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Abstract 
This paper presents SPOT, a Sensor Placement Optimization Tool. SPOT 
provides a toolkit that facilitates research in sensor placement optimization and 
enables the practical application of sensor placement solvers to real-world CWS 
design applications. This paper provides an overview of SPOT’s key features, and 
then illustrates how this tool can be flexibly applied to solve a variety of different 
types of sensor placement problems. 

1 Introduction 
Contamination warning systems (CWS) have been proposed as a promising approach for the 
early detection of contamination events in drinking water distribution systems [1, 2, 3, 22]. The 
overall goal of a CWS is to detect contamination events in time to reduce potential public health 
and economic consequences. Online sensors will be a critical component of a CWS, and a key 
element of CWS design is the optimization of the number and locations of sensors at utility. 
 
This paper describes SPOT, a Sensor Placement Optimization Tool for CWS design in water 
distribution systems. SPOT integrates a variety of solvers for sensor placement that have been 
developed by Sandia National Laboratories and the Environmental Protection Agency, along 
with many academic collaborators [5, 6, 7, 8, 9, 10, 11, 12, 18, 23, 24]. SPOT includes (1) 
general-purpose heuristic solvers that consistently locate optimal solutions in minutes, (2) 
integer-programming heuristics that find solutions of provable quality, (3) exact solvers that find 
globally optimal solutions, and (4) bounding techniques that can evaluate solution optimality. 
SPOT uses a generic solver formulation that allows a user to specify a wide range of 
performance objectives for contaminant warning system design, including population-based 
public health measures, time to detection, extent of contamination, volume consumed and 
number of failed detections. SPOT has been integrated into the Environmental Protection 
Agency's Threat Ensemble Vulnerability Assessment (TEVA)-SPOT tool, which supports 
graphical analysis of threat assessment and sensor placement.  TEVA-SPOT has been used to 
develop sensor placement designs for several large U.S. cities. 
 
In general, users may care about more than one of these performance objectives, so SPOT allows 
for the specification of constraints that ensure that multiple performance objectives are 
simultaneously satisfied. SPOT facilitates the interactive design and analysis of sensor placement 
designs.  For example, a SPOT user can integrate expert knowledge during the design process by 
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specifying required sensor placements or designating network locations as forbidden. Further, 
cost considerations can be integrated by limiting the design with user-specified installation costs 
at each location. 
 
This paper summarizes the key features of SPOT, and describes the canonical problem 
formulation solved by SPOT solvers.  This paper also illustrates the flexibility of this framework 
through several simple examples. These examples illustrate how SPOT is used to optimize 
performance objectives, minimize costs, perform multi-objective analysis, constrain sensor 
placements, and perform optimization with limited memory resources. 

2 SPOT Overview 
 
SPOT provides a toolkit that facilitates research in sensor placement optimization and enables 
the practical application of sensor placement solvers to real-world CWS design applications. A 
wide range of sensor placement optimization formulations and solver techniques have been 
developed for CWS design in drinking water systems [6, 10, 13, 14, 15, 16, 17, 20, 21]. 
Although SPOT certainly leverages much of this work, the goal of SPOT is to develop a toolkit 
that can incorporate and evaluate a wide range of sensor placement solvers on a broad class of 
CWS design problems. The following sections provide an overview of SPOT that illustrates the 
flexibility of this toolkit. 

2.1 Contaminants and Contaminant Impacts 
SPOT supports a very generic problem formulation that relies on contaminant impacts derived 
from an external contaminant transport calculation and impact assessment. An impact 
assessment is assumed to come from a set of contamination events, each of which represents a 
single location and time of contamination. For example, EPA’s TEVA tool calculates 
contaminant and public health impacts using EPANET for hydraulic and water quality 
calculations and epidemiological models to estimate exposure and disease progression [19]. 

2.2 Performance Objectives 
There are many competing CWS design objectives, such as minimizing exposure to 
contaminants, minimizing illness, minimizing the spatial extent of contamination, minimizing 
sensor detection time, and minimizing CWS costs. SPOT treats each of these objectives as a 
separate contaminant impact assessment (e.g. users can have a different impact assessment for 
the extent of contamination and the time to detection for a single contaminant). One or more 
contaminant impact assessments can be integrated into SPOT, thereby allowing for trade-offs 
between different contaminants, as well as different impacts for single contaminants. 

2.3 Problem Formulations 
The canonical SPOT formulation is to minimize the mean impact of contamination for CWS 
design. SPOT also allows for user-specified weights on the expected impact.  Further, SPOT 
solvers can optimize other performance objectives like worst-case impact and related robustness 
performance measures that trade-off mean- and worst-case impacts. 



2.4 Limited-Memory Requirement 
The expected application platform for SPOT is 32-bit MS Windows workstations.  Consequently, 
SPOT supports sensor placement solvers that can work with 4GB of memory, even for water 
distribution networks with on the order of 10,000 pipes and junctions.  Although SPOT’s integer 
programming solvers require more than 4GB of memory for these large networks, integer 
programming heuristics have been developed that solve a related, reduced-memory formulation. 

2.5 Flexible Solvers 
The rapid solution of large sensor placement optimization is essential to provide users the ability 
to explore a wide range of performance objectives and design trade-offs.  Fast heuristic methods 
are included in SPOT that can reliably and quickly solve the mean impact sensor placement 
formulation. Rigorous performance guarantees are also needed to ensure that the final solution 
generated by SPOT is the best one possible.  In cases where this cannot be guaranteed, methods 
have been developed that can quantify the optimality of the final solution. 

3 A Canonical Sensor Placement Formulation 
A key principle in the development of SPOT has been the development of mathematical sensor 
placement formulations that guide the development of subsequent solvers.  The canonical 
formulation used in SPOT is the mean-impact formulation, which can be expressed as the 
following integer program: 
 

 

 
This formulation models the placement of  sensors on a set  vertices, with the objective of 
minimizing the expected impact of a set  of contamination events. The binary decision variable 

 for each potential sensor location  equals  if a sensor is placed at location  and  
otherwise. Each contamination event  has a likelihood  such that .  Let  
be the subset of locations that could possibly be contaminated by event . For all locations , 
the impact of the event  is , where  is a the precomputed contamination impact for this 
event, when detected at location , and  indicates whether the event has been detected at 
location . Berry et al. [10] provide further discussion of this model, including details needed to 
make the solution of this integer program tractable. 
 
The use of precomputed impact values, , enables the application of this sensor placement 
formulation to a wide range of performance objectives, since different objectives simply translate 
into different impact values (e.g. see Watson et al. [23]). Further, this formulation can be used to 
optimize over the impacts of multiple contaminants.  Computation of the mean impact across 
multiple contaminants reduces to the computation of a single set of impact values. Similarly, the 
impact of detection delays can be captured in these impact values, and thus this formulation can 
account for a sophisticated response to sensor detections. 



4 Using SPOT 
Conceptually, the process of sensor placement can be decomposed into four steps: 
 

1. Performing water quality simulations 
2. Computation of impact values 
3. Sensor placement optimization 
4. Analysis of final sensor placement(s) 
 

Although SPOT contains components supporting all of these steps, our examples illustrate how 
SPOT can be used for sensor placement optimization (step 3). 
 
The common interface to SPOT’s sensor placement solvers is the sp script. The following 
sections illustrate the use of sp, to solve the canonical sensor placement formulation described in 
Section 3 and related sensor placement problems. These examples use EPANET network 
example 3. The sp script has many different options, but the following are commonly used: 
 
--network=<network> 
 The name of the network that will be analyzed 
--objective=<goal>_<statistic> 
 The sensor placement objectives. 
--ub=<objective>,<ub-value> 
 A constraint on the maximal value of an objective. 
--costs=<filename> 
 A file containing costs for the installation of sensors 
--sensor-locations=<filename> 
 A file containing information about whether network ids are feasible 
 for sensor placement, and whether a sensor placement is fixed at a 
 given location. 
--solver=<type> 
 Specifies the type of solver that is used to find sensor placement(s).  
--compute-bound 
 Only compute a bound on the value of the optimal solution. 
 

4.1 Example 1 – A Simple Example 
Example 1 shows how to use a heuristic solver to minimize the extent of contamination (EC) 
while limiting the number of sensors (NS) to no more than 5. 
 
$ ../../../bin/sp --path=../../../bin --path=../mod --network=test1 --
objective=ec --ub=ns,5 
 
Number of Contamination Events:  97 
Number of Contamination Impacts: 9458 
 
Validating input for heuristic solver 
Number of sensors=5 
Objective=ec 
Statistic=mean 
Impact file=/home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/test1_ec.impact 
Delay=0 



Running iterated descent heuristic for *perfect* sensor model 
Iterated descent completed - sensors written to file=test1.sensors 
------------------------------------------------------------------- 
Sensor placement id:        846930886 
Number of sensors:          5 
Total cost:                 0 
Sensor node IDs:            19 28 54 63 75 
Sensor junctions:           119 141 193 207 239 
 
Impact File:                /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/test1_ec.impact 
Number of events:           236 
Min impact:                 0.0000 
Mean impact:                8478.9674 
Lower quartile impact:      0.0000 
Median impact:              6949.0000 
Upper quartile impact:      12530.0000 
Value at Risk (VaR) (  5%): 25960.0000 
TCE                 (  5%): 33323.2833 
Max impact:                 42994.8000 
------------------------------------------------------------------- 

 
The first output lines summarize the statistics of this network example. Subsequent lines until the 
first dashed line are generated by the heuristic optimization solver; for simplicity, this text will 
be omitted in subsequent examples. The information between the dashed lines is a summary of 
the best sensor placement found. The sensor junctions correspond to the junction labels provided 
by the user (e.g. from the EPANET input file). Various impact statistics are given, including the 
mean (which is optimized here), and maximum (worst) impact amongst all contamination events. 
Robust optimization criteria are also given: Value at Risk (VaR) is the value of the 95 quartile 
(the impact that is greater than 95% of the impacts), and the Tail Conditional Expectation (TCE) 
is the expectation of the worst 5% of the impacts. 
 
The heuristic solves the sensor placement formulation described in Section 3. Consequently, the 
optimality of this solution is evaluated by solving the linear programming relaxation of this 
integer program.  This can be done in SPOT using the PICO solver: 
 
$ ../../../bin/sp --path=../../../bin --path=../mod --network=test1 --
objective=ec --ub=ns,5 --solver=pico --compute-bound 
 
Number of Contamination Events:  97 
Number of Contamination Impacts: 9458 
 
Objective lower bound: 8478.96737288 

 
This computation demonstrates that the heuristic has found an optimal solution.  This can be 
confirmed by running SP with the PICO solver but without the compute-bound option. Without 
this option, PICO find a globally optimal solution, though for large applications it may take too 
long to run. 



4.2 Example 2 – Optimizing Costs 
The canonical SPOT formulation makes the tacit assumption that the cost of each sensor 
placement is equivalent.  In practice this is not likely to be true for a variety of reasons (e.g. see 
Berry [8]). SPOT supports the generic specification of sensor placement costs using the costs 
option, which is used in conjunction with the ‘cost’ performance objective.  For example, 
suppose that the file cost_info contains the following: 
 
119 2.0 
141 2.0 
193 2.0 
207 2.0 
239 2.0 
__default__ 1.0 
 

 
This cost information can be used to constrain our previous example.  In this case, if the original 
locations were too expensive, none of them would be used if other sensor placement locations 
were cheaper. 
 
$ ../../../bin/sp --path=../../../bin --path=../mod --network=test1 --
objective=ec --ub=cost,10 --solver=pico --costs=cost_info 
 
Number of Contamination Events:  97 
Number of Contamination Impacts: 9458 
 
------------------------------------------------------------------- 
Sensor placement id:        13195 
Number of sensors:          10 
Total cost:                 10 
Sensor node IDs:            74 62 38 50 32 16 18 10 24 21 
Sensor junctions:           237 206 163 185 149 113 117 101 127 121 
 
Impact File:                /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/test1_ec.impact 
Number of events:           236 
Min impact:                 0.0000 
Mean impact:                5207.0453 
Lower quartile impact:      0.0000 
Median impact:              3610.0000 
Upper quartile impact:      10416.0000 
Value at Risk (VaR) (  5%): 14985.0000 
TCE                 (  5%): 17332.3583 
Max impact:                 20170.0000 
------------------------------------------------------------------- 

 
Similarly, SPOT can minimize costs or the number of sensors while maintaining a given 
performance.  The following example minimizes the number of sensors while requiring that the 
extent of contamination (EC) be no more than 5000 feet. 
 
 
 
 



$ ../../../bin/sp --path=../../../bin --path=../mod --network=test1 --
objective=ns --ub=ec,5000 --solver=pico 
 
Number of Contamination Events:  97 
Number of Contamination Impacts: 9458 
 
------------------------------------------------------------------- 
Sensor placement id:        13459 
Number of sensors:          10 
Total cost:                 0 
Sensor node IDs:            75 63 28 38 50 33 54 17 11 21 
Sensor junctions:           239 207 141 163 185 151 193 115 103 121 
 
Impact File:                /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/test1_ec.impact 
Number of events:           236 
Min impact:                 0.0000 
Mean impact:                4675.6708 
Lower quartile impact:      0.0000 
Median impact:              3610.0000 
Upper quartile impact:      6984.0000 
Value at Risk (VaR) (  5%): 14490.0000 
TCE                 (  5%): 17874.4083 
Max impact:                 22450.0000 
------------------------------------------------------------------- 

4.3 Example 3 – Multi-Objective Analysis 
The canonical SPOT formulation optimizes a single objective subject to a cost constraint. This 
formulation can be generalized to include additional constraints that limit the impact of other 
performance objectives.  The following example illustrates how the first example can be 
extended to re-optimize the solution with respect to a different objective.  First, we evaluate the 
final sensor placement generated by the heuristic solver using the mass consumed (MC) impact 
values. 
 
$ ../../../bin/evalsensor test1.sensors test1_mc.impact 
------------------------------------------------------------------ 
Sensor placement id:        846930886 
Number of sensors:          5 
Total cost:                 0 
Sensor node IDs:            19 28 54 63 75 
Sensor junctions: 
 
Impact File:                test1_mc.impact 
Number of events:           236 
Min impact:                 0.0000 
Mean impact:                43636.7076 
Lower quartile impact:      220.0020 
Median impact:              1909.9500 
Upper quartile impact:      105031.0000 
Value at Risk (VaR) (  5%): 144271.0000 
TCE                 (  5%): 144345.0000 
Max impact:                 144477.0000 
------------------------------------------------------------------- 

 



Since this sensor placement was generated by optimizing for EC, the MC impacts are likely to be 
non-optimal.  The following optimization minimizes MC while keeping EC close to its optimal 
value.  Note that statistics for both impact values are reported, which show that the constraint has 
been satisfied while improving (minimizing) the mean MC impact. 
 
$ ../../../bin/sp --path=../../../bin --path=../mod --network=test1 --
objective=mc --ub=ns,5 --ub=ec,9000.0 
 
Number of Contamination Events:  97 
Number of Contamination Impacts: 9458 
 
------------------------------------------------------------------- 
Sensor placement id:        1681692777 
Number of sensors:          5 
Total cost:                 0 
Sensor node IDs:            2 19 54 63 75 
Sensor junctions:           15 119 193 207 239 
 
Impact File:                /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/test1_mc.impact 
Number of events:           236 
Min impact:                 0.0000 
Mean impact:                39963.3542 
Lower quartile impact:      220.2160 
Median impact:              1546.2700 
Upper quartile impact:      86439.9000 
Value at Risk (VaR) (  5%): 144271.0000 
TCE                 (  5%): 144276.3333 
Max impact:                 144335.0000 
 
Impact File:                /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/test1_ec.impact 
Number of events:           236 
Min impact:                 0.0000 
Mean impact:                8844.6453 
Lower quartile impact:      0.0000 
Median impact:              6949.0000 
Upper quartile impact:      13502.0000 
Value at Risk (VaR) (  5%): 25960.0000 
TCE                 (  5%): 35007.4500 
Max impact:                 42994.8000 
------------------------------------------------------------------- 

 
SPOT supports an arbitrary number of such constraints.  However, in practice only one 
additional side constraint can be effectively solved. 

4.4 Example 4 – Constraining Sensor Locations 
Properties of the sensor locations can be specified with the sensor-locations option. This 
option specifies a file that can control whether sensor locations are feasible or infeasible, and 
fixed or unfixed. For example, suppose that the file locations contains 
 
infeasible 119 141 193 207 239 
fixed 161 



 
Then the following example shows that these restrictions lead to a solution with a value that is 
worse than the first example (above) which has an optimal value of 8478.9674.   
 
$ ../../../bin/sp --path=../../../bin --path=../mod --network=test1 --
objective=ec --ub=ns,5 --sensor-locations=locations 
 
Number of Contamination Events:  97 
Number of Contamination Impacts: 9458 
 
------------------------------------------------------------------- 
Sensor placement id:        1804289383 
Number of sensors:          5 
Total cost:                 0 
Sensor node IDs:            17 33 37 50 66 
Sensor junctions:           115 151 161 185 211 
 
Impact File:                /home/wehart/src/spot-th/builds/teva-spot-
s/spot/packages/sp/test/test1_ec.impact 
Number of events:           236 
Min impact:                 0.0000 
Mean impact:                9338.7119 
Lower quartile impact:      0.0000 
Median impact:              7640.0000 
Upper quartile impact:      14120.0000 
Value at Risk (VaR) (  5%): 27335.0000 
TCE                 (  5%): 32282.3000 
Max impact:                 45300.0000 
------------------------------------------------------------------- 

4.5 Example 5 - Limited-Memory Solvers 
A key issue for the practical application of SPOT is the memory requirements for SPOT’s 
heuristic and integer programming solvers.  The memory required for sensor placement solvers 
can be significantly impacted by the number of junctions at which sensor placement is feasible, 
the number of contamination events that are modeled, and the extent to which these events 
impact a large fraction of the network.  SPOT’s solvers can be effectively applied to applications 
with 100s of junctions and pipes on 32-bit workstations with 4GB of RAM.  However, larger 
applications often exceed available memory resources.  SPOT includes several mechanisms that 
reduce the solver memory requirements, at the expense of a slower run time and possible 
inaccuracies in the problem formulation.  These modified solvers are able to optimize 
applications with 10,000s of junctions and pipes using only a few gigabytes of memory. 
 
Two related strategies have been developed for applying SPOT’s integer programming solver 
with limited memory; see Berry et al. [4] for further details on these strategies.  The first strategy 
involves combining contamination events that have very similar impacts. This approach 
integrates two or more impact files into an aggregated impact file that contains representative 
impact events.  Thus, this can be viewed as a preprocessing step for SPOT’s optimizers. 
 
The second strategy involves a reformulation of the integer programming formulation to reduce 
the number of decision variables and constraints that need to be processed.  This method 
leverages the fact that many impact values are similar, and thus it makes sense to aggregate 



similar impact values together.  Two methods are supported for this aggregation process in 
SPOT: (ratio) – limits the ratio of the smallest impact to largest impact in a set that is aggregated 
together, and (percent) – uses an aggregation threshold that is based on the percent of the 
difference of the largest to smallest possible impacts. 
 
Table 1 illustrates the effect of these two aggregation strategies on the size of the integer 
program, and the total memory needed to solve the problem (using the PICO integer 
programming solver included with SPOT).  Further, this table shows that the final solution 
computed with the ratio aggregation can be used to compute a lower bound on the value of the 
best sensor placement. Note that the zero percent aggregation is the default mechanism used in 
SPOT, since this performs a simple aggregation without impacting the final solution. 
 
Percent Ratio # 

Variables 
# 

Constraints
# 

Nonzeros 
Final 

Solution 
Lower 
Bound 

Memory 
(Kb) 

None None 9558 9466 37421 21781.98 21781.98 39704
0 0.00 4505 4413 22184 21781.98 21781.98 25904

25 0.00 700 608 9127 21804.45 0 18568
50 0.00 571 479 8255 21887.27 0 18028
75 0.00 562 470 7102 21781.98 0 18164

100 1.00 4505 4413 22184 21781.98 21781.98 25904
100 0.75 2010 1918 13089 21781.98 15922.66 20164
100 0.50 1452 1360 11102 21781.98 10513.44 19496
100 0.25 1084 992 9326 21781.98 5125.84 19096
100 0.12 946 854 8568 21804.45 2429.90 18964

Table 1. Impact of percent and ratio aggregation on a small sensor placement example (EPANET 
network 3).  100-percent aggregation with 0-ratio results are omitted, since the integer program 
becomes trivially non-interesting in that case. 
 
The sensor placement heuristic solvers generally require much less memory than the integer 
programming solver.  However, these solvers employ a large matrix of precomputed values that 
speeds up the solution of large problems.  The heuristic-representation option in SPOT 
enables this precomputation to be stored as a sparse matrix, which trades off runtime 
performance for space savings. 

5 Discussion 
The examples above illustrate the flexibility of SPOT’s solvers, and the broad applicability of 
SPOT’s canonical problem formulation.  SPOT also supports advanced model formulations for 
robust optimization and modeling sensor placement with imperfect sensor detections. However, 
these capabilities cannot be effectively applied to large-scale real-world applications, and thus 
they remain a subject of ongoing research. 
 
SPOT sensor placement solvers have been integrated into the TEVA-SPOT tool. This tool has 
been used for CWS design studies at several large U.S. cities, and it is being used in ongoing 
studies within the EPA’s Water Sentinel program.  We expect that much of this software will be 
released under an open-source license in 2007.  Contact William Hart (wehart@sandia.gov) for 
further information. 
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