Whole Watershed Restoration Planning Tools for Estimating Tradeoffs among Multiple Objectives

Robert McKane¹, Bradley Barnhart¹, Jonathan Halama¹, Paul Pettus¹ Allen Brookes¹, Joseph Ebersole¹ Gregory Blair², Kevin Djang³

¹ USEPA Western Ecology Division, Corvallis, OR
² ICF International, Seattle, WA
³ CSC, Corvallis, OR

Society For Ecological Restoration Northwest Chapter Portland, Oregon April 7, 2016

Outline

- Describe a set of integrated decision support tools for whole watershed restoration planning
- Case study demo: Salmon recovery planning in the Mashel River Watershed, WA

Tools:

- Climate & land use change data (model drivers)
- Ecohydrological model
- Stream shade model
- Fish population model
- Visualization/communication tools
- How are these tools being used to assist tribes, land managers & communities in balancing multiple objectives?

Fish bearing streams

...plus contributing streams & flow paths

...plus contributing streams & flow paths

Premise: key salmon habitat factors are tightly linked to processes that extend from ridge to stream

Peak & low flows

Stream temperature & sediments

Large woody debris (LWD)

Mashel Streamflow Modeling Project Can long-rotation forestry improve summer low flow conditions that limit salmon migration & spawning in the Nisqually Basin?

Mashel Streamflow Modeling Project Can long-rotation forestry improve summer low flow conditions that limit salmon migration & spawning in the Nisqually Basin?

Traicoma		
	Basin area: 209 km ² Observed streamflow: Avg 210 ft ³ /s max 5,600 ft ³ /s min 4 ft ³ /s	
USGS gauge Nisqually River	Mashel Watershed (Principal salmon-producing Tributary in Nisqually Basin)	Mt. Rainier

Mashel Streamflow Modeling Project Can long-rotation forestry improve summer low flow conditions that limit salmon migration & spawning in the Nisqually Basin?

Mashel Stakeholders

Landowners

- Private Forest Industry
- State of Washington
- Town of Eatonville, WA
- Nisqually Land Trust

Interests

- Forest products, profit, conservation easements
- Forest products, clean water, salmon recovery, recreation, stewardship
- Clean water, flood control
- Community Forest \rightarrow salmon, sustainable local forest jobs, stewardship, carbon markets...

"Downstream" Stakeholders

- Nisqually Tribe
- Nisqually WS Council
- Fishers, hunters, hikers...
- Puget Sound communities
- National / International

- Salmon recovery, cultural traditions, subsistence
- Salmon recovery, Community Forest goals
- Recreation, subsistence, sense of place...
- Salmon recovery, stewardship, recreation...
- Climate change mitigation/adaptation

Can whole watershed restoration planning tools can help identify strategies for balancing tradeoffs among diverse objectives?

USEPA Office of Research and Development National Health and Environmental Effects Research Laboratory

Pacific Northwest Ecosystem Services Case Study

Trade-offs for Alternative Forest Management Scenarios

Hypothetical Example

Linking Multiple Models for Salmon Recovery Planning

VELMA: Streamflow & Sediment*

VELMA: Large Woody Debris

Penumbra: Stream Temperature

USEPA Office of Research and Development National Health and Environmental Effects Research Laboratory

EDT: Fish Habitat

*Sediment model in development

VELMA Ecohydrological Model

VELMA Validation

HJ Andrews Experimental Forest, Oregon Cascades

Abdelnour et al. 2011 and 2013, Water Resources Research

Streamflow Validation

Forest Growth Validation

Stream Chemistry Validation

Simulated stream nitrogen loads vs. riparian buffer cover & time since harvest

USEPA Office of Research and Development National Health and Environmental Effects Research Laboratory

Climate Data

Daily climate grids:

- mean temperature
- ✓ total precipitation

(30-m grid \rightarrow ¼ million grid cells in 209 km² Mashel watershed)

VELMA models daily snow dynamics from temp. & precip. inputs

Climate Data

Daily climate grids:

- mean temperature
- ✓ total precipitation

(30-m grid \rightarrow ¼ million grid cells in 209 km² Mashel watershed)

VELMA models daily snow dynamics from temp. & precip. inputs

LandTrendr — Landsat based detection of trends in disturbance and recovery

18

Robert Kennedy, Ph.D. College of Earth, Ocean and Atmospheric Sciences Oregon State University

Forest harvest in Washington's Cascades Mountains

Forests in the Pacific Northwest are harvested for timber production. In this false color composite, dark green colors correspond to older forest, pink to recent clearcuts. As areas recovery vegetation (thought not always forests), red and pink transitions to light green and eventually to darker green.

19

Robert Kennedy, Ph.D. College of Earth, Ocean and Atmospheric Sciences Oregon State University

Forest harvest in Washington's Cascades Mountains

Forests in the Pacific Northwest are harvested for timber production. In this false color composite, dark green colors correspond to older forest, pink to recent clearcuts. As areas recovery vegetation (thought not always forests), red and pink transitions to light green and eventually to darker green.

LandTrendr — Landsat based detection of trends in disturbance and recovery

20

Robert Kennedy, Ph.D. College of Earth, Ocean and Atmospheric Sciences Oregon State University

Forest harvest in Washington's Cascades Mountains

Forests in the Pacific Northwest are harvested for timber production. In this false color composite, dark green colors correspond to older forest, pink to recent clearcuts. As areas recovery vegetation (thought not always forests), red and pink transitions to light green and eventually to darker green.

LandTrendr — Landsat based detection of trends in disturbance and recovery

21

Robert Kennedy, Ph.D. College of Earth, Ocean and Atmospheric Sciences Oregon State University

Forest harvest in Washington's Cascades Mountains

Forests in the Pacific Northwest are harvested for timber production. In this false color composite, dark green colors correspond to older forest, pink to recent clearcuts. As areas recovery vegetation (thought not always forests), red and pink transitions to light green and eventually to darker green.

Mashel Forest Age Map in 1990

LandTrendr data, Kennedy et al.

VISTAS visualization

USEPA Office of Research and Development National Health and Environmental Effects Research Laboratory

Age

Forest Biomass Mashel Basin – Year 2000

VISTAS 3D visualization of VELMA model output

Young vigorously growing forests have been shown to transpire over three times more water than old forests

Figure 3 from Moore et al. 2004, Tree Physiology 24, 481-491 (Research conducted at HJ Andrews Experimental Forest, OR)

Young vigorously growing forests have been shown to transpire over three times more water than old forests

Old Forest

Lower Transpiration

Higher soil moisture

and drainage

(summer/fall)

Young Forest

Higher Transpiration

Jones & Post (2004 Water Resources Research 40) confirm these trends and also note exceptions

- 0.1 km² catchment
- 450 year-old conifer forest
- Clearcut in 1975
- Stream discharge data 1969 present

Forest age effect on stream discharge turned OFF

- 0.1 km² catchment
- 450 year-old conifer forest
- Clearcut in 1975
- Stream discharge data 1969 present

Forest age effect on stream discharge turned OFF

- 0.1 km² catchment
- 450 year-old conifer forest
- Clearcut in 1975
- Stream discharge data 1969 present

Forest age effect on stream discharge turned ON

Preliminary conclusion: Effect of forest age on summer low flow scales well from tree \rightarrow stand \rightarrow catchment (Moore et al. 2004) (this study)

Forest age effect on stream discharge turned ON

- 209 km²
- Mixture of forest stand ages, most < 60 yr
- Stream discharge data 1992 present

USEPA Office of Research and Development National Health and Environmental Effects Research Laboratory

- 209 km²
- Mixture of forest stand ages, most < 60 yr
- Stream discharge data 1992 present

National Health and Environmental Effects Research Laboratory

- 209 km²
- Mixture of forest stand ages, most < 60 yr
- Stream discharge data 1992 present

National Health and Environmental Effects Research Laboratory

VELMA parameters including age effect for HJ Andrews site scale well to the 20,000x larger, mixedage Mashel Watershed

National Health and Environmental Effects Research Laboratory

VELMA Results, 2006 – 2014:

VELMA Results, 2006 – 2014:

VELMA Results, 2006 – 2014:

Preliminary VELMA Results, 2006 – 2014:

September

Yes, preliminary results indicate that establishment of older (>80 yr?) forest landscapes could increase late summer & early fall streamflow by several times compared to the present-day Mashel watershed

September

How will climate change affect snowpack, ET & flow?

Simulation	ET/Precipitation (Annual Ratio)	Streamflow (Sept min m ³ /sec)
Actual Forest, Present climate	0.40	0.17
Actual Forest, +3.5 °C	0.51	0.09

How will climate change affect snowpack, ET & flow?

Simulation	ET/Precipitation (Annual Ratio)	Streamflow (Sept min m ³ /sec)
Actual Forest, Present climate	0.40	0.17
Actual Forest, +3.5 °C	0.51	0.09
240 year-old Forest, +3.5 °C	0.43	0.19

Older (>80 yr?) forest landscapes can help mitigate effects of climate change on late summer & early fall low flows.

Effects of climate change on loss of spring snowpack and summer stream temperature is under study.

Simulation	ET/Precipitation (Annual Ratio)	Streamflow (Sept min m ³ /sec)
Actual Forest, Present climate	0.40	0.17
Actual Forest, +3.5 °C	0.51	0.09
240 year-old Forest, +3.5 °C	0.43	0.19

Penumbra: Stream Shade & Temperature Model

Developer: Jonathan Halama

- Shade modeling component is operational now
- Integrate with VELMA → Long-term riparian vegetation and stream temperature dynamics

Calapooia River

Stream shade movie for June 15, sunrise to sunset Click on image to reveal movie play button

Riparian Large Woody Debris Mashel Basin – VELMA Simulation, Year 2000

Climate Refuges

Where and what type of restoration practices can be used to establish and enhance cold water refuges for salmon?

Shade

- Snowpack
- Groundwater
- Hyporheic flow
- Coarse woody debris

Aimee Fullerton, NOAA/UW

Juvenile O. mykiss thermoregulating in a refuge

Slide courtesy of Joe Ebersole, EPA

Fish Habitat Modeling: Ecosystem Diagnosis & Treatment (EDT) Model

- EDT is a fish <u>life-cycle</u> <u>habitat</u> model that assesses habitat using metrics relevant to managers and biologist
 - Synthesizes available data and information
 - Prioritizes habitat restoration needs
 - Identifies limiting factors
 - Evaluates alternative habitat solutions
- EDT is not a population dynamics model
 - Does not evaluate extinction risk
 - Does not set recovery targets
 - But it does help managers devise solutions to meet recovery and management targets

EDT: Basin-level Effects of Alternative Climate Conditions (relative to current conditions)

Pattern of Habitat Degradation by Subbasin, Nisqually River Watershed

Geographic area pr	iori	ty	Habitat class priority for restoration															
Geographic area	Protection benefit	Restoration benefit	Channel stability	Chemicals	Competition (w/ hatch)	Competition (other sp)	Flow	Food	Habitat diversity	Harassment/poaching	Obstructions	Oxygen	Pathogens	Predation	Sediment load	Temperature	Withdrawals	Key habitat quantity
Nisqually River Mainstem									٠									٠
McAllister Creek			٠						٠			•	•		٠			٠
Muck Creek	•		٠				•	٠	٠	•				•	٠	۲		٠
Prairie Tributaries	\bullet						•	٠	•					•	•	•		٠
Toboton/Powell/Lackamas	•	•					•	٠	٠			•			•	•		٠
Ohop Creek	•	•	٠				•		•						•	•		•
Mashel River	\bullet		٠				٠	٠	•						٠	٠		•

Restoration Priorities

Medium

Low

Indirect or General

EDT:

Pattern of Habitat Degradation by Subbasin, Nisqually River Watershed

Geographic area pr	iori	ty		Habitat class priority for restoration											У			
Geographic area	Protection benefit	Restoration benefit	Channel stability	Chemicals	Competition (w/ hatch)	Competition (other sp)	Flow	Food	Habitat diversity	Harassment/poaching	Obstructions	Oxygen	Pathogens	Predation	Sediment load	Temperature	Withdrawals	Key habitat quantit
Nisqually River Mainstem									٠		٠							٠
McAllister Creek			٠						•			•	•		•			٠
Muck Creek	•		٠				•	•	•	•				•		•		•
Prairie Tributaries							٠	•	٠					•		•		٠
Toboton/Powell/Lackamas	•	•					•	•	٠			•			•	•		•
Ohop Creek	۲	•	٠				٠		•						٠	•		•
Mashel River			٠				٠	٠	٠						٠	٠		•

Restoration Priorities

Medium

Low

Indirect or General

Mashel EDT stream reaches

Study Area

Scenarios for Watershed Restoration?

- Which restoration practices are most important for salmon recovery? Riparian plantings, large woody debris, floodplain/side-channel reconnection, low flow enhancement?
- Where should restoration projects be located to be most cost effective?
- How long will it take for restoration to have an impact?
- To what extent will projected changes in climate limit future effectiveness of restoration?
- Scenarios for optimizing multiple ecosystem services: salmon, timber, water quality & quantity, carbon, GHGs...

Preliminary Conclusions

- Establishment of older (>80 yr?) forest landscapes can
 - Increase streamflow by several times during low-flow months crucial for salmonid spawning
 - Help mitigate effects of climate change on streamflow
 - Generate large woody debris for instream habitat
- Next: Integrate VELMA/Penumbra/EDT to
 - Assess salmonid habitat responses to present and projected changes in flow, woody debris and stream temperature
 - Help inform riparian & whole watershed restoration plans aimed at establishing cold water refuges for a warmer climate

Thanks!

mckane.bob@epa.gov 541-754-4631