact objective function. This includes 
simultaneously considering multiple impact types and 
considering objectives over the distribution of impact values 
that are arguably more robust.

For any particular network and set of contamination 
incidents, there can be many types of damage to people and/
or to the water distribution network. Some initial research 
has shown that optimizing for one particular objective, such 
as minimizing the average number of people exposed to 
lethal levels of a contaminant, can lead to solutions that are 
highly suboptimal with respect to other objectives, such as 
minimizing the total pipe feet contaminated (Ostfeld et al. 
2008; Watson et al. 2004).

SPOT allows users to seek compromise solutions among 
multiple types of average impacts with side constraints. 
Users choose an objective, say PE (population exposed). 
They can also put a bound on the average impact for another 

measure, say EC (extent of pipeline contamination). For 
example, the user can ask for a sensor placement that 
minimizes the average PE subject to a constraint that at most 
1000 feet of pipe are contaminated.

The MIP solver treats side constraints as hard. That is, it does 
not consider a sensor placement feasible unless it meets the 
side constraint bound. For the MIP solver, the side constraint 
is simply an additional linear constraint. The GRASP and 
Lagrangian solvers treat the side constraints as soft goal 
constraints. They might return a solution that violates one 
or more side constraints, but it tries to meet the goals. They 
do this by adding another penalty term to the objective, this 
time penalizing violation of the side constraint. Currently the 
GRASP solver cannot handle more than one side constraint. 
The other solvers can handle an arbitrary number, but 
currently the Lagrangian solver’s solution quality degrades 
considerably with more than one side constraint. In all cases, 
the side-constrained case will take longer to solve than the 
single-objective case. The GRASP solver might have trouble 
finding a feasible solution. The user will generally have to 
use trial and error to find side-constraint bounds that produce 
good compromise solutions.

One solution X1 dominates another X2 if the average impact 
of X1 is no worse than the average impact of X2 in all 
measurement categories. In general, there might be many 
non-dominated solutions (pareto optimal points), points for 
which there is no feasible solution that dominates it. None 
of the solvers will currently produce multiple pareto-optimal 
points at once, but they all can produce different non-
dominated points by varying which impact measure is the 
objective and which is the side constraint, and by varying the 
bounds of the side constraints.

Robust Objectives
In general, the budget for placing sensors will be limited. For 
a reasonably comprehensive suite of incidents, there will be 
some incidents that are not covered well and usually some 
that are not covered at all. The network designer must decide 
where they are willing to take risks. TEVA-SPOT offers three 
other objectives over the distribution of incident impacts to 
give the designer more flexibility in controlling risk. The first 
is minimizing the max impact taken over all incidents.

The second robust objective is called VaR, which stands for 
“value at risk.” Given a percentage , VaR v is the impact 
value such that a (1 − ) fraction of the incidents have impact 
no larger than v. For example, if  = 0.05 and v = 450, that 
means that 95% of the events have impact no more than 450. 
This means that the designer is choosing to ignore the tail 
(  fraction) of the highest-impact incidents, but expects a 
minimum-quality coverage for all the others.
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The final robust objective is called CVaR, for conditional 
value at risk. Given a tail percent , CVaR minimizes the 
average of the worst  fraction. In the example above, this 
objective finds a solution that minimizes the average impact 
of the worst 5% of the incidents.

Currently, all of these robust measures are currently 
significantly harder to compute in practice than the average 

impact. Optimizing any of these objectives will almost 
certainly increase the average impact. See Watson et al. 
(2009) for discussion of some of these issues.

Table 7-2 summarizes the capabilities of the three solvers in 
TEVA-SPOT.

Table 7-2. TEVA-SPOT solver capability summary.

Feature Integer Program GRASP Lagrangian
Min mean impact yes yes yes

Min max impact yes yes no

Min # sensors yes no no

Robust impact measures yes yes no

Side constraints yes yes yes

Fixed/invalid locations yes yes yes

Imperfect sensors yes yes no

Computes lower bound yes no yes

Aggregation yes no yes

List of Variables
A Set of contamination incidents
a Single incident
a Weight of contamination incident a

i Location in network (junction or node)
L Set of all locations in network
La Set of locations contaminated by incident a
dai Impact of contamination incident a at location i
xai Witness indicator: 1 if incident a is witnessed at location i and 0 otherwise
si Sensor indicator: 1 if a sensor is at location i and 0 otherwise
p Total number of sensors allowed
Lai Set of locations with same impact from incident a

a Lagrangian Multiplier
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Appendix A.
Literature Review

A variety of technical challenges need to be addressed to 
make contamination warning systems (CWSs) a practical, 
reliable element of water security. A key aspect of CWS 
design is the strategic placement of sensors throughout the 
distribution network. Given a limited number of sensors, a 
desirable sensor placement minimizes the potential impact to 
public health of a contaminant incident.

The following sections describe how authors have defined 
sensor placement problems and then review methods used 
to solve these problems. There has been a large volume of 
research on this topic in the last several years, including a 
Battle of the Water Sensor Networks (Ostfeld et al. 2008) that 
compared 15 different approaches to solving this problem. 
This review largely focuses on optimization methods for 
sensor placement, since the majority of published sensor 
placement techniques use optimization; 50 papers on sensor 
placement optimization are reviewed here.

Contamination Risks
There are a large number of potentially harmful contaminants 
and a myriad of ways in which a contaminant can be 
introduced into a water distribution system. Physically 
preventing all such contamination incidents is generally not 
possible. Consequently, the overall goal of sensor placement 
is to minimize contamination risks.

Expert opinion and ranking strategies do not explicitly 
quantify contamination risks. For example, these methods 
do not compute the consequences of different contamination 
incidents or use this information in a risk comparative 
risk assessment. Instead, these strategies rely on human 
judgment to assess how a sensor network would minimize 
contamination risks. For example, a human expert can 
predict the likelihood of contamination injections occurring 
at different locations throughout the network based on local 
knowledge of the physical layout of the water distribution 
system. This information can guide the evaluation of 
effective sensor locations.

In contrast, optimization strategies generally rely on some 
form of computational risk assessment to guide sensor 
placement optimization. An optimization strategy uses a 
model of the water distribution network to predict how a 
contaminant flows through the network. This information 
is then used to assess the impact of contamination incidents 
(e.g., health effects or extent of contamination), which 
will vary depending on the contaminant type (including 
fate and transport characteristics), contaminant injection 
characteristics (e.g., source location, mass flow rate, time 
of day, and duration), and network operating conditions. All 
sensor placement optimization strategies developed to date 

assume a particular finite set of contamination incidents, 
which define the threat basis for evaluating and mitigating 
contamination risk.

Optimization strategies can be categorized based on how 
the water distribution system network model is used for risk 
assessment. Early sensor placement research computed risk 
using simplified network models derived from contaminant 
transport simulations. For example, hydraulic simulations can 
be used to model stable network flows (Berry et al. 2005c; 
Lee et al. 1992; Lee et al. 1991), or to generate an averaged 
water network flow model (Ostfeld et al. 2004).

Most subsequent optimization research has directly 
used contaminant transport simulations to minimize 
contamination risks (Berry et al. 2006b; Ostfeld et 
al. 2004; Propato et al. 2005). Simulation tools, like 
EPANET (Rossman 1999, 2000), perform extended-period 
simulation of the hydraulic and water quality behavior 
within pressurized pipe networks. These models can 
evaluate the expected flow in water distribution systems, 
and they can model the transport of contaminants and 
related chemical interactions. Thus, the CWS design 
process can directly minimize contamination risks by 
considering simulations of an ensemble of contamination 
incidents, which reflect the impact of variables including 
contamination at different locations and times of the day.

There have been few direct comparisons of optimization 
strategies based on simplified versus detailed network 
model simulations (see Ostfeld et al. 2008; Berry et al. 
2005b). Optimization strategies using contaminant transport 
simulations are clearly attractive because they provide 
a detailed risk assessment that accurately integrates the 
impacts of distinct contamination incidents. For example, 
optimization methods using simplified network models 
can fail to capture important transient dynamics. However, 
a potentially large number of contamination incidents 
might need to be simulated to perform optimization with 
contamination transport simulation. Consequently, it is 
very expensive to apply generic optimization methods 
like evolutionary algorithms (Ostfeld et al. 2004) when 
simulations are performed to evaluate each new sensor 
placement. A variety of authors have discussed how to 
perform simulations efficiently in an off-line preprocessing 
step that is done in advance of the optimization process 
(Berry et al. 2006b; Chastain 2006; Krause et al. 2008; 
Propato 2006). Thus, the time needed for simulation does not 
impact the time that a user spends performing optimization. 
This is a general strategy for managing simulation data that 
can be used by many different optimizers; for example the 
TEVA-SPOT Toolkit integrates a variety of optimizers that 
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employ this strategy (Berry et al. 2008a; Berry et al. 2007; 
Berry et al. 2006a; Berry et al. 2009; Berry et al. 2005a; 
Berry et al. 2006b; Berry et al. 2008b; Hart et al. 2008a; 
Murray et al. 2006a; Watson et al. 2005).

Sensor Characteristics
Characterization of sensor behavior is required to predict the 
performance of a CWS. Researchers developing optimization 
strategies have commonly assumed a perfect sensor: a sensor 
with a detection limit of zero that is 100% reliable. Although 
this is clearly unrealistic, the assumption of perfect sensors 
can provide an upper bound on CWS performance. A slightly 
more realistic modeling assumption is to assume a detection 
limit for sensors: above a specified concentration, the sensor 
is 100% reliable, and below that concentration the sensor 
always fails to detect the contaminant. This approach allows 
users to model sensors that are not contaminant-specific, such 
as chlorine sensors that might indirectly detect the presence 
of a contaminant.

Few researchers have developed sensor network design 
optimizers that allow for sensors that sometimes fail to detect 
contaminants. A simple way to characterize sensor failures is 
to include a likelihood factor, which could be dependent on 
the sensor detection limit. Berry et al. (2006a; 2009) describe 
optimizers that allow for sensors with known false negative 
(FN) and false positive (FP) rates. Recently, McKenna et al. 
(2008) have used Receiver Operating Characteristic (ROC) 
curves to characterize the performance of sensors, and a 
sensor’s FN and FP rates can be directly derived from ROC 
curves. In general, the FN and FP rates could depend on 
the location at which the sensor is being placed, the type of 
sensor, and the detection threshold.

Sensor Placement Objectives
There are many competing design objectives for placing 
sensors in an online sensor network. Although minimizing 
impacts to public health is a widely accepted goal, there are 
several types of health impact objectives:

• Population exposed: The number of individuals 
exposed to a contaminant.

• Population dosed: The number of individuals exposed 
to a specified does of contaminant.

• Population sickened: The number of individuals 
sickened by a contaminant.

• Population killed: The number of individuals killed by 
a contaminant.

Further, researchers have developed optimizations methods 
for a variety of other objectives:

• Extent of contamination: The total feet of pipes 
contaminated before a contaminant is detected

• Mass of contaminant consumed: The mass of 
contaminant that has left the network via demand at 
junctions in the network.

• Percent detected: The fraction of contamination 
incidents that are detected by the sensors.

• Time to detection: The time from the beginning of a 
contamination incident until the first sensor detects it.

• Volume consumed: The volume of contaminated water 
that has left the network via demand at junctions in the 
network.

There are several modeling decisions that affect these design 
objectives. The first concerns how a utility responds when 
a sensor detects a contaminant. Computational models of 
CWS performance typically make the assumption that there 
is a response time after which contaminants are no longer 
consumed or propagated through the network (Murray et al. 
2008b; Ostfeld et al. 2005b). Response time is often viewed 
as the time between initial detection of an incident and 
effective warning of the population (Bristow et al. 2006), and 
the response time used for optimization can be factored into 
the computation of these design objectives.

The second modeling decision concerns how detection 
failures are handled. Most design objectives compute the 
impact of each contamination incident after it has been 
detected. But if an incident has not been detected by the end 
of simulation, then the appropriate impact of that incident 
is unclear, since it might have been detected later if the 
simulation had run longer. Most optimization strategies 
compute the impact at the end of the simulation, which is 
equivalent to penalizing undetected incidents based on their 
undetected impact.

Several authors have suggested that these undetected 
incidents can be ignored (Berry et al. 2008b; Ostfeld et al. 
2008). For example, when minimizing time-to-detection, this 
type of penalty scheme can skew the design towards simply 
detecting all incidents. However, a trivial optimal solution 
in this case would be to place no sensors; this design would 
then detect no incidents. This is clearly undesirable, so this 
type of performance objective only makes sense with the 
optimizer is constrained to ensure that a given fraction of the 
contamination incidents are detected.1

Finally, it is clear that users need to evaluate tradeoffs 
for several design objectives. The impact of this on the 
optimization process is described below.

Optimization Objective
As was noted earlier, there are many possible contamination 
incidents that could be used as the design basis threat for 
a sensor placement problem. Thus, a sensor placement is 
evaluated using a distribution of impact values for the entire 
large set of contamination incidents. The mean impact is a 

1 Preliminary experiments with the TEVA-SPOT Toolkit suggest that it is much more difficult to optimize with this 
formulation than the more commonly used design objectives that penalize undetected incidents.
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natural statistic for this optimization problem that is used 
by many researchers (see below). For example, Berry et al. 
(2006b) show that minimizing the mean impact for sensor 
placement is related to the well-known p-median problem for 
facility location.

Another optimization objective used by a variety of authors 
is to maximize the percent detected impact statistic, 
independent of other impacts. Although Berry et al. (2006b) 
show that this objective can be mathematically expressed as a 
mean impact, most researchers have developed optimization 
strategies that are more tailored to this particular objective. 
Specifically, this can be viewed as a covering problem, for 
which there is a rich optimization literature.

Watson et al. (2006; 2009) consider optimization strategies 
that minimize the max-case impact and other robust measures 
that focus strictly on high-consequence contamination 
incidents. A key motivation for considering robust 
optimization objectives is that an optimal sensor placement 
that minimizes mean impact might still have numerous high-
impact contamination events. Watson et al. describe a variety 
of robust optimization objectives, including well-studied 
robustness measures from the financial community.

Optimization Formulations
An optimization formulation is the mathematical definition 
of an optimization problem, which includes the decision 
variables, objective and constraints. For sensor placement 
problems, optimization formulations integrate modeling 
assumptions concerning how contamination risk is computed, 
the performance objective(s) that is optimized, the sensor 
characteristics, and other factors like feasible sensor locations 
and existing sensor stations. Thus, it is perhaps not surprising 
that a diverse array of optimization formulations have been 
developed for sensor placement.

Table A-1 categorizes the optimization formulations used in 
the sensor placement literature with respect to the four factors 
described above. The majority of the research falls into one 
of nine groups based on these factors (shown in Table A-1). 
This classification highlights several trends and themes in the 
literature:

• Contaminant Simulation: The use of contaminant 
transport simulations is a consistent theme in recent 
sensor placement optimization research (groups 
6–8). This reflects the fact that these optimization 
formulations can more accurately assess the impact of 
dynamic flows on contamination risks, as well as the 
fact that the necessary computational resources are more 
generally available.

• Mean Impact: Minimizing mean impact has emerged 
as the standard optimization formulation for sensor 
placement. Most early research focused on coverage 
formulations, which were adapted from early research 
on water quality management. However, the mean 
impact formulation can model a wide range of important 
impact measures, like health effects.

• Multi-Objective Optimization: The challenge of 
analyzing multiple objectives was highlighted by 
the Battle of the Water Sensor Networks challenge 
(Ostfeld et al. 2008), where four different objectives 
were used to evaluate sensor placements generated by 
the participants. A variety of standard multi-objective 
strategies have been applied for sensor placement:

 Optimize a weighted-sum of different objectives
 Optimize one objective while constraining the 

remaining objectives at goal values
 Using a search strategy that searches for undominated 

points
• Data Uncertainties: A variety of authors have 

considered the impact of data uncertainties. For 
example, Chastain (2006; 2004) has performed 
sensitivity analysis of sensor placements. Similarly, 
Ostfeld and Salomons (2005a, 2005b) have used 
randomly generated data in their optimization 
formulation and assessed the impact of these 
uncertainties. A few authors have adapted their 
optimization to find more robust solutions. Shastri  
and Diwekar (2006) considered a stochastic 
optimization formulation that used a recourse model  
to capture the impact of uncertainties. Carr et al. 
(2006; 2004) and Watson et al. (2006; 2009) described 
robust optimization formulations that either minimize 
or constrain the max-case contamination incident 
impact values.
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Table A-1. Summary of sensor placement optimization literature, categorized by: (a) whether contaminant transport 
simulations were used to compute risk, (b) whether sensor failures were modeled, (c) whether multiple design 
objectives were used during optimization, and (d) the type of optimization objective.

# Citations

Risk 
Calculations 

with 
Simulation

Imperfect 
Sensors

Multiple 
Objectives

Optimization 
Objective

1

Al-Zahrani et al. 2001; Al-
Zahrani et al. 2003; Kessler 
et al. 1998a; Kessler et al. 
1998b; Kumar et al. 1997, 
1999; Lee et al. 1992; Lee 
et al. 1991; Ostfeld et al. 
2001; Uber et al. 2004

No No No COVER

2

Berry et al. 2003; Berry et al. 
2005c; Berry et al. 2005d; 
Rico-Ramirez et al. 2007; 
Shastri et al. 2006

No No No MEAN

3 Carr et al. 2006; Carr et al. 
2004 No No No ROBUST

4 Watson et al. 2004 No No Yes MEAN

5

Chastain 2006; Chastain Jr. 
2004; Cozzolino et al. 2006; 
Ostfeld et al. 2003; Ostfeld 
et al. 2004, 2005a, 2005b

Yes No No COVER

6

Berry et al. 2008a; Berry et 
al. 2007; Berry et al. 2004; 
Berry et al. 2006b; Berry et 
al. 2005d; Hart et al. 2008a; 
Kızılenis 2006; Propato 
2006; Propato et al. 2005; 
Romero-Gomez et al. 2008; 
Watson et al. 2005

Yes No No MEAN

7

Aral et al. 2008; Berry et al. 
2008b; Dorini et al. 2006; 
Eliades et al. 2006; Guan et 
al. 2006; Gueli 2006; Hart 
et al. 2008b; Huang et al. 
2006; Krause et al. 2008; 
Krause et al. 2006; Leskovec 
et al. 2007; Preis et al. 
2006a; Preis et al. 2008; Wu 
et al. 2006

Yes No Yes MEAN

8 Watson et al. 2006; Watson 
et al. 2009 Yes No No ROBUST

9 Berry et al. 2006a; Berry et 
al. 2009 Yes Yes No MEAN

A few other sensor placement formulations have been 
developed, but they do not neatly fall within these categories. 
Preis and Ostfeld (2006b) describe an optimization 
formulation that is intended to facilitate the analysis of sensor 
data to identify the source of a contaminant. Xu et al. (2008) 
describe an optimization formulation that does not use water 
quality simulations, but instead analyzes the topology of 
flows in a water distribution network to identify interesting 
locations for sensor placement. Finally, several sensor 
placement methods have been published in Chinese (Huang 
et al. 2007; Wu et al. 2008).

Sensor Placement Optimizers
A variety of different sensor placement optimizers have been 
used to analyze the optimization formulations described 
above, including:

• Integer programming solvers

• Genetic algorithms

• Local search

Other well-known heuristic optimization methods have also 
been used (e.g., simulated annealing and tabu search), but 
most researchers have used one of these three optimizers in 
their research.
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The choice of an optimizer for sensor placement is guided 
by several factors: the performance guarantee for the final 
solution, the available computer memory, and the runtime 
available for performing optimization. Integer programming 
(IP) solvers can guarantee that the best possible sensor 
placement is found (i.e., one that optimally minimizes the 
contamination risk). However, IP solvers are well-known to 
have difficultly solving large applications; on large problems 
they can run for a long time and require a lot of memory. 
By contrast, heuristic optimizers like genetic algorithms and 
local search methods cannot generally guarantee that the final 
solution is near-optimal. In practice, these methods are well-
known to quickly find near-optimal solutions.

Krause et al. (2008; 2006) and Leskovec et al. (2007) 
describe the only sensor placement heuristic that is 
known to provide a performance guarantee. They 
consider a simple greedy local search method that is 
used to maximize the reduction of impact that a sensor 
placement provides. This optimization formulation differs 
from other authors, who focus on minimizing impact; 
the key observation of Krause et al. (2008; 2006) is 
that the structure of this formulation guarantees that a 
solution from this local optimizer is near-optimal.2

Similarly, several authors have demonstrated that lower 
bounds can be computed to evaluate whether solutions 
generated by heuristics are near-optimal. Berry et al. (2008a) 
describe a Lagrangian technique that computes a lower bound 
on the optimal sensor placement, and then uses a rounding 
heuristic to general a near-optimal solution. Watson et al. 
(2005) and Berry et al. (2006b) describe a GRASP heuristic 
for sensor placement. Their sensor placement formulation 
is equivalent to the well-known p-median facility location 
problem, and they show that the p-median IP model can be 
used to compute a lower bound on solutions generated by the 
GRASP heuristic.

A key issue for sensor placement optimizers is their ability 
to scale to large, real-world water distribution networks. 
Here, scalability refers to the ability of optimizers to perform 
a quick optimization on limited memory workstations. One 
strategy for ensuring scalability is to reduce the complexity 
of the water distribution system. This can be as simple as 
limiting the number of contamination locations and feasible 
sensor locations, which limits the size of the data need to 
represent the set of contamination incidents. More generally, 
the water network itself can be “skeletonized” to include 
aggregated junctions and pipes (see Perelman and Ostfeld 
(2008) for a recent review).

Sensor placement optimization can also be adapted to 
improve the scalability of the optimizer. For example, Preis 
and Ostfeld (2007) describe a procedure for selecting the 
key contamination incidents that are critical to evaluate a 

sensor placement design. Similarly, Berry and others describe 
strategies for reformulating an integer programming model 
to reduce the number of constraints and decision variables 
(Berry et al. 2007; Hart et al. 2008b). Finally, low-memory 
optimization methods can be used to help ensure scalability. 
Hart et al. (2008a) describe optimization heuristics that are 
motivated by memory scalability concerns, and note that 
there are tradeoffs between runtime and memory usage that 
may influence the choice of a sensor placement optimizer.

Supporting Decision Makers
Designing a CWS is not as simple as performing a single 
sensor placement analysis. There are many factors that 
need to be considered when performing sensor placement, 
including utility response, the relevant design objectives, 
sensor behavior, practical constraints and costs, and expert 
knowledge of the water distribution system. In many cases, 
these factors are at odds with one another (e.g., competing 
performance objectives), which makes it difficult to identify 
a single best sensor network design. Consequently, the design 
process requires informed decision making where sensor 
placement techniques are used to identify possible network 
designs that work well under different assumptions and for 
different objectives. This allows water utilities to understand 
the significant public health and cost tradeoffs.

Several researchers have focused on the decision-making 
process for CWS design. Murray et al. (2006a; 2008b) 
describe a decision framework composed of a modeling 
process and a decision-making process that employs 
optimization. This modeling process includes creating a 
network model for hydraulic and water quality analysis, 
describing sensor characteristics, defining the contamination 
threats, selecting performance measures, planning utility 
response to detection of contamination incidents, and 
identifying potential sensor locations. The decision-making 
process involves applying an optimization method and 
evaluating sensor placements. The process is informed by 
analyzing tradeoffs and comparing a series of designs to 
account for modeling and data uncertainties. This approach 
was applied to design the first EPA Water Security initiative 
pilot city (U.S. EPA 2005c).

Grayman et al. (2006) describe an interactive decision 
making framework that can help water utilities assess the 
strengths and weaknesses of sensor placement designs. 
This framework can be integrated with optimization 
strategies to help water utilities gain insight from optimized 
sensor placements. This is an important exercise because 
computational optimization methods do not generally tell 
the user why a design is optimal. Similarly, Isovitsch and 
VanBriesen (2007; 2008) describe an analysis technique that 
uses GIS to provide insight into the layout and sensitivity of 
sensor network designs.

2  Mathematically, optimal solutions are guaranteed to be the same for sensor placement formulations that minimize impact or maxi-
mize reduction of impact. However, the near-optimal sensor placements generated by the method of Krause et al. (2008;2006) are 
not guaranteed to provide a near optimal minimization of impact. We have discussed this point with various members of the water 
community, and there is not a clear preference for one type of formulation over the other. Even so, a colleague has suggested a 
rational for designing a sensor placement that minimizes impact: “If a contamination event occurs, the newspaper is going to print 
the number of people killed rather than the number of people saved by the contamination warning system.”
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Appendix B.
Battle of the Water Sensor Networks

The “Battle of the Water Sensor Networks” (BWSN) (Ostfeld 
et al. 2008) of 2006 brought together 15 different small 
teams of researchers who had developed sensor placement 
capabilities. These teams generated sensor placements 
for two utility network models under a variety of threats. 
The first of these datasets was a small, imaginary network 
with roughly 100 nodes. The second, “Network 2,” was a 
disguised version of a real network, used with permission of 
the relevant utility, and consisting of roughly 12,000 nodes. 
The threat ensembles were sets of contamination incidents, 
each with different duration of injection, the number of 
injections per node, and whether or not simultaneous 
injections were to occur. Readers are referred to the paper 
itself for more detail.

Although not a perfect competition between methods (there 
was healthy debate over many aspects of the competition), 
the BWSN was a remarkable coordination effort, and it 
generated some meaningful comparison results. TEVA-
SPOT’s GRASP solver was one of the entrants and its results 
will be placed into context here.

There were four sensor placement objectives considered in 
the BWSN:

• Z1: the expected (mean) time to detection

• Z2: the expected number of people affected by 
contamination

• Z3: the expected volume of contaminated water 
consumed

• Z4: the percentage of incidents detected by a sensor

The competition predated the introduction of side constraints 
into TEVA-SPOT, so the TEVA Research Team submitted 
solutions that minimize Z3, knowing that Z1, Z2, and Z3 
are strongly correlated. For Network 2, placing 5 sensors 
in response to “Case A” (single injection sites, two hour 
duration of injection), TEVA-SPOT’s GRASP solver found 
the same sensor placement as the closest competitor, a 
greedy sensor placement algorithm implemented by Krause, 
et al. (2006). On the more challenging 20-sensor variant of 
this problem, for objectives Z1, Z2, and Z3, the solutions 
obtained by TEVA-SPOT’s GRASP solver were, respectively, 
18%, 21%, and 36% better than Krause’s greedy algorithm.

The competition admitted no winner, instead counting the 
number of “non-dominated solutions” provided by each team. 
A solution is non-dominated if there is no other solution that 
is superior in all four objectives simultaneously. The closest 

thing to a winner of the BWSN was the entry of Krause et 
al. (2006), which had the largest number of non-dominated 
solutions. However, a further look at the data suggests that 
this non-dominated metric does not adequately capture the 
relative benefit of sensor placements.

Figures B-1, B-2, and B-3 show the raw data for 
Network 2, where 20 sensors are placed based on the 
assumptions of Case A. Since GRASP does not dominate 
in Z4 (greedy detects 3% more incidents), the greedy 
solution is non-dominated. However, the sensor placement 
computed by TEVA-SPOT is clearly preferable in 
terms of human costs and timeliness of detection. The 
network is so large that with only 20 sensors, there is 
little hope of detecting the large number of incidents 
that contaminate only a tiny portion of the network. 
Intuitively, injections near the edges of the network often 
do not move into large pipes to be dispersed more widely. 
Yet, Case A includes injections at all such nodes.

One important result of the BWSN is quantitative evidence 
that optimization has great value in placing sensors. Two 
competitors submitted designs that were not based on 
optimization techniques. Ghimire and Barkdoll (2006) use 
heuristics based on demand (without optimizing over any 
water quality simulation data), and provide a solution for 
the same threat ensemble described above (N2A20). This 
solution is respectively 101%, 251%, and 984% worse in 
Z1, Z2, and Z3 than the TEVA-SPOT solutions. Trachtman 
(2006) looked at pressure and flow patterns (again, without 
considering water quality simulations), and produced a 
solution for N2A20 that was, respectively, 69%, 183%, 
and 569% worse in Z1, Z2, and Z3 than the TEVA-SPOT 
solution.

Perhaps indicating a culture clash in the water community, 
non-simulation-based solutions such as these met with a 
distinctively warm audience reception at the BWSN session 
at the Water Distribution Systems Analysis Symposium 
of 2006. They are, perhaps, more comforting to those 
distrustful of the hidden details underlying optimization 
methods. However, the potential consequences of foregoing 
water quality simulations before making sensor placement 
decisions were highlighted in ample detail by the BWSN. 
This competition demonstrates that water quality simulations 
and subsequent optimization should be a part of any real-
world sensor placement application.
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Figure B-1. Performance of sensor placement methods in terms of the Z1 and 
Z2 metrics. The GRASP algorithm performs better than the competitors in both 
objectives.

Figure B-2. Performance of sensor placement methods in terms of the Z2 and 
Z3 metrics. The GRASP algorithm performs better than the competitors in both 
objectives.
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Figure B-3. Performance of sensor placement methods in terms of the Z2 and Z4 
metrics. The GRASP algorithm performs better in the Z2 metric but not in the Z4 
metric.
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Appendix C.
Quality Assurance

EPA’s quality systems cover the collection, evaluation, 
and use of environmental data by and for the Agency, and 
the design, construction, and operation of environmental 
technology by the Agency. The purpose of EPA’s quality 
systems is to support scientific data integrity, reduce or 
justify resource expenditures, properly evaluate of internal 
and external activities, support reliable and defensible 
decisions by the Agency, and reduce burden on partnering 
organizations.

All research presented in this report performed by the 
authors was completed under approved EPA and DOE 
quality practices adapted from the Advanced Simulation and 
Computing (ASC) Software Quality Plan and EPA guidance 
for Quality Assurance Project Plans. The ASC Software 
Quality Plan was generated to conform with the SNL 
corporate and DOE QC-1 revision 9 standards.

The quality assurance (QA) practices followed under this 
research included:

• Project Management
• Computational Modeling and Algorithm Development
• Software Engineering
• Data Generation and Acquisition
• Model and Software Verification
• Training

Project management is the systematic approach for balancing 
the project work to be done, resources required, methods 
used, procedures to be followed, schedules to be met, and the 
way that the project is organized. The project management 
QA practices included: performing a risk-based assessment 
to determine level of formality and applicable practices; 
identifying stakeholders and other requirements sources; 
gathering and managing stakeholders’ expectations and 
requirements; deriving, negotiating, managing, and tracking 
requirements; identifying and analyzing project risk events; 
defining, monitoring, and implementing the risk response; 
creating and managing the project plan; and tracking project 
performance versus project plan and implementing needed 
corrective actions.

Modeling and algorithm development are often closely 
related activities; modeling is the process of mathematically 
formulating a problem, while algorithm development 
is the process of finding a method to solve the problem 
computationally. These activities can be distinguished from 
software engineering efforts, which are more specifically 
focused on ensuring that software generated has high quality 
itself. The modeling and algorithm development QA practices 
included: documenting designs for models and algorithms; 
conducting peer reviews of modeling assumptions and 
algorithmic formulations; documenting preliminary software 
implementation; documenting sources of uncertainty in 
modeling and algorithmic methods; and completing peer-
review of modeling and algorithmic outputs.

Software engineering is a systematic approach to the 
specification, design, development, test, operation, support, 
and retirement of software. The modeling and algorithm 
development QA practices included: communicating and 
reviewing software design; creating required software 
and product documentation; identifying and tracking third 
party software products and follow applicable agreements; 
identifying, accepting ownership, and managing assimilation 
of other software products; performing version control of 
identified software product artifacts; recording and tracking 
issues associated with the software product; ensuring backup 
and disaster recovery of software product artifacts; planning 
and generating the release package; and certifying that the 
software product (code and its related artifacts) was ready for 
release and distribution.

Input data for model development and application efforts are 
typically collected outside of the modeling effort or generated 
by other models or processing software. These data need 
to be properly assessed to verify that a model characterized 
by these data would yield predictions with an acceptable 
level of uncertainty. The data generation and acquisition QA 
practices included: documenting objectives and methods of 
model calibration activities; documenting sources of input 
data used for calibration; identifying requirements for non-
direct data and data acquisition; developing processes for 
managing data; and documenting hardware and software used 
to process data.

The purpose of software verification is to ensure (1) 
that specifications are adequate with respect to intended 
use and (2) that specifications are accurately, correctly, 
and completely implemented. Software verification also 
attempts to ensure product characteristics necessary for 
safe and proper use are addressed. Software verification 
occurs throughout the entire product lifecycle. The software 
verification QA practices included: developing and 
maintaining a software verification plan; conducting tests to 
demonstrate that acceptance criteria are met and to ensure 
that previously tested capabilities continue to perform as 
expected; and conducting independent technical reviews to 
evaluate adequacy with respect to requirements.

The goal of training practices is to enhance the skills and 
motivation of a staff that is already highly trained and 
educated in the areas of mathematical modeling, scientific 
software development, algorithms, and/or computer 
science. The purpose of training is to develop the skills and 
knowledge of individuals and teams so they can fulfill their 
process and technical roles and responsibilities. The training 
QA practices included: determining project team training 
needed to fulfill assigned roles and responsibilities; and 
tracking training undertaken by project team.
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