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1. Introduction

Species sensitivity distributions are a common tool used for setting safe limits on chemical
concentrations in surface waters (Posthuma et al. 2002, Suter 2002, Chapman et al. 2007, TenBrook et
al. 2010). Although the analysis and interpretation of species sensitivity distributions varies widely, the
basic methodology is quite general and can be summarized as a three-step procedure. First, results
from separate toxicity tests on a given chemical using various aquatic animal species are compiled.
Second, a statistical distribution to which the test results are thought to conform is chosen and fit to the
data. Third, the fitted distribution is used to infer a concentration that will be protective of a desired
proportion of species in an hypothetical aquatic community.

The procedure described above necessarily relies upon policy decisions, for example, concerning
the proportion of species that should be protected and the necessary level of confidence with which the
protective concentration is identified. This report focuses on fitting statistical distributions to the resuits
of toxicity tests. As such its content concerns the three steps laid out in the previous paragraph, each of
which can be accomplished in different ways, with different results. This report does not consider the
underlying policy decisions required for application of species sensitivity distributions to regulatory
decision making. The following subsections give some historical background regarding data compilation,
distribution fitting, and inference from fitted sensitivity distributions, in particular as they relate to the
development of a common risk assessment methodology for use by USEPAs Office of Pesticide Programs
(OPP)and Office of Water (OW).

The focus of analyses in this report is on fitting SSDs to chemicals for which the minimum data
are available to fulfill FIFRA requirements; however, insufficient data are available to derive water
quality criteria according to the methods described in the 1985 Guidelines. The inferential endpoint for
all analyses is taken to be the fifth percentile of the fitted SSD, or HCs. However, when data are limited,
HC; estimates may be subject to varying degrees of uncertainty. Therefore, the focus of these analyses is
on the bias and uncertainty of using SSDs to derive HCs values at varying sample sizes.

1.1, Data

For this report, data are assumed to be the results of acute toxicity tests using aquatic animals.
These are EC50s and LC50s from 96-hour continuous exposures (48 hrs for Cladocerans and a few other
species; USEPA 1985, ASTM 2011). An important consideration in data compilation is the distribution of
available data across species. Strictly speaking, an assumption of all the methods considered below is
that the data (test results) pertain to a random sample of species from the community for which the
analysis is intended to apply. Obviously this assumption is violated, in part due to constraints on our
knowledge of husbandry of aquatic animals. Thus a relatively limited subset of aquatic animals makes
up the greater part of all aquatic toxicity tests. Nevertheless, several important taxonomic requirements
are commonly applied to the compilation and analysis of multi-taxon toxicity test results. For this
report, two data subsets are of particular interest, the eight minimum data requirements (MDRs) of the
1985 Guidelines (USEPA 1985) and the three typical species used for OPP benchmark analysis. For
freshwater tests the latter are rainbow trout (Oncorhynchus mykiss), bluegill sunfish (Lepomis
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macrochirus) and Daphnia magna. For saltwater tests the three typical OPP benchmark species are
sheepshead minnow (Cyprinodon variegatus), mysid shrimp (Americamysis bahia), and Eastern oyster
(Crassostrea virginica).

1.2. Distribution fitting

Many statistical distributions have been used for fitting SSDs (e.g, log-normal, log-logistic, Burry,,
etc.); however, several analyses have shown that no one distribution is preferred across datasets
(Newman et al. 2000, Zajdlik & Associates 2005, Chapman et al. 2007). Deciding which statistical
distribution to fit to a set of data has been described as one of the most important and difficult choices
in the use of species sensitivity distributions (Chapman et al. 2007). Two important decisions must be
made when fitting a distribution to empirical data. The first concerns how the distribution will be fit to
the data, which in this report is equivalent to the problem of parameter estimation. The second choice
concerns how to assess the quality or accuracy of the fitted distribution as a general representation of
the data, or goodness-of-fit. A related concern involves deciding how to choose among the fitted
distributions when multiple distributions are fit to the same data. Also, for many types of distributions
(e.g., normal, logistic, triangular) data are transformed prior to analysis, most frequently using the
common log (logo) transformation. This complicates comparisons between distributions fit to
transformed versus untransformed data.

Three methods commonly used for estimating the parameters of SSDs are considered below.
These are maximum likelihood, moment estimators, and graphical methods (these methods are
described in more detail in Methods subsections 2.2.3, 2.2.4, and 2.2.5 below). It should be noted that
not all methods can be used with all distributions. It is likely that some methods will perform better
than others when data are limited and when the chosen statistical distribution is a poor approximation
of the underlying data distribution. Further, it is likely that rank of performance will change under
different data conditions, perhaps in predictable ways.

Newman et al. (2000) recommended a non-parametric method for fitting SSDs using empirical
bootstrapping (Section 2.4.2 below). However, given our current interest in the fifth percentile of acute
values (see Section 1.3, below), bootstrap estimation does not seem feasible because it would require at
least 20 data points to estimate the fifth percentile of the empirical distribution function. Bootstrap
methods are used below to test goodness-of-fit and to estimate sampling variance.

Both Chapman et al. (2007) and TenBrook et al. (2009) emphasize the importance of visual
inspection of fitted distributions against the empirical data to which they are fit. Such methods are
omitted from this report because the focus of this exploration is on general patterns of fit that emerge
from fitting thousands of replicate data sets. However, visual inspection of data and fit would be an
important step in any particular application of SSDs to empirical data.

1.2.1. Parameter estimation

Maximum likelihood methods for SSDs were first tested by Kooijman (1987) for the logistic
distribution who reported substantial bias in estimation of the scale parameter (£) with sample sizes < 5.
Shao (2000) described maximum likelihood estimators for the Burr, distribution and these estimators
are implemented by the software BurrliOZ (Campbell et al. 2000). Several recent reports on the
application and analysis of species sensitivity distributions have employed maximum likelihood with
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other distributions (Zajdlik and Associates 2005, Chapman et al. 2007), often citing the first of the
following desirable properties. First, when data fit the assumed distribution, maximum likelihood
parameter estimates are the most efficient parameter estimates possible (i.e., the estimates with the
least sampling variance, Edwards 1992). Second, the use of maximum likelihood allows the fit of
different distributions to be compared using information theoretic methods for comparing models
(Burnham and Anderson 2002). Third, use of maximum likelihood allows model-averaging of estimated
quantiles (Burnham and Anderson 2002). Fourth, maximum likelihood and restricted maximum
likelihood (Harville 1977), allow specification of hierarchical models that may otherwise be very difficult
to fit. Fifth, the development of likelihood-based estimators provides a link towards the development of
Bayesian methods for SSDs. Finally, maximum likelihood methods offer a generalized means for
extending the advantages of the graphical methods (below) to any continuous distribution. The latter
three points are the subject of proposed future work (Section 5).

Moment estimators are a common method for fitting SSDs (Kooijman 1987, Van Straalen and
Deneman 1989). In practice, they work by equating the mean and variance of a sample to the
parametric mean and variance of a chosen distribution, which are functions of the parameters of that
distribution. This creates two equations in two unknowns, which can then be solved for the unknown
parameters. The resulting solution is an estimate of the parameters of the distribution expressed as
functions of the sample mean and sample variance. Although this procedure has been described in
terms of the mean and variance (the first two moments), it could be extended to higher moments as
well if a distribution (e.g., Burr) has more than two parameters.

Graphical methods for use in SSDs were described by Erickson and Stephan (1988). They are a
subset of the general theory of order statistics (Arnold et al. 2008) and have two unique attributes that
make them very attractive for use in fitting SSDs (TenBrook et al. 2008). First, once data have been
ordered and the empirical percentiles obtained, the linear estimation model can be weighted toward
the lower tail of the distribution, which is generally the portion of the distribution of interest for
regulation and risk assessment. This can alleviate potential biases resulting from right-skewed toxicity
distributions. Second and related to the first, test results that are right-censored (known only to be
greater than the highest tested concentration) can often be accommodated (Erickson and Stephan
1988). Graphical methods can be used on any distribution in the location/scale family. Of the seven
distributions described below (Section 2.2.13), the normal, logistic, and triangular are location/scale
distributions. Thursby et al. (Appendix F) show how similar linearization methods can be extended to
distributions outside the location/scale family. Section 5 (future work) contains descriptions of some
potential generalizations of ordered methods that would extend their applicability to any continuous
distribution.

1.2.2. Goodness-of-fit

Goodness-of-fit is a measure of how well an assumed distribution fits a set of data, given the
data and the values of the estimated distributional parameters. Goodness-of-fit tests are applied after a
distribution has been fit to a set of data to evaluate the extent to which the fitted distribution is a good
representation of the observed data. Tests for goodness-of-fit can be divided into parametric and non-
parametric methods. In either case, the test begins with the definition of a test statistic that can be
reliably predicted to increase in magnitude with lack of fit (e.g., the summed discrepancy between the
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empirical distribution function and the cumulative distribution function, evaluated at all data points, is
used below). With parametric goodness-of-fit tests, a theoretical distribution for the test statistic can be
derived, and probabilities are estimated from that theoretical distribution. In general, the derivation of
the theoretical distribution of the test statistic depends on asymptotic convergence and upon the
hypothesized distribution for the data. Therefore parametric goodness-of-fit tests tend not to work well
at small sample sizes and generally apply to only one distribution (often the normal distribution). In
contrast, non-parametric methods often work by statistical resampling methods (Efron and Tibshirani
1994) and probabilities are assessed as simple ranks of observed statistics among a set of simulated
statistics. They can be applied to any continuous distribution and are valid regardless of sample size.
However, both parametric and non-parametric methods lack power at small sample sizes.

Luttik and Aldenberg (1997), Aldenberg and Luttik (2002), and Newman et al. (2000) all
considered parametric goodness-of-fit tests. Zajdlik & Associates (2005) recommended the Anderson-
Darling test for all distributions, except the normal and log-normal distributions for which they
recommended the Shapiro-Wilks test. Chapman et al. (2007) carried out extensive simulations of the
power properties of goodness-of-fit tests for the normal distribution and concluded that power to
detect non-normality (lack of fit) was extremely low, especially at sample sizes < 20, which correspond
to both cases of particular interest in this document: n=3 and n = 8).

Newman et al. (2000) and Shao (2000) employed non-parametric goodness-of-fit tests based on
empirical bootstrap sampling (Efron and Tibshirani 1994, Manly 1997). Chapman et al. (2007) describe a
parametric bootstrap procedure (also described by Efron and Tibshirani 1994), but do not apply it to
goodness-of-fit testing for SSDs. Because of their utility at all sample sizes, and applicability to all
continuous distributions, only bootstrap methods are considered below.

1.3. Inference from the fitted distribution

All analyses of parametric species sensitivity distributions begin by estimating the parameters of
the distribution (see above). Thus the distributional parameters are a universal inferential endpoint
(excluding non-parametric SSDs, Newman et al. 2000). Once the parameters are estimated, a given
percentile (p) of the distribution is often chosen to represent the concentration at which (no more than)
p% of species will be at risk of adverse effects, referred to herein as the HC,. Regardless of how the
distribution is fit, an HC, is easily estimated using the quantile function for the fitted distribution.
However, estimates of percentiles are subject to bias (if the distribution doesn’t fit the data very well)
and uncertainty (especially when the number of test results are limited). Methods for handling these
aspects of distribution fitting vary widely in the SSD literature. Erickson and Stephan (1988) also pointed
out that, by Jensen’s inequality, an unbiased estimator for the HC;, might be a biased estimator of the
percentile (intended to be p) of species protected at the estimated HC, if the quantile function is non-
linear in p (as is generally the case).

1.3.1. Sampling variance

When distributional parameters are estimated from empirical data, the estimated parameters
are subject to sampling variance. In other words, given data that conform to a specified distribution, if
equal sized (but different) sets of data are drawn from the same distribution, the parameter estimates
will differ with each set of data, resulting in a distribution of parameter estimates. The variances of the
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distributions of parameter estimates are termed the sampling variances of the parameters. If the
estimation procedure is unbiased the average parameter estimates will be arbitrarily close to the ‘true’
values if the procedure is repeated a sufficient number of times. However, the expected variance in
these parameter estimates may be quite large and is generally inversely related to the size of the
sample. This sampling variance is present in all three fitting techniques described above (maximum
likelihood, moment estimators and graphical methods), though it may differ among techniques.
Sampling variance of parameter estimates translates directly (though not necessarily linearly) into
sampling variance around quantiles of a distribution (i.e., the estimated HCs). Common methods for
estimating sampling variance around quantiles in an SSD include the delta method (Seber 1982, Shao
2000) and the bootstrap (Newman et al. 2000).

1.3.2. Confidence limits

Confidence limits for an estimated percentile are an alternative expression of sampling variance
in the model parameters. These can be one-sided expressions of confidence that the true HC, is greater
than a specified concentration (Kooijman 1987, van Straalen and Deneman 1989, Aldenberg and Slob
1993) or two-sided limits related to the probability that the region defined by a lower and upper bound
would contain the true HC, (Shao 2000, Newman et al. 2000). Many methods for confidence interval
development rely on either asymptotic properties of estimators or standard (mean zero and variance 1)
forms of distributions. Only one-sided confidence intervals generated using extrapolation constants
derived from standard forms of the logistic, normal, and triangular distributions (Aldenberg and Slob
1993, Aldenberg and Jaworska 2000, Pennington 2003) are considered below.

1.3.3. Model selection & multidistributional inference

Many researchers have discussed the important (and difficult) choice of which distribution to
employ for an SSD (Newman et al. 2000, Zajdlik & Associates 2005, Chapman et al. 2007). Assessing the
goodness-of-fit of a distribution provides only limited information for comparing distributions because
discrepancies of fit will generally decrease monotonically with increasing number of estimated
parameters. Yet an over-parameterized model may have poor predictive ability. Formal model
selection criteria impose a penalty for each estimated parameter, which creates a tradeoff between
parsimony and fit. The tendency for species sensitivity distributions to have two estimated parameters
(though the Burry, distribution has three) alleviates this concern somewhat. However, model selection
methods are also useful for ranking the performance of alternative distributions and for formally
averaging model predictions when multiple models are fit (Burnham and Anderson 2002). Elphick (2011)
used AIC to compare several candidate distributions, including log-normal, log-logistic, log-gumbel and
Weibull and report similar performance.

1.4. Objectives

The primary objective of the work described in this report is to compare the performance of
different distributions and estimation techniques commonly used in SSD analyses. In particular,
performance is evaluated as the ability to accurately estimate the HC, (in particular the HCs). Accuracy
is assumed to incorporate both bias and sampling variance. While a formal definition of accuracy
specifies that accuracy is the sum of sampling variance and squared bias (Williams et al. 2002), the term
is used more loosely here to indicate that increases in either bias or sampling variance of an estimate of
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the HC; will decrease the accuracy of that estimate. The work described below can be divided into two
parts. First, the performance of different estimation methods at different sample sizes is evaluated
when the data are derived from a known distribution using simulated data with a known HC; (Statistical
comparison 2.3.1). Second, seven distributions are fit using three fitting methods to empirical toxicity
data on acetylcholinesterase inhibitors (Statistical comparisons 2.3.2 — 2.3.6) for which the true
distribution and HCs are unknown. Presentation of the results of these analyses is organized around
specific questions that will help to inform the use of species sensitivity distributions in the context of
work done by the Office of Water and the Office of Pesticide Programs. These are:

1. How does sample size influence accuracy (bias and variance) of the estimated HCs?
How do minimum data requirements influence accuracy of the estimated HCs?
How do different estimation methods influence accuracy of the estimated HCs?
Are measures of fit (goodness-of-fit, Akaike’s Information Criterion) reliable indicators of
performance?
What are actual coverage rates of 95% confidence limits for subsamples?
How do different candidate distributions perform relative to each other?
Does model-averaging across distributions improve estimates of the HCs?
What future research is suggested by these results?

ol

® N o »

Specific comparisons and analyses designed to answer these questions are described in detail below.

2. Methods
2.1. Data & statistical comparisons '

2.1.1. Simulation data

To evaluate the performance of distributions and fitting methods under known conditions, data
were simulated from known parametric forms of seven distributions. Simulated sample sizes were 3, 8,
20, 50, and 100 mean acute values. Each simulated data set was replicated 10,000 times. Approximate
parameter values for generating all simulated data are presented in Table 1.

Table 1. Approximate parameters used to simulate acute toxicity data

Distribution Parameters Fifth percentile
normal u=277,0=142 2.65
logistic 0=2.78,5=085 1.94
triangular a=-0.59,5=5.92 2.75
Gumbel p=2.05 =136 361
Weibull A=2940.47, k=0.34 0.43
Pareto X, =0.70, a =0.15 0.99
Burr a=334.71,6=0.48,c=1.20 2.35

The first three distributions (normal, logistic, and triangular) are probably the most common
distributions used in SSDs and have a familiar sigmoid cumulative distribution function (Fig. 1). The
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Gumbel distribution is similar to the previous three, but slightly more right-skewed (Fig. 1). The Weibull
and Pareto distributions were chosen to represent ‘outlier’ distributions that might be expected a priori
to perform poorly. The Weibull is left-skewed relative to the other distributions, and the Pareto is
shaped quite differently, with a monotonically declining slope to its cumulative distribution function
(Fig. 1). Finally, the Burr distribution is a three parameter distribution with a sigmoid cumulative
distribution function and is the primary distribution behind the BurrliOZ software (Campbell et al. 2000)

Figure 1. Plots of the cumulative distribution functions for seven distributions using the parameters from
Table 1, a. in the region of the HCs, and b. over the full distribution. Note the logy, scale of the
horizontal axis.

= tfriangular ++**** normal =-=+- logistic =—=- gumbel Pareto Weibull Burr]

Cumuiative Probability

_;
]
o

Cumulative Probability

Log, LC50

2.1.2. Empirical data

Acute toxicity test results for seven organophosphate insecticides and three carbamates were
obtained from Web-ICE (Raimondo et al. 2010). These chemicals were selected because their data sets
fulfilled the data requirements defined under FIFRA and the 1985 Guidelines. Results are separated by
freshwater versus saltwater animals. Pesticide names and sample sizes are given in Table 2. For
empirical analyses, these data can be summarized at two levels, the species and the genus. When more
than one toxicity test result is available for a given species, the datum for that species is taken to be the
geometric mean of all such results (hereafter the species mean acute value or SMAV). When analysis is
performed on genera, and more than one SMAV exists for a given genus, then the datum for that genus
is taken to be the geometric mean of all such SMAVs (hereafter the genus mean acute value, or GMAV).
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Summarizing the test results by genus has the effect of reducing the influence of closely related test
species on the estimated HCs. These methods for summarizing taxonomic replication have a strong
historical background in the development of U.S. aquatic life water quality criteria (ALC) (USEPA 1985).
However, they ignore some information when taxonomic replication is available. Alternative methods
for handling replicate test results for a given taxon are suggested in Section 5 (Future analyses).

It should be noted that in separate analyses with these data, Erickson (Appendix D) has found
some errors and inconsistencies. Thus, these analyses should be considered preliminary pending
additional data quality review.

Table 2. Acute test results available for analysis

Class Chemical Water Test Results SMAVs GMAVs
malathion FW 174 7 57
diazinon FwW 84 33 28
chlorpyrifos FW 100 34 30
fenitrothion FW 113 36 30

OreanapHoNRRIES methyl parathion FW 71 35 29
dichlorvos FW 55 25 22
chlorpyrifos SW 108 26 21
fenthion SW 22 13 12
carbaryl FW 290 75 55
carbaryl SW 23 11 9

Carbamates
propoxur FwW 21 13 13
methomyl FW 56 20 16

2.1.3. Statistical comparisons

The empirical and simulation data described above were used to carry out numerous
evaluations of components of SSD methodology. The specific intent of each type of comparison is
described below, and the primary inferential endpoint is the estimated HCs.

1 Performance when the data conform to a known distribution. For this evaluation,
only the parametric simulation data (Table 1, Section 2.2.1 above) were used. All
seven distributions using all available fitting methods (Table 3) were fit to every
replicate sample of simulated data.

2 Baseline empirical performance for the maximal sets of SMAVs and GMAVSs. For this
evaluation the empirical data (Table 2) were used. All seven distributions using all
available fitting methods (Table 3) were fit to every available combination of pesticide
and water type. The resulting HC;s estimates are the reference HCss against which the
HC; estimates generated under comparisons 3-6 (immediately below) are compared.

3. Comparative performance at » = 8 without regard to ALC MDRs. For this evaluation
1,000 subsamples of 8 GMAVs from each empirical data set (Table 2) were used.
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4, Comparative performance at » = 8 when ALC MDRs are met. This evaluation was
similar to (3) except that the 1,000 GMAVs were chosen so that the eight minimum
data requirements (MDRs) of the 1985 guidelines (USEPA 1985) were always satisfied.

5. Comparative performance at » = 3 SMAVs without regard to OPP benchmark species.
This evaluation was similar to (3) except that the 1,000 subsamples were of size = 3.

6. Comparative performance at # = 3 for the OPP benchmark species. This evaluation
was similar to (5) except that there is only one subset of data conprising the three
benchmark SMAVs.

Table 3. Distributions and fitting methods used for the analyses below.

Maximum Moment Graphical

Blstribution Likelihood Estimators Estimators
normal yes yes yes
logistic yes yes yes
triangular yes yes yes
Gumbel yes yes no
Weibull yes no no
Pareto yes yes no
Burry, yes no no

2.2, Statistical methods

This section is provided for completeness and to allow interested readers to evaluate the
statistical methods. However, the results section has been written to be read and understood without
relying on this material.

2.2.1. Random variates

Random variates were generated from a specific distribution (with parameters given in Table 1)
by first drawing a vector of uniform random variates of the desired sample size. The uniform random
variates were then used as input to the quantile function for the distribution together with the specified
parameter values. The resulting output is a vector of random variates from the specified distribution.
Quantile functions for all distributions used are presented in Section 2.2.15, below.

2.2.2. The HCs

For the purposes of this report, the inferential endpoint for all analyses is the HC:. Regardless of
sample size and method of estimation, the HC; is estimated as the output of the guantile function for
the specified distribution and estimated parameters evaluated at 0.05. Quantile functions for all
distributions used are presented in Section 2.2.15, below.

2.2.3. Maximum likelihood estimation

Log-likelihood equations were developed for each of the seven distributions as the natural
logarithm of the probability density function (f) for the distribution. The resulting log-likelihood was
summed over all data points:
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L(B|X)ocgln(f(xi 16))

Maximum likelihood estimates (MLEs) of parameters were obtained by numerically searching for the
parameter values that maximized the log-likelihood over all data points (equivalently minimized the
negative log-likelihood). MLEs were always estimated by numerical search, even when closed-form
solutions to the MLEs exist. This was done to subject MLEs for all distributions to the same (albeit
minor) uncertainty associated with numerical estimation. Likelihood expressions are presented for each
distribution in Section 2.2.15.

2.2.4. Moment estimation
Moment estimators were derived, wherever possible, by setting the expected distributional
mean and variance equal to the sample mean and variance, and solving for the distributional

parameters. For example, let X and s represent the sample mean and variance, respectively
”2
MisaE 5 i s 2 4
(regardless of distribution). The mean and variance of a logistic distribution are a and —3—[)’ . Setting

2
V2 . R
a=% and §* = ?,6’2 and solving for & and £ results in the two moment estimators & = X and

A

K
p=— \[?_, , where the circumflex over the parameter symbols indicates that they are estimated
T

quantities. For the Weibull distribution, moment estimators could not be derived because the
equations for the mean and variance contain gamma functions of the Weibull parameters. For the Burr
distribution, moment estimators were not derived because the Burr distribution has three parameters,
requiring three equations, but an equation for the third moment of the Burr distribution was not
immediately available. Moment estimators for the remaining five distributions (normal, logistic,
triangular, Gumbel, and Pareto) are presented in Section 2.2.15, below.

2.2.5. Graphical estimation

Graphical estimation works by exploiting a functional relationship between the parametric
quantiles of a standard form of a distribution (parameters chosen so that the distribution has mean 0
and variance 1) to the quantiles of the empirical distribution function. This allows the mean and variance
of the sample to be estimated, from which moment estimators may be used, in turn, to estimate the
distributional parameters. This procedure is described in detail by Erickson and Stephan (1988). This
procedure is only applied to distributions in the location-scale family, which includes the normal,
logistic, and triangular distributions among the candidate distributions considered in this report. Note
that, Thursby et al. (Appendix F) apply related linearization methods to some distributions outside the
location/scale family. Parameters for standard forms of normal, logistic, and triangular distributions are
presented in Section 2.2.15, below. For this report, all data points were weighted equally to minimize
the number of possible explanations for differences in performance between graphical estimates and
the other two methods (maximum likelihood and moment estimators).
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2.2.6. Transformations

When the normal, logistic, triangular, or Gumbel distribution was used, the data were first
common-log transformed (log;s). When the Weibull, Pareto, or Burr distribution was used, the data
were untransformed. This complicates comparisons among distributions, especially using maximum
likelihood and AIC. To solve this problem, the likelihoods for the normal, logistic, triangular, and Gumbel
distributions were reformulated as follows. First, let:

y=log, (x) .
Therefore the cumulative distribution functions for the four distributions using log;o-transformed data
are of the form: F(y | 0) . Thus, the probability density functions for the untransformed data (x) can be

calculated using the product rule.
d d dy i
x|0)=—F(y|0)=—F(y|0)—= 0)—
In the above equation, the expressions f(y | 9) are the probability densities for the log;s-transformed

data for the respective distributions. When the likelihood is maximized over the transformed data the

I}
transformation factor ——— can be ignored for the purposes of obtaining the MLEs because the

X ln(IO)
transformation factor does not contain the parameters of interest. However, to compare distributions

using AIC the factor must be included so that the AIC statistics are on the same scale. Thus, for
distributions on Iogm—transformed data:

L(0]X)x Zln{ 1(10) (ﬂﬁ)]:L(ﬂfY)-ln(lo)gx-nln(ln(lo))

=1

2.2.7. Bias
Bias was estimated as the expected value of the difference between the estimated HCs and the

known value. Specifically, bias was estimated as:
bias(%‘rcs) = E(@ICS - HC;)

In the above equation, the notation EIC5 and HC, denote the estimated and known values of the HC;,

respectively. These were calculated differently depending on whether the distributions were applied to
transformed versus untransformed data, respectively. When a distribution was fit to untransformed
data (Weibull, Pareto, Burr), the known HC;s is:

HC, = F(0.05/9)
Above, F'! is the quantile function for the distribution and @ is a vector of known parameters. When a
distribution is fit to transformed data (normal, logistic, triangular, Gumbel), the known HC; is:
O = 10F" (0.05/8)
5
Similarly, when a distribution was fit to untransformed data the expected value of the HC; was
calculated as the simple average of the fifth percentiles across all iterations of the simulation:
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E(HcC, )= 10,1)00 lg}?" (0.0518,)= E(F‘l (0.05| é,))

However, when a distribution on transformed data was fit, the resulting set of estimated values of the
HCs is non-normally distributed and the arithmetic mean of the estimated HCss is a biased estimator of
the expected HCs. In this case the expected HCs was estimated as the geometric mean of HC; estimates,
or:

1

10,000 “’f” F(0058,) 10,000 I
E(@ICS) - b H 10" (0.056,) _ 105 It IOE(F (0.054,))
r=1

When discussing bias in the results the term bias is used in two ways, referring both to bias and its
absolute magnitude (i.e., | bias|), where the meaning is clear from the context.

Bias cannot be assessed for analyses of empirical data because the true HCss are not known. Yet
it is still of interest to compare the mean performance of the estimators when data requirements are
imposed and when they are not. To do so, an HCs was estimated for each chemical using ‘all available
data’. To examine the effect of the ALC MDRs ‘all available data’ were taken to be the set of all GMAVs
for a given chemical. To examine the effect of the typical three OPP species ‘all available data’ were
taken to be the set of all SMAVs for a given chemical. Thus all calculations proceeded as described
above, but with the HC; calculated using all available data substituted for the known HC..

For easier interpretation, bias is not presented as defined above. Rather it is presented as the
ratio of the estimated HCs to the known HCs: E(@TC5 ) / HC, . In figures, this is further presented on

the log,o scale, in which case the y-axis tick marks represent over- or under-estimation by each
successive order of magnitude. In tables, the untransformed ratio is given.

2.2.8. Bootstrap sampling

Bootstrap resampling was used to assess goodness-of-fit and sampling variance (next two
sections). With both empirical and parametric bootstrap sampling the methodology depends on
generating replicate sets of data based on the reference data being analyzed (below, for demonstration
purposes, 100 replicates were used). The reference data is the actual data set being analyzed and in this
report it may be the simulation data (Table 1, Section 2.1.1 above) or it may be a particular set of
empirical data (Table 2, Section 2.1.2). The process begins after a particular distribution is fitted to the
reference data. The new sets of data are the same size as the original data and are generated by
drawing (with replacement) new samples from the original data (empirical bootstrap) or by drawing
from the fitted distribution (parametric bootstrap). To these new data sets, the same distribution is fit,
generating a distribution of fits under the hypothesis that the data fit the specified distribution with the
estimated parameter values for the original data.

2.2.9. Goodness-of-fit
Goodness-of-fit was assessed using both empirical and parametric bootstrap resampling
(Section 2.2.8. above). The summed (over all data points) squared distance between the empirical
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distribution function (EDF) and the cumulative distribution function (CDF) for the fitted distribution was
used as a summary measure of fit. Large values of this statistic indicate poorer fit, whereas small values
indicate better fit. Using the bootstrapping procedures 100 values of the fit statistic were generated to
which the observed fit statistic from the reference data was compared. The proportion of these
bootstrapped fit statistics that were greater than or equal to the observed fit statistic for the reference
data was interpreted as the P-value for lack of fit (small P-values indicate significant lack of fit). This level
of replication (100 iterations) will give poor resolution on the P-value for any single data set, but will still
allow precise estimation of average behavior of the goodness-of-fit algorithm over 10,000 or 1,000
samples of simulation or empirical data, respectively.

2.2.10, Sampling variance

Sampling variance for distributional parameters and HC; estimates was estimated using both
empirical and parametric bootstrap methods to generate 100 values of each statistic. Sampling variance
for a given estimated value was estimated as the variance among the 100 bootstrap samples for the
same statistic.

2.2.11. Confidence limits

One-sided 95% confidence limits for the HC; for the logistic, normal, and triangular distributions
were generated using extrapolation constants provided by Aldenberg and Slob (1993), Aldenberg and
Jaworska (2000) and Pennington (2003). These are intended to be expressions of 95% confidence that
the true HC; is greater than the calculated confidence limit. The formula for generating the confidence
limit is:

L=X-ks
In the above equation, L is the lower 95% confidence limit, X is the sample mean, s is the sample
standard deviation, and & is an extrapolation constant that is specific to both the distribution fitted
(logistic, normal, or triangular) and sample-size. These confidence limits were generated only forn =3
and n=8.

2.2.12. Model selection

Whenever multiple distributions were fit using maximum likelihood to the same set of data
(whether simulated or empirical) Akaike’s Information Criterion (with correction for sample size: AIC,)
was used as a relative measure of the performance of distributions. The formula for AIC, is:

AIC, =—2L+2K[L]
n-K-1

In the above equation, L is the maximized log-likelihood function, # is the sample size, and X is the
number of parameters estimated in fitting the distribution. The second term on the right hand side of
the above equation is a penalty term. It increases the AIC, statistic with each additional parameter
estimated. Because the quotient within the parentheses is zero or negative whenevern < K + 1, AIC,
cannot be applied to such cases. Unfortunately this includes all cases when n = 3, corresponding to the
comparisons of analyses of random sets of 3 SMAVS to those of the typical OPP species.
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2.2.13. Model averaging

Model-averaged HCs values were calculated as weighted averages of the HC; values from each
individual distribution fit to the same data set. The weights used were Akaike weights (w,), as defined by
Burnham and Anderson (2002:75). The formula for Akaike weights is:

1
saie A
exp( 5 ,)
>e( -,
exp ——-A.)
sl 2

In the above equation, A, = AIC_ (distribution i) —min (AIC, ) and the summation limit of 7 indicates

Wf =

that seven distributional fits were compared. Model-averaged estimates of the HCs were calculated as:
L 7
HC;s = le HC,,

In the above equation, the HC;; is the estimate of the HC; from thejth distribution considered.

Sampling variance of the HCs was estimated using equation 4.9 of Burnham and Anderson
(2002:162):

var(ms)z iw, \/var(HCSJ.)+(HCSJ ~HC:; )2

J=1

2.2.14. Software & distributions

All analyses described below were accomplished using subroutines written in Matlab (hereafter,
called “the SSD toolbox”). Use of the SSD toolbox requires basic Matlab software and the Matlab
Optimization toolbox (Mathworks 2010). The SSD toolbox contains functions for fitting seven
distributions (normal, logistic, triangular, Gumbel, Weibull, Pareto, and Burry) using three methods
{maximum likelihood, moment estimation, and graphical estimation), though not all methods can be
used with each distribution (Table 3). The SSD toolbox also contains subroutines for performing
empirical and parametric bootstrap sampling for testing goodness-of-fit, estimating sampling variance,
and performing information-theoretic model selection and multi-model inference. Table 4 gives some
standard statistical notation used in describing the distributions. Table 5 gives a list of distribution
functions available in the SSD toolbox.
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Table 4. Statistical notation for the description of distributions tested as candidates for use in estimating

the HC,
symbol description
n sample size
1 n
X sample mean: —ij
i=1
s L LD
s sample standard deviation: IZ(x, —x)
s ]
exp(x) exponential function (e%)
X column-vector of untransformed data (mean acute values)
Y column-vector of logs-transformed data (mean acute values)
0 column-vector of parameters for any given distribution
fx|0) probability density at x (or y) conditional on 0
F(x|0) cumulative distribution function at x (or y) conditional on @
Fl(x|0) quantile function at x (or y) conditional on @

LOX)or L log-likelihood for @ conditional on X (or Y)

Table 5. Names of functions in the SSD toolbox

distribution pdf cdf quantile likelihood moments random variates
normal normpdf ‘normcdf ‘norminv  normlik normmom normrnd
logistic logipdf logicdf logiinv logilik logimom logirnd
’triangular  triapdf  triacdf  triainv trialik  trimom triarnd
Gumbel gumpdf  gumcdf  guminv gumlik  gummom gumrnd
Pareto parpdf parcdf parinv parlik parmom parrnd
*Weibull wblpdf wblcdf wblinv whbllik n/a wblrnd
Burr burpdf burcdf burinv burlik n/a burrnd

“functions included in standard Matlab (pdf = probability density function, cdf = cumulative distribution

function).

*Triangular functions written for the symmetric triangular distribution only
*Weibull functions are also available in Matlab’s statistics toolbox
n/a = not applicable
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2.2.15. Equations for Distributions

Normal distribution
Parameters: 0 =[ ;0]

i (location)
o (scale)

Transformation: y, =log,, ()

f(ylmo)= 1 exp[—M)

\/ﬁ 202
F(ylmo)= [£(e
F(p)=2(p)

st

L(8]Y) =—gln(21r)—nln(0')+ =2 —u)

i=1

dL I &

e R

dL 1 1 ¢
sl Seew)

Neither the cdf (F) nor quantile function (F') have explicit forms. However, both can be readily
approximated to arbitrary precision in most mathematical software.
Mean: u

Variance: o

The standard normal distribution has mean 0 and unit variance when:
#=0
o=1

Maximum Likelihood Estimators:

,. 1 &

g=y==>y,
1o
X n—1
o=85§——
n

Moment Estimators:

~_ 5

og=5
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Logistic distribution
Parameters: 0 =[a; f]

a (location)
B (scale)

Transformation: y, =log,, (xﬁ.)
exp(—(y—a)/ﬁ)
ﬂ(1+exp(~(yfa)/ﬁ))2
1
1+exp(—(y-a)/B)

f(y:a.B)=

F(y:a,p)=

F'(p)=a+pn| £
(p)=a+h (1-;7]
Let:

K=Y —a

m, = exp(—%]

Z(r —nln(B) 221n(1+m)
dL E_E = m,
da ﬁ ﬂ o\ 1+m,

dﬂ ﬁz ﬂ ﬂ2 1 L+m,

Mean: &
2
. T 2
Variance: — [

The standard logistic distribution has mean 0 and variance 1 when:

a=0,ﬂ=£
2

Maximum Likelihood Estimators:

Closed form estimators do not exist, but MLEs are easily obtained numerically.
Moment Estimators:
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Triangular distribution (symmetric)

Parameters: 0 =[a;b], ¢ (minimum),
Transformation: y, =log,,(x,)
a+b
f:asys<——:
7 2
4(y-a)
(b-a)

F(ya,b):‘z_@l)z

(b-a)

f(rla,b)=

L(BiY)=—2h1(b—a)+ln(4)+:zl(y,—~a)

If: p<0.5

p(b —a)2

u B
F (p)—a+ 5

Mean:
a+bh
2

Variance

(b-a)

24

a=-—J/6,and b=\/g

The following moment estimators can also be used:

4=2y-b and 5=)7+ng
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b (maximum)

F(y|a,b):l——z(y—_bz

(b-a)

L(8|Y)=-2In(b-a)+In(4)+> (b-y

i=l

If: p>0.5

F (p)=bJr\/——-——(l_”)("’"")2

2

The standard symmetric triangular distribution has mean zero and variance 1 when:



Gumbel (Gomperiz) distribution
Parameters: 8 =[ 4, 5]

4 (location)
f (scale)

Transformation: y, =log,, ()

o)

f(») xlexp(ﬂ-ew[mn

B B B
F'(p)=u-pln(-In(p))
Let:
-t
p
Then:

Note:
‘d_L:_1+eXp(zI)’ ﬁzi and g:_#_zyf
dL L dL n 1&
s— e 1—ex z, d =S}z 1—ex -4
dy poll-exp(z)) and T5=-""0 (1-exp(2)

Mean:
1+ By , where y = Euler-Mascheroni constant.

Variance
ﬁZﬂ,Z
6
The gompertz distribution has mean 0 and variance 1 when :

u=-yp

5o

T
Moment Estimators:

p==Vo and  a=y-pr
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Weibull distribution
Parameters: 6 = [,l;k]

A (scale)
k (shape)
Transformation: none

F(x)zl—exp[—(—}}k]
SECRCH)

F7(p)=A(-ln(1-p))"

(o] X)=nln(k)—knln(ﬁ)"”(k_l)gln(xa)_g[%]k

)

Z_i:%_nmu)@m(m)—g[%f “‘(IH

The mean and variance of the Weibull distribution are:

)
erlied)-((43)

The gamma functions in the above two equations prevent closed-form moment estimators from being
derived.
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Pareto distribution
Parameters: 0 = [xm;a]

X (scale)
« (shape)

Transformation: none

L(81X)=n(In(a)+aln(x,))~(a+1)>in(x)

=1

da _an

dxm xm

dL 1 u

~d—a—= n(;+1n(xm)J—§ln(x,)

Note that the derivative dL/ dxm is necessarily negative because x,,, a > 0. Therefore the negative log-
likelihood continues to get smaller with larger values of x,, and so standard numerical optimization of
the negative log-likelihood will result in fm —» o0 . The solution to this is to assume that x,, is known and

equal to the minimum observed value. In this case, there is also a simple MLE for o, which can be found
by setting dL /da = 0. Thus the MLEs are:

%, =min(x,)

The following moment estimators can also be used:

X(a-1)

X =
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Burrys distribution
(Note: this is the Burry, distribution from Shao 2000, not the Burry; distribution from Shao 2003)

Parameters: 0 = [b;c; k|

F(x):

b c+l
. . ke [})
Note that Shao (2000, Eq. 8) incorrectly gives the pdf as: f(x) = ;ﬁ
{H(é) }
X
L(8|X)= nln(c)+nin(k)+cnh1(b)—(c+1)ih1(x,)—(k+1)zn:1n[1+[£J J
i=1 i=1

Let:

Then:

dL c¢n L1.d

=9 k5,

-5 UL

dL n 2 A
T nin(b)-Y In(x ) -(k+1 '
e ();(J‘f)(‘*);z :

Page 26



3. Results & Discussion

Results below are organized around seven of the eight questions outlined in Objectives (Section
1.4). The eighth question, concerning future analyses, is described in Section 5. For brevity only a subset
of results that are illustrative of general patterns are presented. Full results are available in section 8,
Supplemental Results. As described above, increases in either bias or sampling variance reduce the
accuracy of an estimate of the HCs. Thus patterns of both bias and sampling variance in relation to each
question are presented.

Bias is depicted as ratio of the estimated HCs to the known HC;s in two ways. In figures the ratio
is plotted with the vertical axis on the log;oscale. In tables, the log, value of the ratio is given. Thus, in
figures, the y-value gives the average relative over- or under-estimate at any given sample size, method
and distribution. In tables positive values of the ratio depict a tendency to overestimate the HC;
(positive bias) and negative values of the ratio depict a tendency to underestimate the HCs (negative
bias). Calculating bias necessarily implies that the true value of the HCs is known. However, this is only
the case for the simulated data. For empirical analyses, the HC; calculated using all available data is
substituted for the known HCs.

3.1. How does sample size influence bias and variance of the estimated HCs?

3.1.1. Bias

For all analyses of simulation data, bias in the estimated HC; decreased with increasing sample
size, regardless of the method used for fitting the distribution (Fig. 2, Table 6). In general, the four
distributions fit to log;o-transformed data were less biased than the three untransformed distributions.
Given the magnitude of sampling variance (see immediately below) it is possible that some of the
observed bias may also be comprised of some residual sampling variance. At sample sizesofn=3 and n
= 8, bias in distributions fit using maximum likelihood and moment estimators was large and always
positive.
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Figure 2. Ratio of the average estimated HCs to the true HC; for simulated data plotted as a function of
sample size for simulated log-triangular data and simulated Burr data.

Table 6. Log; ratios of the average estimated HC;s to the true HC; for seven distributions fit to five
sample sizes of simulated log-triangular toxicity data using maximum likelihood.

Sample Size
Distribution 3 8 20 50 100
triangular 0.813 0.373 0.177 0.085 0.050
normal 0.617 0.243 0.118 0.071 0.056
logistic 0462 0.138 0.018 -0.031 -0.046
Gumbel 0.821 0.421 0.269 0.210 0.193
Pareto 2.172 0996 0.245 -0.218 -0.427
Weibull 1785 0.431 -0.297 -0.635 -0.752
Burr 1944 0924 0426 0.203 0.122
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Table 7. Logs ratios of the average estimated HCs to the true HC; for five distributions fit to five sample
sizes of simulated log-triangular toxicity data using moment estimators.

Sample Size
Distribution 3 8 20 50 100
triangular  0.219 0.067 0.024 0.009 0.005
normal 0.255 0.106 0.063 0.049 0.045
logistic 0.281 0.134 0.092 0.077 0.073
Gumbel 0.662 0.544 0.510 0.498 . 0.495
Pareto 2.160 0.952 0.167 -0.324 -0.546

Table 8. Log;, ratios of the average estimated HCs to the true HC; for three distributions fit to five
sample sizes of simulated log-triangular toxicity data using graphical methods.

Sample Size
Distribution 3 8 20 50 100
triangular -0.572 -0.296 -0.141 -0.064 -0.033
normal -0.697 -0.402 -0.201 -0.085 -0.033
logistic -0.987 -0.576 -0.298 -0.132 -0.055

Table 9. Log;, ratios of the average estimated HC; to the true HC; for seven distributions fit to five
sample sizes of simulated Burr toxicity data using maximum likelihood.

Sample Size
Distribution 3 8 20 50 100
triangular 0.849 0.261 -0.099 -0.440 -0.718
normal 0.633 0.163 0.011 -0.049 -0.079
logistic 0.453 0.090 -0.019 -0.057 -0.079
Gumbel 0.872 0.383 0.183 0.064 0.002
Pareto 2.412 1.161 0.352 -0.369 -0.907
Weibull 1.947 3.102 3.397 2.793 1.877
Burr 2,116 1.044 0534 0.255 0.131

Table 10. Log,, ratios of the average estimated HC; to the true HC; for five distributions fit to five sample
sizes of simulated Burr toxicity data using moment estimators.

Sample Size
Distribution 3 8 20 50 100
triangular 0.194 -0.036 -0.097 -0.120 -0.137
normal 0.233 0.008 -0.052 -0.074 -0.091
logistic 0.262 0.039 -0.019 -0.042 -0.058
Gumbel 0.683 0.504 0.459 0.440 0.426
Pareto 2.394 1.114 0.273 -0.481 -1.046
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Table 11. Logy, ratios of the average estimated HCs to the true HCs for three distributions fit to five
sample sizes of simulated Burr toxicity data using graphical estimators.

Sample Size
Distribution 3 8 20 50 100
triangular -0.681 -0.448 -0.285 -0.203 -0.181
normal -0.818 -0.567 -0.353 -0.227 -0.181
logistic -1.138 -0.765 -0.465 -0.281 -0.206

3.1.2. Variance

Variance in the estimated HC; decreased steeply with sample size up to about » = 50 in analyses
of simulated data (Fig. 3, note logyo-scale of vertical axis). As with bias, the normal, logistic, and
triangular distributions performed very similarly across sample sizes and fitting methods. At large
sample sizes, distributions on untransformed data often showed smaller sampling variances, especially
the Pareto distribution (Fig. 3). The Weibull distribution fit to Burry-distributed data using maximum
likelihood showed an anomalous and enormous increase in sampling variance between n = 3 and » = 100
(not shown), suggesting instability in the numerical algorithms for estimating parameters of that
distribution. This pattern of instability in the Weibull was repeated across other generating distributions
as well (see Section 8, Supplementary Results).
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Figure 3. Width of 95% confidence interval in concentration units for 10,000 replicates of simulated data
plotted as a function of sample size. Simulated data are log-triangular (column 1: panels a, ¢, and e) and
Burry, (column 2: panels b, d, and f). Distributions fit using maximum likelihood (row 1: panels a and b),
moment estimators (row 2: panels ¢ and d) and graphical methods (row 3: panels e and f).

In summary, over all estimation methods, both bias and variance decreased with increasing
sample size. The slope of this relationship was quite steep up to about n = 20, suggesting that each
additional data point results in substantially improved performance at limited sample sizes. Maximum
likelihood estimates exhibited the greatest variability, moment estimates were generally the least
biased, and graphical methods tended to produce the most conservative estimates. Even at the smallest
sample sizes all methods produced estimates that were often, on average, within an order of magnitude
of the true HCs. However, this result should be interpreted with caution, because at limited sample sizes
the estimated HCss may range over two or three orders of magnitude when data requirements are not
imposed. The precision of estimated HCss improves considerably with imposition of data requirements

(see below).

3.2. How do minimum data requirements influence bias and variance of the

estimated HCs?

Results of the simulation exercises do not inform the effects of the imposition of data
requirements because the randomly chosen data points from theoretical distributions did not possess
taxonomic identities. This section describes results of the imposition of data requirements to analyses
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at similar sample sizes with no data requirements considered. Two such comparisons are of particular
interest. The first is to compare results at n = 8 (GMAVs) when the ALC MDRs are met to the case in
which n = 8 without regard to the MDRs. The second comparison is the similarly paired analyses atn =3
for OPP’s typical test species compared to a random sample of 3 SMAVs. In the latter case, there is only
one way to choose the minimum available SMAVs for the three typical species, so there is no replication
associated with that half of the comparison (hence no estimate of variance among draws). As described
in the methods section on bias (2.2.7) bias was estimated in empirical data using reference values of the
HCs estimated using all available data and deviations from this value are referred to below as bias. This
is for ease of discussion and convenience and should not be confused with true statistical bias.

3.2.1. Bias

For malathion the imposition of the eight ALC MDRs usually resulted in the average HCs being
smaller (indicating greater toxicity) than it would be if a random set of eight GMAVs were used (Fig. 4,
Table 12). This pattern held for all chemicals (e.g., see carbaryl, Fig. 5, Table 13). In general the
estimated HCss were within an order of magnitude of the reference value, though the distributions on
untransformed data often showed greater differences in average estimated HCs among the 1,000
iterations. The latter result is partly due to a few iterations producing extremely large HCs estimates. As
in previous results, the triangular, normal, and logistic distributions showed very similar performance to
each other, with the Gumbel distribution (the other distribution on transformed data) being an outlier in
this group. When the eight MDRs were imposed, the HCss also tended to be smaller than the reference
value (HC; calculated from all available GMAVSs). In contrast, when eight randomly chosen GMAVs were
used, the estimated HCs was often larger than the reference value (Figs. 4, 5). An exception to this
pattern occurred with graphical methods (Fig. 3c).
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Figure 4. Average ratio of estimated HCss for malathion from 1,000 draws of empirical data (n =8
GMAVs) to the HC;s estimated from all available GMAVs (n = 57). Panels represent a. maximum
likelihood estimates, b. moment estimates, c. graphical estimates. Note logy, scale of Y-axis.
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Table 12. Ratio of HCss for malathion for n = 8 with and without MDRs compared to a reference value
(i.e., HCs calculated from n = 57 GMAVS5)

Distribution MDRs Maximum Likelihood Moment Estimators Graphical Estimators

| no 0.246 0.054 -0.273
orma
A ves -0.369 -0.666 -1.012
logisti no -0.096 0.051 -0.340
0
i yes -1.025 -0.610 -1.100
i | no 0.144 0.045 -0.488
riangular
- ves -0.572 -0.634 1.271
no -1.929 0.034 n/a
Gumbel
yes -1.391 -0.598 n/a
no 1.279 1.383 n/a
Pareto
yes 0.222 0.252 n/a
Weibull no e s
yes -0.159 n/a n/a
no 1.083 n/a n/a
Burr
yes -0.070 n/a n/a
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Figure 5. Average ratio of estimated HCss for carbaryl from 1,000 draws of empirical data (» = 8 GMAVSs)
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to the HC; estimated from all available freshwater GMAVs (n = 55). Panels represent a. maximum
likelihood estimates, b. moment estimates, c. graphical estimates. Note log;, scale of Y-axis.

Table 13. Ratio of HCss for carbaryl for n = 8 with and without MDRs compared to a reference value (i.e.,
HC; calculated from n = 55 GMAVs)

Distribution MDRs Maximum Likelihood Moment Estimators Graphical Estimators

no 0.254 0.033 -0.214
normal

yes -0.193 -0.537 -0.872

I no -3.604 0.068 -0.298

logistic

yes -1.370 -0.518 -0.935

. no -0.249 0.065 -0.376

triangular

yes -0.592 -0.491 -1.099

no -0.161 0.078
Gumbel s

yes -0.702 -0.479 n/a

no 1.396 1.570 n/a
Pareto

yes 0.269 0.293 n/a

no 0.892 n/a n/a
Weibull / /

yes -0.251 n/a n/a

no 1.049 n/a n/a
Burr

yes -0.129 n/a n/a

Analysis of the three typical OPP test species also on average resulted in smaller HCss (indicating
greater toxicity) compared to the analysis of random subsets of 3 SMAVs (Figs. 6, 7 Tables 14,15). The
pattern was similar to that resulting from imposition of the 8 ALC MDRs, except that bias ratios were
much larger for the distributions on untransformed data, ranging close to two orders of magnitude.
Similarity of performance among the distributions on untransformed data is again evident (Figs. 6, 7).
Values of the HC;s estimated using all available SMAVSs are given in Section 8. Similarly, figures showing
comparison between random sets of size 3 and the three typical OPP species are given for all chemicals
considered in Section 8.
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Table 14. Ratio of HCss for malathion for n = 3 with and without MDRs compared to a reference value
(i.e., HC; calculated from n = 71 SMAVs).

Distribution MDRs Maximum Likelihood Moment Estimators Graphical Estimators

no 0.502 -0.079 -0.983
normal
yes -0.767 -0.910 -1.271
logisti no -0.405 -0.175 -1.028
istic
g yes -0.757 -0.933 -1.321
- - no -0.055 -0.075 -1.412
riangula
g yes -0.745 -0.949 -1.434
N —_— no 0.228 -0.098 n/a
mbe
d yes -0.763 -1.191 n/a
- no 1.701 1.744 n/a
areto
yes -0.159 -0.053 n/a
waiball no 1.694 n/a n/a
e
e yes 0275 n/a n/a
no 1.280 n/a n/a
Burr
yes -0.495 n/a n/a
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Figure 7. Average ratio of estimated HCss for propoxur from 1,000 draws of empirical data (n = 3 SMAVs)
to the HC; estimated from all available SMAVs (n = 13). Panels represent a. maximum likelihood
estimates, b. moment estimates, c. graphical estimates. Note log;, scale of Y-axis.
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Table 15. Ratio of HCss for propoxur for n = 3 with and without MDRs compared to a reference value
(i.e., HCs calculated from n = 13 SMAVSs).

Distribution MDRs Maximum Likelihood Moment Estimators Graphical Estimators

no 0.321 0.059 -0.347
normal

yes -0.441 -0.953 -1.759

no -0.4 ) -0.
logistie 0.403 0.076 0.403

yes -0.550 -0.940 -1.850

. no 0.343 0.087 -0.596

triangular

yes -0.459 -0.931 -2.110
BiikeEat no 0.322 0.051 n/a

yes -0.675 -0.793 n/a

no 0.849 0.905 n/a
Pareto

yes -0.139 -0.135 n/a
Weibull no 1.458 n/a n/a

yes 0.393 n/a n/a

no 0.614 n/a nfa
Burr

yes -0.800 n/a n/a

3.2.2, Variance

Imposition of the 8 ALC MDRs greatly reduced the variance in 1,000 replicate draws of empirical
data (Fig. 8, note log;, scale of vertical axis). In general, 95% confidence intervals around estimated HCss
were at least twice as wide when the MDRs were not imposed. Thus, while the imposition of MDRs
often produced, on average, HCss that differed only modestly from similar sample sizes with no data
requirements, particular results from given iterations differed substantially. Random subsets of size 3
(SMAVs) produced even larger variance estimates than random subsets of size 8 (Fig. 9, again note logyg
scale of vertical axis). This pattern holds across all AChE inhibitors, but the variances are not always as
large as those observed for malathion (e.g., propoxur, Fig. 10). This result reflects two important
differences when data requirements are imposed. First, there are fewer combinations of test results
that satisfy the requirements, and thus less variation in the resulting estimated HCss. Second, and more
importantly, the imposition of data requirements forces the inclusion of sensitive species in the
analyses. Thus subsets of data including only test results with high LC50s are excluded from
consideration.

In summary, minimum data requirements greatly improved the quality of HC; estimates,
regardless of the method used for estimation. Although MDRs often produced more biased estimates of
the HCs, they virtually always did so in a conservative way — by producing HC; estimates that were, on
average, lower than the reference values (HCss estimated using all available data). Data requirements at
n = 8 also greatly reduced the variation among HCs estimates. The latter result is due partly to the
forced inclusion of both sensitive and insensitive taxa in every data sample and partly due to the
reduced number of possible data combinations.
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Figure 10. Variance in propoxur HC; estimates from 1,000 draws of 3 randomly chosen SMAVSs. Y-axis is
plotted on logy, scale. The three panels correspond to a. maximum likelihood, b. moment estimators,
and c. graphical methods, respectively.

3.3. How do different estimation methods influence bias and variance of the
estimated HCs?

3.3.1. Bias

In analyses of simulated data, the most notable effect of fitting method was that the graphical
methods tended to produce the lowest (most conservative) estimates of the HCs, especially in the range
of sample sizes of concern for this project (3 < n < 8, Fig. 2). However, moment estimators generally
produced the least biased (closest to true or reference HCs) estimates in this range of sample sizes.
Differences among methods diminished as sample size increased. With both moment estimators and
graphical methods, bias was often still quite small, even at the smaller sample sizes. Within the range of
sample sizes of interest maximum likelihood consistently overestimated the true HCs. The reason for
this overestimation is partly due to the method (maximum likelihood) consistently underestimating the
variance of the distribution being fit. When coupled with unbiased estimates of the mean, the
underestimate of the variance has the effect of drawing the HC; in towards the mean (i.e., introducing a
positive bias in the estimated HC;).

Analyses of empirical data followed similar patterns as analyses of simulated data (above) with
respect to estimation method. In analyses of repeated draws of empirical data for malathionatn=8
GMAVs, moment estimators tended to produce closer estimates of the HC; to the reference values
(analysis of all available GMAVs) when the ALC MDRs were met (Figs. 6, 7). In analyses of random
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samples of size n = 3 SMAVs graphical methods also produced, on average, smaller (more conservative)
estimates of the HCs compared to reference values (Fig. 9, » = 71 SMAVs), than did moment estimators.
Maximum likelihood consistently produced larger estimates than the reference values (empirical data).

3.3.2. Variance

Variance was very large, especially with limited data and similar among estimation methods.
Variance among estimated HCss tended to be slightly smaller with graphical methods, but was still very
large when data was limited (Fig. 3). Similar patterns were observed in analyses of empirical data.

3.4. Are measures of fit (AIC, goodness-of-fit) reliable indicators of
performance?

3.4.1, Akaike’s Information Criterion

In analyses of AIC. weights for all distributions that were fit to the simulation data for the
normal distribution, AIC. showed little ability to discriminate among distributions when data was limited
(Table 16 - 22). With simulated log-normal data, even at n = 50, AIC, failed to assign the most weight to
the normal distribution, though by » = 100, the normal distribution was identified as the best
distribution, albeit with only 39% of total weight on average (Table 16). This pattern generally held
across distributions (Tables 17-22), though AIC. showed better discriminatory ability with the Weibull
and Pareto distributions (Table 20, 21). Note that at #» = 3 AIC. cannot be calculated for the distributions
considered here.

Table 16. Average AIC. weight for each distribution fit to 10,000 samples of log-normal data.

n normal logistic triangular Gumbel Weibull Pareto Burr

8 0.15 0.12 0.21 0.12 0.16 0.24 0.01
20 0.19 0.15 0.30 0.11 0.14 0.06 0.05
50 0.25 0.19 0.34 0.06 0.07 0.00 0.08
100 0.39 0.21 0.25 0.02 0.03 0.00 0.10

Table 17. Average AIC. weight for each distribution fit to 10,000 samples of log-logistic data.

n normal logistic triangular Gumbel Weibull Pareto Burr
8 0.14 0.13 0.20 0.12 0.17 0.23 0.01
20 0.18 0.19 0.24 0.12 0.16 0.06 0.06
50 0.22 0.32 0.17 0.07 0.09 0.00 0.13
100 0.24 0.46 0.06 0.02 0.03 0.00 0.20

Table 18. Average AIC, weight for each distribution fit to 10,000 samples of log-triangular data.

n normal logistic triangular Gumbel Weibull Pareto Burr

8 0.15 0.12 0.21 0.12 0.16 0.24 0.01
20 0.8 0.12 0.36 0.10 0.13 0.06 0.04
50 0.17 0.07 0.63 0.04 0.05 0.00 0.03
100 0.11 0.02 0.84 0.01 0.01 0.00 0.01
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Table 19. Average AIC, weight for each distribution fit to 10,000 samples of log-Gumbel data.

n normal logistic triangular Gumbel Weibull Pareto Burr
8 0.11 0.10 0.16 0.14 0.09 0.40 0.01
20 011 0.10 0.16 0.25 0.02 0.30 0.07
50 0.06 0.06 0.08 0.55 0.00 0.07 0.18
100 0.02 0.02 0.01 0.69 0.00 0.00 0.26

Table 20. Average AIC, weight for each distribution fit to 10,000 samples of Weibull data.

n normal logistic triangular Gumbel Weibull Pareto Burr
8 0.15 0.14 0.21 0.08 0.28 0.13 0.01
20 0.3 0.13 0.19 0.02 0.49 0.01 0.03
50 0.07 0.07 0.08 0.00 0.76 0.00 0.02
100 0.03 0.02 0.01 0.00 0.93 0.00 0.01

Table21. Average AIC. weight for each distribution fit to 10,000 samples of Pareto data.

n normal logistic triangular Gumbel Weibull Pareto Burr
8 0.06 0.05 0.08 0.11 0.03 0.66 0.01
20 0.01 0.01 0.02 0.06 0.00 0.89 0.01
50 0.00 0.00 0.00 0.01 0.00 0.99 0.00
100 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Table 22. Average AIC. weight for each distribution fit to 10,000 samples of Burr,, data.

n normal logistic triangular Gumbel Weibull Pareto Burr
8 0.14 0.12 0.20 0.12 0.16 025 0.01
20 0.17 0.18 0.24 0.14 0.12 0.08 0.06
50 021 0.31 0.17 0.11 0.05 0.00 0.14
100 0.24 0.42 0.06 0.04 0.01 0.00 0.23

3.4.2. Goodness-of-fit

Results of parametric goodness-of-fit tests are presented in a series of tables below. In all cases,
the tables give P-values for the probability of detecting lack-of-fit in a fitted distribution with a desired
Type | error rate of a = 0.05. Columns represent attempts to fit a given distribution to data generated
under the distribution specified for each row. P-values represent the average frequency with which a
distribution is rejected (at a = 0.05) by a bootstrap goodness-of-fit test. Thus, when the generating
distribution (row) and fitted distribution {(column) are identical, the rejection rate should be close to the
nominal rate (0.05). When the generating and fitted distributions are different, the P-values represent
the power of the test to detect lack of fit. Ideally they should be elevated over the nominal rate. Each
table is specific to a sample size and fitting method. Only the results of parametric bootstrap tests are
presented; goodness-of-fit tests based on the empirical bootstrap never rejected alternative
distributions at rates above the nominal rate.

At n = 3 parametric goodness-of-fit tests showed approximately nominal rejection rates at a =
0.05 (diagonal entries Tables 23 - 25). However, they also showed little power to reject distributions
from which the data were not generated (off-diagonal P-values in Tables 23 - 25 rarely larger than
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nominal rejection rate: 0.05). At slightly larger samples (n = 8), off-diagonal rejection rates were
elevated over the nominal rate, but still reflected a low probability of rejecting alternative distributions
as candidates (Tables 26 - 28). At large sample sizes (n = 100), power was high (Tables 29 - 31) and
alternative distributions would be rejected more often than not. Power tables for intermediate sample
sizes (n = 20 and n = 50) are presented in the supplementary results (Section 8). Power did not depend
upon the method used to fit the distribution. However, rejection rates for moment estimators for the
Pareto distribution suggest that they rarely produce reasonable parameter estimates.

Table 23. Power of parametric bootstrap goodness-of-fit tests for maximum likelihood at n = 3.

Fitted Distribution
normal logistic triangular Gumbel Pareto Weibull Burr

normal 0.047 0.047 0.053 0.040 0.027 0.040 0.040

logistic 0.053 0.040 0.027 0.027 0.000 0.053 0.027

; triangular 0.073 0.073 0.053 0.073 0.047 0.040 0.060
Generating

= O . Gumbel 0.087 0.100 0.073 0.073 0.053 0.067 0.040
Distribution

Pareto 0.040 0.067 0.060 0.033 0.053 0.067 0.013

Weibull 0.040 0.047 0.073 0.027 0.020 0.047 0.040

Burr 0.053 0.060 0.060 0.020 0.020 0.053 0.033

Table 24. Power of parametric bootstrap goodness-of-fit tests for moment estimators at n =3.

Fitted Distribution
normal logistic triangular Gumbel Pareto

normal 0.047 0.053 0.060 0.053 0.513
logistic 0.040 0.027 0.040 0.127 0.520
n i triangular 0.053 0.073 0.067 0.060 0.567
eneratin
b i .g Gumbel 0.087 0.073 0.093 0.073 0.460
Distribution
Pareto 0.067 0.067 0.047 0.027 0.567
Weibull 0.047 0.060 0.060 0.073 0.573
Burr 0.060 0.073 0.053 0.067 0.540

Table 25. Power of parametric bootstrap goodness-of-fit tests for graphical estimates at n = 3.

Fitted Distribution
normal logistic triangular

normal 0.053 0.040 0.060
logistic 0.033 0.040 0.047
triangular 0.060 0.080 0.060
Gumbel 0.093 0.093 0.100
Pareto 0.073 0.047 0.067
Weibull 0.047 0.053 0.060
Burr 0.053 0.053 0.067

Generating
Distribution
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Table 26. Power of parametric bootstrap goodness-of-fit tests for maximum likelihood at n = 8.

Fitted Distribution
normal logistic triangular gumbel Pareto Weibull Burr

normal 0107 0.107 _ 0.080 0073 0033 0067  0.087

logistic  0.033  0.040  0.027 0060 0067 0040  0.033

 triangular 0.047 0.093  0.067 0073 0047 0093  0.047
Generating

oo Gumbel 0067  0.060  0.093 0020 0033 0087 0047

SIDUNON.  oteto 0300 0187 0313 0020 0.013 0120 0.147

Weibull 0127 0080 0.133 0.087 0200 0.047 0127

Burr 0067 0107 0.120 0.047 0060 0093  0.060

Table 27. Power of parametric bootstrap goodness-of-fit tests for moment estimators at n = 8.

Fitted Distribution
normal logistic triangular Gumbel Pareto

normal 0.093 0.093 0.073 0.100 0.980
logistic 0.040 0.027 0.047 0.140 0.980
G i triangular 0.060 0.047 0.067 0.133 0.960
eneratin
o .g Gumbel 0.087 0.073 0.113 0.033 0.973
Distribution
Pareto 0.367 0.273  0.353 0.047 0.980
Weibull 0.113 0.107 0.133 0.253 0.980
Burr 0.113 0.093 0.107 0.140 0.960

Table 28. Power of parametric bootstrap goodness-of-fit tests for graphical estimates at n = 8.

Fitted Distribution
normal logistic triangular

normal 0.040 0.040 0.040
logistic 0.053 0.027 0.073
triangular 0.067 0.040 0.073
Gumbel 0.107 0.073 0.147
Pareto 0.300 0.240 0.313
Weibull 0.127 0.100 0.127
Burr 0.100 0.073 0.093

Generating
Distribution

Table 29. Power of parametric bootstrap goodness-of-fit tests for maximum likelihood at » = 100.

Fitted Distribution
normal logistic triangular gumbel Pareto Weibull Burr

normal 0.067 0.147 0.453 0.567 1.000 0.753 0.127

logistic 0.167 0.073 0.860 0.547 1.000 0.820 0.120

. triangular  0.093 0.227 0.093 0.627 1.000 0.733 0.173
Generating

o Lk o Gumbel 0.807 0.627 1.000 0.033 1.000 0.613 0.067
Distribution

Pareto 1.000 1.000 1.000 0.107 0.053 0.260 0.993

Weibull 0.773 0.600 1.000 0.220 1.000 0.040 0.853

Burr 0.200 0.047 0.880 0.487 1.000 0.867 0.053
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Table 30. Power of parametric bootstrap goodness-of-fit tests for moment estimates at n = 100.

Fitted Distribution
normal logistic triangular Gumbel Pareto

normal 0.073 0.133 0.147 0.793 1.000

logistic 0.167 0.053 0.440 0.853 1.000

. triangular 0.087 0.260 0.073 0.893 1.000
Generating

Sy Gumbel 0.827 0.800 0.887 0.053 1.000
Distribution

Pareto 1.000 1.000 1.000 0.887 1.000

Weibull 0.807 0.760 0.880 1.000 1.000

Burr 0.207 0.080 0.427 0.660 1.000

Table 31. Power of parametric bootstrap goodness-of-fit tests for graphical estimates at » = 100.

Fitted Distribution
normal logistic triangular

normal 0.080 0.047 0.180
logistic 0.293 0.047 0.520
triangular  0.060 0.060 0.080
Gumbel 0.853 0.760 0.913
Pareto 1.000 1.000 1.000
Weibull 0.807 0.727 0.920
Burr 0.273 0113  0.487

Generating
Distribution

3.5. What are actual coverage rates of 95% confidence limits for subsamples?

With simulated data, the actual coverage rates of 95% lower confidence limits on the HCs; were
very close to nominal coverage rates at n = 3 and n = 8 (Tables 32 and 33). Actual coverage rates were
slightly closer to nominal rates when the data were fit to the same distribution under which it was
generated, but the effect of switching distributions was quite minor (Tables 32 and 33).

Table 32. Frequency with which the true HC; is greater than lower 95% confidence limit based on
published extrapolation constants at N = 3.

Fitted Distribution
normal logistic triangular

normal 0948 0953 0.948
Generating Distribution logistic 0.943 0951 0.944
triangular 0951 0.956 0.952
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Table 33. Frequency with which the true HC; is greater than lower 95% confidence limit based on
published extrapolation constants at N = 8.

Fitted Distribution
normal logistic triangular

normal 0.948 0.960 0.942
Generating Distribution logistic 0.937 0952 0.929
triangular  0.952 0.966 0.945

In contrast to simulated data, actual coverage rates generally differed from nominal rates for empirical
data, when the true HCs was taken to be the value estimated using all available data. When minimum
data requirements were imposed, actual coverage rates always exceeded nominal rates (in fact actual
coverage rates were often 100%). When minimum data requirements were not imposed coverage rates
were often much lower than nominal rates (Tables 34, 37, 39).

Table 34. Frequency with which the reference HC;s is greater than lower 95% confidence limit based on
published extrapolation constants at N = 8, but not necessarily considering ALC MDRs for malathion.

Fitted Distribution
normal logistic triangular

normal 0.696 0.727 0.657
Generating Distribution logistic 0.823 0.849 0.778
triangular  0.704  0.651 0.640

Table 35. Frequency with which the reference HC; is greater than lower 95% confidence limit based on
published extrapolation constants at N = 8, and ALC MDRs are met for malathion.

Fitted Distribution
normal logistic triangular

normal 1.000 0.999 0.998
Generating Distribution logistic 1.000 1.000 1.000
triangular  0.999 0.997 0.989

Table 36. Frequency with which the reference HC; is greater than lower 95% confidence limit based on
published extrapolation constants at N = 3, but not necessarily typical OPP species for malathion.

Fitted Distribution
normal logistic triangular

normal 0.978 0.958 0.960
Generating Distribution logistic 0.969 0.980 0.967
triangular  0.971  0.960 0.967
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Table 37. Frequency with which the reference HCs is greater than lower 95% confidence limit based on
published extrapolation constants at N = 3, but not necessarily considering ALC MDRs for carbaryl.

Fitted Distribution
normal logistic triangular

normal 0.712 0.674 0.635
Generating Distribution logistic 0.848 0.811 0.738
triangular  0.619 0.637 0.620

Table 38. Frequency with which the reference HC; is greater than lower 95% confidence limit based on
published extrapolation constants at N = 8, and ALC MDRs are met for carbaryl.

Fitted Distribution
normal logistic triangular

normal 0.971 0.969 0.935
Generating Distribution logistic 1.000 0.999 0.992
triangular  0.921 0.932 0.926

Table 39. Frequency with which the reference HC; is greater than lower 95% confidence limit based on
published extrapolation constants at N = 3, but not necessarily typical OPP species for carbaryl.

Fitted Distribution
normal logistic triangular

normal 0.783 0.787 0.757
Generating Distribution logistic 0.863 0.846 0.837
triangular  0.545 0.775 0.733

3.6. How do different candidate distributions perform relative to each other?

Several patterns of variation among distributions emerged in the previous sections, which are
restated here. First, the normal, logistic, and triangular distributions tended to perform very similarly to
each other over the long run (10,000 simulated data sets, or 1,000 random draws of empirical data).
This pattern generally reflected a qualitative difference between distributions fit to log,,-transformed
data and those fit to untransformed data. The Gumbel distribution (logy-transformed data) was more
similar to the other distributions on transformed data, but was an outlier in that group. Distributions on
untransformed data tended to be much more biased than distributions on transformed data especially
at smaller sample sizes. At all sample sizes considered, it was often the case that the least biased
distribution was not the same distribution as the generating distribution.

The most conspicuous effect of distribution concerned the tendency for very large positive
biases in the HC;s at limited sample sizes in the simulation data when distributions were fit to
untransformed data, especially when maximum likelihood was used for parameter estimation. Thus, at
with limited data, fitting distributions to untransformed data tends to result in over-estimates of the
HCs. A similar pattern was observed relative to the reference values when random subsets of data of
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size n = 8 (GMAVSs) or n = 3 (SMAVSs) were analyzed. Part of this result is likely due to uncertainty
associated with the numerical fitting algorithms applied to the untransformed data (with very large
variance).

The ambiguous results observed above concerning distributional performance in analyses of the
simulation data were also evident in analyses of the empirical data. Regardless of whether the ALC
MDRs were imposed, AIC. weights across distributions were remarkably evenly distributed for analyses
of 12 AChE inhibitors (Tables 40, 41). The Burr distribution tended to get slightly less weight than the
other six distributions probably due to the fact that it requires three estimated parameters rather than
two. The evenness of distributional performance did not depend on whether or not the ALC MDRs were
imposed (Tables 40, 41).

Table 40. Average AIC. weights for GMAVs when n = 8 and ALC MDRs are met

water normal logistic triangular Gumbel Pareto Weibull Burr

malathion FW 0.15 0.16 0.16 0.14 0.17 0.13 0.08
diazinon FW 0.15 0.13 0.17 0.14 0.21 0.16 0.03
chlorpyrifos FW 0.16 0.13 0.16 0.16 0.21 0.13 0.07
fenitrothion FW 0.15 0.15 0.19 0.14 0.15 0.17 0.05
methyl parathion FW 0.16 0.13 0.16 0.13 0.21 0.15 0.06
dichlorvos FW 0.14 0.15 0.19 0.12 0.13 0.18 0.09
chlorpyrifos SW 0.15 0.14 0.13 0.16 0.22 0.11 0.10
fenthion Sw 0.16 0.12 0.21 0.09 0.12 0.23 0.06
carbaryl FW 0.15 0.13 0.17 0.14 0.19 0.18 0.04
carbaryl Sw 0.15 0.11 0.19 0.11 0.23 0.21 0.01
methomyl FwW 0.15 0.12 0.21 0.12 0.25 0.15 0.01
propoxur FW 0.16 0.13 0.20 0.19 0.23 0.07 0.01

Table 41. Average AIC. weights for GMAVs when n = 8 without regard to ALC MDRs

water normal logistic triangular Gumbel Pareto Weibull Burr

malathion FW 0.15 0.16 0.17 0.13 0.17 0.14 0.09
diazinon FW 0.14 0.14 0.16 0.13 0.16 0.16 0.10
chlorpyrifos FW 0.16 0.14 0.15 0.13 0.19 0.14 0.09
fenitrothion FW 0.14 0.13 0.18 0.13 0.15 0.16 0.11
methyl parathion FW 0.13 0.15 0.16 0.14 0.17 0.15 0.10
dichlorvos FW 0.16 0.15 0.16 0.13 0.16 0.16 0.09
chlorpyrifos sw 0.14 0.12 0.15 0.15 0.19 0.12 0.12
fenthion SW 0.16 0.12 0.17 0.15 0.14 0.17 0.08
carbaryl FW 0.16 0.15 0.14 0.16 0.15 0.17 0.06
carbaryl sw 0.16 0.11 0.20 0.10 0.22 0.20 0.01
methomy! FW 0.16 0.12 0.20 0.13 0.17 0.19 0.03
propoxur FW 0.16 0.15 0.16 0.14 0.14 0.16 0.07
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In contrast to the ambiguous results above AIC. did show good discriminatory power when
applied to maximal sets of GMAVs (Table 42). At these sample sizes (ranging from 12 to 57, Table 2) AIC,
placed the greatest weight (on average) on the triangular and Weibull distributions, though there was
also considerable variation among chemicals as to which distribution performed best (Table 42). Note
however, that this result is due largely to the lack of replication inherent in this comparison, whereas
previous results represented average AIC weights over 1,000 subsamples.

Table 42. Summary of AIC. weights by chemical and distribution for all GMAVs.

Chemical Water normal logistic triangular Gumbel Pareto Weibull Burr
malathion FW 0.10 0.02 0.84 0.00 0.00 0.03 0.01
diazinon FW 0.07 0.02 0.16 0.00 0.00 0.74 0.01
chlorpyrifos FW 0.11 0.03 0.62 0.11 0.09 0.02 0.03
fenitrothion FW 0.01 0.01 0.00 0.00 0.00 0.97 0.01
methyl parathion FW 0.05 0.01 0.09 0.00 0.00 0.84 0.01
dichlorvos FW 0.12 0.09 0.37 0.01 0.00 0.39 0.03
chlorpyrifos SW 0.04 0.04 0.02 0.26 0.59 0.00 0.05
fenthion SW 0.15 0.09 0.18 0.02 0.01 0.48 0.07
carbaryl FW 0.00 0.00 0.00 0.00 0.00 1.00 0.00
carbaryl SW 0.15 0.10 0.22 0.06 0.12 0.33 0.01
methomyl FW 0.15 0.08 0.28 0.03 0.01 0.41 0.03
propoxur FW 0.24 0.17 0.29 0.15 0.03 0.09 0.03
Average 0.10 0.05 0.26 0.05 0.07 0.44 0.02

3.7. Does model-averaging across distributions improve estimates of the HCs?

In analyses of the parametric simulation data, model-averaging inflated bias, often substantially
(Fig. 11, compare to Fig. 2). However, model-averaging had little effect on variance in estimates of the
HCs from the 10,000 replicates of the parametric simulation data (Fig. 12). As above, both bias and
variance, declined sharply with sample size.
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Figure 11. Bias in 10,000 replicates of model-averaged HC; estimates. Legend refers to generating
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Figure 12. logyp(variance) in 10,000 replicates of model-averaged HCs estimates. Legend refers to
generating distribution.

In contrast to the results on simulated data, AIC. model averaging results on HCss estimated
from empirical data were probably the most interesting and surprising of all. The most surprising
pattern was the ability of model-averaging to insulate the estimated HC;s from effects of poor fitting and
stochastic subsampling. For example, Table 43 shows the average estimated HC;s under each
distribution for 1,000 sets of 8 GMAVSs subsampled from the malathion data without regard to the ALC
MDRs. In particular, the first row of this table gives the estimated HCss for maximum likelihood analyses
and the last column gives the AIC. model-averaged value. Note that this value is much lower than the
averages of all the distributions, and within an order of magnitude of the value estimated from the
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maximal set of GMAVs (Section 8). A similar effect was observed for datasets of size # = 8 with the ALC
MDRS met (Table 44). Further, this pattern was repeated across chemicals (e.g., fenitrothion, Table 45).
This result suggests that formal model-averaging across distributions can help insulate against outlier
values (though data sets that contain only large values cannot produce a low HC;).

Table 43. Mean estimated malathion HCss when n = 8 GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Weibull Pareto Burr average
Maximum Likelihood  16.2 18.4 22.9 21.8 8.5 30.2 233 4.7
Moment Estimators 154 16.6 14.6 30.5 26.5

Graphical Methods 6.0 4.1 7.6 15.5

Table 44. Mean estimated malathion HCss when n = 8 GMAVs and ALC MDRs are met

Fitting Method normal logistic triangular Gumbel Weibull Pareto Burr average
Maximum Likelihood 1.7 13 2.2 2.4 04 2.6 2.1 14
Moment Estimators 1.4 1.2 1.0 28 2.1

Graphical Methods 0.3 0.2 0.4 1.2

Table 45. Mean estimated fenitrothion HCss when rn = 8 GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Weibull Pareto Burr average
Maximum Likelihood 21.35 34.66 24.75 22.11 14.21 2538 19.09 0.51
Moment Estimators  29.57 16.54 23.18 20.30 17.35

Graphical Methods  16.79  15.18 11.55 11.75

4. Implications of these results for the use of SSDs in estimating the HCs

For brevity, the above results have been stated with relatively little interpretation. Below the
primary conclusions with respect to the estimation of HCss are presented as bulleted points. As above,
the sections are organized around the first seven questions from the Objectives section (1.4 above).
The eighth question, concerning future work, is addressed in Section 5 below.

4.1. Implications of sample size results for estimating the HCs

1. When SSDs are fit to samples within the range of concern for this project (3 < » < 8), bias is likely
to be large. However, when distributions are fit to logyo-transformed data, bias was often less
than an order of magnitude. Within the range of interest, direction of bias depended primarily
on which estimation method was used (see 4.3 below).

2. When SSDs are fit to sample sizes less than 50 variance is likely to be very large.

3. The above two points apply to all three fitting methods, but are most worrisome with maximum
likelihood.

4. To control large biases and variances with limited data, additional constraints must be imposed
on the analyses (e.g., minimum data requirements — see next section).
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4.2. Implications of MDRs for estimating the HCs

1;

Imposition of ALC MDRs and limitation of analysis to n = 8 often introduces a small negative bias
(i.e., within an order of magnitude or less) compared to the HCs derived from a maximal set of
GMAVs for a given chemical.

Analysis restricted to the three typical OPP species also introduces a small negative bias
compared to the HCs derived from a maximal set of GMAVs for a given chemical.

Imposition of ALC MDRs greatly reduces the variance in the HC; estimated from random subsets
of data. This occurs for two reasons. First, data samples are forced to include both sensitive
and insensitive species. Second, there are fewer potential data combinations.

The latter result is partly due to a reduction in the number of possible data combinations.
Although the imposition of MDRs often produces, on average, HC;s that differed only modestly
from similar sample sizes with no data requirements, particular results from given iterations
differed substantially.

4.3. Implications of choice of estimation method for estimating the HCs

1.

Within the sample-size range of interest for this project (3 < » < 8), maximum likelihood
methods appear to be positively biased.

Positive bias with maximum likelihood can often be quite large, but is minimized with
distributions on untransformed data.

Moment estimators were generally the least biased method.

Graphical methods, on average, produced the lowest values of the HCs.

Variance in the estimated HC; did not differ much between methods.

4.4. Implications of performance of fit measures for estimating the HCs

1.

AIC, is not likely to be useful for discriminating among competing distributions at the sample
sizes of interest for this project (3 <n < 8).

Goodness-of-fit tests are not likely to be useful for rejecting alternative distributions the sample
sizes of interest for this project.

Both AIC. and parametric bootstrap goodness-of-fit tests would be quite useful at larger sample
sizes.

Empirical bootstrap sampling showed little utility at any sample size.

Goodness-of-fit tests applied to the Pareto distribution fit using moment estimators suggest that
those estimators are not accurate.

4.5. Implications of the performance of 95% confidence limits for estimating
the HCs

1.

Extrapolation constants produce confidence limits at nominal coverage rates when data are
simulated from a known distribution.

In empirical analyses, the HC; estimated using all available data was lower than the 95%
confidence limit based on subsamples of # = 3 and »n = 8 with no data requirements more often
than expected. True coverage rates were between 60% and 90%. Thus, this procedure might
result in a lower confidence that the number of species at risk was 5% or less. Conversely, it
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could be argued that the reference value (the HCs estimated using all available data) is itself a
biased estimator of the true HC;s if the sample of tested species is biased towards insensitive
species.

3. Incontrast to (2) above, the HC; estimated using all available data was greater than the 95%
confidence limit based on subsamples of » = 3 and » = 8 when data requirements were imposed
more often than expected. True coverage rates were very close to 1. Thus, this procedure
might result in over-protection.

4.6. Implications of choice of distribution for estimating the HCs

1. In general, distributions on transformed data performed better than those on untransformed
data.

2. Of the distributions on transformed data, the triangular distribution performed best across all 9
organophosphates.

3. Of the distributions on untransformed data, the Burry, distribution seemed to perform best.

4. Regardless of points 1 and 2 above, there remains considerable uncertainty about which
distribution is ‘best’ and the results do not support the exclusive use of any one distribution.

4.7. Implications of multidistributional inference for estimating the HCs
1. Calculating the average HCs across distributions for simulated data did not help produce a better
estimate of the HC..
2. In contrast to (1), calculating the AIC. model-averaged HC; for empirical data sets greatly
reduced bias in estimates of the HC;, even when, on average, every distribution was biased.
3. The reasons for the different conclusions resulting from simulated versus empirical data are not
clear and should be studied further before a distribution-averaging approach is adopted.

5. What future research is suggested by these results?

The results of analyses of both simulation and empirical analyses indicate several endemic
problems with fitting species sensitivity distributions. While all fitting methods tend to be unbiased,
especially with large sample sizes, large variability hampers our ability to make non-trivial statements
about the location of the HCs with limited data. Further, no single distribution reliably performs best
even for analyses of random subsets of test results on the same chemical. Another problem (not
explored in the above results) is that goodness-of-fit of a full distribution may not be a reliable indicator
of goodness-of-fit in the region of the HCs. The latter two points seem to argue in favor of different
fitting methods, with the goodness-of-fit issue suggesting graphical methods, which can be weighted
toward the region of the HCs, whereas the variable performance of distributions argues for the use of
maximum likelihood whereby distributional performance can be easily compared and formal averaging
techniques may be used across distributions. The following section describes how various extensions of
maximum likelihood can be brought to bear on all of these issues.
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5.1. Hierarchical models

A hierarchical model, in modern statistical usage, is one in which a model parameter is specified
to be (in turn) the prediction of some further model. For example, de Zwart (2002) developed a
hierarchical model of the logistic distribution parameter £ upon chemical mode of action. He also
provided a table of estimated S values for use in fitting log-logistic SSDs, if a chemical’s mode of action is
known (de Zwart 2002: Table 8.4). In that case all available data for a given chemical may be used to
estimate «a (the other logistic distribution parameter) and the value of § can be assumed known.
Similarly, interspecies correlation extrapolation (ICE) models exploit correlations among species test
results across previously tested species to predict the toxicity for untested species based on values for
tested species (Raimondo et al. 2010). These predicted values can then be used as surrogate test results
in the development of SSDs (Appendix B). These methods are vulnerable to the criticism that they do
not properly take into account the uncertainty associated with the lower-level model predictions.
Furthermore, preliminary analyses of de Zwart’s (2002) method using different data suggest
considerable disagreement among estimates of S, especially with respect to the AChEl MOA (see Section
8.9 in Supplementary Results). Thus caution is warranted in consideration of adoption of this method.
Modern hierarchical model fitting methods attempt to simultaneously fit all hierarchically linked models
and to properly account for the associated model variance. Hierarchical models, in the context of SSDs,
could be specified in many ways, which are briefly outlined below.

The most important limitation to the use of SSDs is sample size, which could lead to large biases,
substantial uncertainty, and uninformative measures of fit. One way to bring more data to the table
would be to investigate methods for “borrowing” information on toxicity from related chemicals, for
example using information on mode of action (de Zwart 2002) or adverse outcome pathway (AOP,
Ankley et al. 2010). Such a model might look very much like de Zwart’s (2002) regression model, but the
regression would be fit simultaneously with the SSD, using numerical optimization methods and
maximum likelihood. The resulting model might be able to exploit some of the many benefits of
maximum likelihood estimation (Section 1.2.1), including the ability to use formal model selection
methods (Section 1.3.3), without suffering the large biases and variance associated with limited data, if
the pool of available data for a given mode of action is large. Furthermore, the resulting model could be
updated as new test results become available.

Another common feature in modern hierarchical models is the specification of random effects
(i.e., a model parameter is itself assumed to be a random variate from some specified distribution). An
obvious application for this idea in SSD methodology would be to treat multiple test results for a given
taxon as random draws from a possible distribution of test values for that taxon. This would help with
concerns about how to summarize multiple test results for a given taxon (for example, whether to use
the arithmetic mean versus geometric mean versus lowest test result). Furthermore, it would implicitly
incorporate the natural statistical notion that multiple results for a taxon are a data strength, rather
than a weakness (as variable results within taxa are commonly viewed, Etterson pers. obs.).

The above two ideas are reinforced by the observed result in this report that SSD analysis with
limited data benefits enormously from the imposition of minimum data requirements (see Section 4.2
above and associated sub-sections in Results). Thus different taxonomic groups, both at the species and
genus level, exhibit markedly different sensitivities to a given chemical. It is natural to assume that these

Page 56



sensitivities are often phylogenetically conserved and this assumption is reinforced from studies
showing similar sensitivities among related taxa for a given mode of action (de Zwart 2002). In this case,
it may be the case that related species share their sensitivity by sharing an adverse outcome pathway
triggered by the chemical. Knowledge of relationships among species (http://tolweb.org) and methods
for modeling the distribution of character traits (toxicity test results in our context) on phylogenetic
trees (see for example Huelsenbeck 2003) have increased greatly since the publication of the 1985
Guidelines (USEPA 1985). Use of phlyogenetic structure in SSD analyses is likely to be more useful with
highly specific modes of action (such as acetylcholinesterase inhibition analyzed in this report)
compared to more general modes of action such as narcosis. Development of the methods described in
this paragraph would require a substantial commitment of time and research, but with a potentially
large benefit to our understanding of the distribution of toxicity across taxa.

5.2. Order statistics

Graphical methods for SSDs are an example of a common technique in the branch of statistics
referred to as the theory of order statistics. Their primary advantages, as reviewed above, are the ability
to weight the fit in the region of the HC; (or any other quantile of interest) and the ability to handle
unbounded test results. Their primary disadvantages are that they are limited to distributions in the
location/scale family (in our analyses these are normal, logistic, and triangular) and they do not permit
the use of formal model selection techniques. However, given an ordered set of toxicity test results it is
possible to develop relatively simple expressions for the likelihood (under any continuous distribution)
for the ordered data that are flexible in the amount of weight applied to any given region of the
likelihood. This theory is briefly described below.

Suppose that # test results are available for a given chemical and let x; represent the i ordered
EC50 (1 £ i <n), where the results are ordered from lowest to highest. Further, let f{x) and F(x)
represent the probability density and cumulative density functions for the particular distribution from
which the (unordered) data are assumed to arise. Then the pdf for the ordered data (f;), weighted
toward the first / order statistics is:

7x10)=(1-F(x)f [ ()

In particular, suppose # = 100 and it is considered desirable to give particular weight to the first ten
order statistics corresponding to the lower tenth quantile of the empirical cdf. These are x;, x5, x3, ...X1o.
The remaining 90 order statistics are assumed to fall in the upper 90" quantile of the distribution. The
joint probability density, f,(x), for the order statistics is proportional to:

f;(X|9)oc(1—F(xm))9°ﬁIf (%)

Like the graphical methods described by Erickson and Stephan (1988), the pdf above uses all available
data, but weights the fit more strongly to the lower 10% of the data. The upper 90 order statistics are
simply assumed to fall within the upper 90™ quantile of the distribution, but their specific value is not
used. Obviously, any unbounded data that fall within this upper quantile may be accommodated by
simply counting them in the exponent to 1 — F(x;o).
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5.3. Bayesian methods

Several features of Bayesian methods make them attractive for use in the analysis of SSDs. First,
in attempts to understand the toxicity of a chemical, there may be data available about the toxicity of
related chemicals, which could serve as valuable prior information in statistical analyses. Or, data from
multiple chemicals could be pooled and analyzed using hierarchical models that include either fixed or
random effects of a specific chemical. The latter methods, especially using some of the complicated
hierarchical structures described immediately above, are much easier to fit using Bayesian methods.
Finally, it is often desirable to make some kind of probabilistic statement about the location of the HC;.
However, under a classical statistical framework, the HC; is fixed (but unknown) resulting in
cumbersome interpretations of confidence intervals and the like. Under a Bayesian framework the HC;s
would be viewed as a random variable with an estimable posterior distribution from which probabilistic
statements could be formulated.
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8. Supplementary results
This section provides full results of SSD analyses not presented in text.

8.1. HCss estimated using all available GMAVs
Table $8.1.1. Estimated HCss for malathion using all GMAVs for freshwater taxa (n = 57)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 3.318 2.554 3.819 4321 1.556 0.588 2.330 3.639
Moment Estimators 3.165 3.394 2.871 9.527 1.181

Graphical Methods 2.355 2.126 2.453

Table $8.1.2. Estimated HCss for diazinon using all GMAVs for freshwater taxa (z = 28)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.912 0.780 1.248 0.978 0.546 0.607 0.481 0.733
Moment Estimators 0.820 0.886 0.736 2.777 0.408

Graphical Methods 0.468 0.380 0.527

Table $8.1.3. Estimated HC:s for chlorpyrifos using all GMAVs for freshwater taxa (n = 30)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.045 0.026 0.078 0.091 0.086 0.005 0.090 0.074
Moment Estimators 0.041 0.044 0.037 0.130 0.070

Graphical Methods 0.025 0.021 0.028

Table $8.1.4. Estimated HCss for fenitrothion using all GMAVs for freshwater taxa (» = 30)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.820 1.015 0.219 0.527 0.034 1.023 0.573 1.016
Moment Estimators 0.743 0.802 0.668 2475 0.022

Graphical Methods 0.439 0.362 0.491

Table $8.1.5. Estimated HCss for methyl parathion using all GMAVs for freshwater taxa (n = 29)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  1.070 0.864 1.548 1.222 0.529 0.824 0.556 0.904
Moment Estimators 0.964 1.043 0.863 3.339 0.389

Graphical Methods 0.552 0.449 0.621
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Table $8.1.6. Estimated HCss for dichlorvos using all GMAVs for freshwater taxa (r = 22)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.262 0.334 0.273 0.226 0.152 0.076 0.188 0.197
Moment Estimators 0.221 0.244 0.193 1.010 0.105

Graphical Methods 0.096 0.070 0.116

Table S8.1.7. Estimated HCss for chlarpyrifos using all GMAVSs for saltwater taxa (n = 21)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.016 0.012 0.011 0.052 0.057 0.000 0.048 0.051
Moment Estimators 0.014 0.015 0.013 0.045 0.048

Graphical Methods 0.007 0.006 0.009

Table $8.1.8. Estimated HCss for fenthion using all GMAVs for saltwater taxa (n = 12)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.123 0.105 0.133 0.055 0.069 0.092 0.051 0.101
Moment Estimators 0.095 0.103 0.084 0.345 0.050

Table $8.1.9. Estimated HCss for carbaryl using all GMAVSs for freshwater taxa (n = 55)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 9.840 13.966 9.096 7:.799 3311 9.707 8.487 9.707
Moment Estimators 9.442 10.017 8.693 24.025 2.578

Graphical Methods 7.298 6.671 1.572

Table $8.1.10. Estimated HCss for carbaryl using all GMAVs for saltwater taxa (n=9)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  4.767  4.265 8.756 5.410 7.821 3.318 3.028 5.538
Moment Estimators 3.552 3.799 3.233 10.266 6.505

Graphical Methods 1.148 0.775 1.460

Table $8.1.11. Estimated HCss for propoxur using all GMAVSs for freshwater taxa (n = 13)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average

Maximum Likelihood 19.953 16.262 27.387 28.107 18.660 3.038 22.657 21.276
Moment Estimators  16.966 17.907 15.732 39.804 15.789
Graphical Methods 8.480 6.605 9.910
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Table $8.1.12. Estimated HCss for methomyl using all GMAVs for freshwater taxa (n = 16)

normal

Fitting Method logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 72.219 69.515 80.708 73.932 67.928 55.055 55.982 66.886
Moment Estimators  67.535 69.425 64.980 104.406 63.608

Graphical Methods 49.831 44.587 53.390

8.2. HCss estimated using all available SMAVs

Table $8.2.1. Estimated HCss for malathion using all SMAVs for freshwater taxa (N = 71)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 2.652 1.942 2.745 3.611 0.987 0.425 2.345 2.711
Moment Estimators 2.552 2.740 2.312 7.824 0.736

Graphical Methods 1981 1.823 2.028

Table $8.2.2. Estimated HCss for diazinon using all SMAVs for freshwater taxa (N = 33)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.858 0.729 1.224 0.946  0.544 0.468 0.447 0.661
Moment Estimators 0.784 0.847 0.704 2.644 0.408

Graphical Methods 0.478 0.398 0.529

Table S8.2.3. Estimated HCss for chlorpyrifos using all SMAVs for freshwater taxa (N = 34)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.030 0.017 0.059 0.064 0.046 0.003 0.063 0.055
Moment Estimators 0.028 0.030 0.025 0.089 0.037

Graphical Methods 0.017 0.015 0.019

Table $8.2.4. Estimated HCss for fenitrothion using all SMAVs for freshwater taxa (N = 36)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.725 0.721 0.219 0.552 0.034 0.711 0.417 0.708
Moment Estimators 0.668 0.721 0.601 2.222 0.022

Graphical Methods 0.423 0.357 0.463

Table $8.2.5. Estimated HCss for methyl parathion using all SMAVs for freshwater taxa (N = 35)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 1.284 1.090 1.742 1.416 0.530 1.056 0.697 1.095
Moment Estimators 1.180 1.274 1.061 3.948 0.389

Graphical Methods 0.738 0.621 0.810
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Table S8.2.6. Estimated HCss for dichlorvos using all SMAVs for freshwater taxa (N = 25)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  0.090 0.076 0.153 0.116 0.106 0.015 0.043 0.111
Moment Estimators 0.077 0.085 0.066 0.406 0.074

Graphical Methods 0.033 0.024 0.040

Table $8.2.7. Estimated HCss for chlorpyrifos using all SMAVs for saltwater taxa (N = 26)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  0.023  0.020 0.013 0.000 0.057 0.000 0.066 0.050
Moment Estimators 0.021 0.023 0.019 0.060 0.048

Graphical Methods 0.013 0.010 0.014

Table $8.2.8. Estimated HCss for fenthion using all SMAVs for saltwater taxa (N = 13)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  0.042 0.030 0.055 0.051 0.035 0.023 0.011 0.035
Moment Estimators 0.032 0.035 0.029 0.132 0.025

Graphical Methods 0.010 0.007 0.013

Table $8.2.9. Estimated HCss for carbaryl using all SMAVs for freshwater taxa (N = 75)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  7.778 14.610 0.242 3.079 0.020 10.006 8.185 10.006
Moment Estimators 7.535 8.016 6.911 20.005 0.012

Graphical Methods 6.096 5.694 6.202

Table $8.2.10. Estimated HCss for carbaryl using all SMAVs for saltwater taxa (N = 11)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  9.009 11.896 12.545 7.871 7971 10.065 7.030 10.412
Moment Estimators 7.203  7.670 6.597 19.427 6.505

Graphical Methods 2.894 2.093 3.538

Table $8.2.11. Estimated HCss for propoxur using all SMAVs for freshwater taxa (N = 13)

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 19.953 16.262 27.387 28.107 18.660 3.038 22.657 21.276
Moment Estimators  16.966 17.907 15.732 39.804 15.789

Graphical Methods 8.480 6.605 9.910
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Table $8.2.12. Estimated HCss for methomyl using all SMAVs for freshwater taxa (N = 20)

Fitting Method normal logistic triangular

Gumbel

Pareto Weibull

Burr a

verage

Maximum Likelihood 46.739 51.295
Moment Estimators  43.920 45.354
Graphical Methods 32.543 25.128

36.482
41.993

34.818

41.573 19.909
72.910 17.567

33.557 39.461

37.875

8.3. Comparison plots of analyses at n = 8 (ALC MDRs imposed versus not

imposed)

Notes: Figures in this series for malathion and carbaryl freshwater tests are Figures 3 and 4 in the main
text. Panels represent a. maximum likelihood estimates, b. moment estimates, c. graphical estimates.

Note log;, scale of Y-axes.
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Figure S8.3.1. Average ratio of estimated HC;s for diazinon from 1,000 draws of empirical data (n =8
GMAVs) to the HCs estimated from all available freshwater GMAVs (n = 28).
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Figure $8.3.9. Average ratio of estimated HCss for propoxur from 1,000 draws of empirical data (n =8
GMAVs) to the HC; estimated from all available freshwater GMAVs (n = 13).

Page 70



|C_18 GMAVs chosen at random Illl 8 GMAVs meeting ALC MDRs |
T T

100 i
10
1] — T = P— T
0.1; ik i
0.01 -
0.0011 -
0.0001

L a.

T
sl

T

l I I 1 1 1 1
normal logistic triangular ~ Gumbel Pareto Weibull Burr

100 T T T T T
10 |

0.1r -
0.01- =
0.001
0.0001

8 to HC; estimated using 16 GMAVs

T
i

[ 1 1 1 1
normal logistic triangular Gumbel Pareto

100 T T
10
1 I pie = il " [T T
0.1+ 4
0.01~ g
0.001+ -

0.0001 — L =
normal logistic triangular

Distribution
Figure S3.10. Average ratio of estimated HCss for methomyl from 1,000 draws of empirical data (n =8

GMAUVSs) to the HC; estimated from all available freshwater GMAVSs (n = 16).

Ratio of HC5 atn
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Notes: Figure in this series for malathion freshwater tests is Figures 7 in the main text. Panels represent
a. maximum likelihood estimates, b. moment estimates, c. graphical estimates. Note log, scale of Y-
axes.
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Figure S8.4.1. Comparison of variance among HC; estimates from 1,000 draws of 8 randomly chosen
freshwater GMAVs for diazinon compared to when the 8 ALC MDRs are imposed.
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Figure $8.4.2. Comparison of variance among HCs estimates from 1,000 draws of 8 randomly chosen
freshwater GMAVs for chlorpyrifos compared to when the 8 ALC MDRs are imposed.
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Figure $8.4.3. Comparison of variance among HC; estimates from 1,000 draws of 8 randomly chosen
freshwater GMAVSs for fenitrothion compared to when the 8 ALC MDRs are imposed.
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Figure $S8.4.4. Comparison of variance among HC; estimates from 1,000 draws of 8 randomly chosen
freshwater GMAVs for methyl parathion compared to when the 8 ALC MDRs are imposed.
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Figure S8.4.5. Comparison of variance among HC; estimates from 1,000 draws of 8 randomly chosen
freshwater GMAVs for dichlorvos compared to when the 8 ALC MDRs are imposed.

Page 76



Uj 8 GMAVs chosen at random - 8 GMAVs meeting ALC MDRs!

T T a

| 5
£ 4
o
o normal Iog:stlc trrangular Gumbel Pareto Weibull Burr
8
a
9 i T
8 ¢ J |
o
o 2F ‘
c
5]
£
a@ 4L 4
= J ‘
CIJ normal logistic tnanguiar Gumbel Pareto
K
=
] ‘ c.
o 0
g | |

2} j ‘ "

| | ;
_4_. <
L —_— i |
normal logistic triangular
Distribution

Figure $8.4.6. Comparison of variance among HC; estimates from 1,000 draws of 8 randomly chosen
saltwater GMAVs for chlorpyrifos compared to when the 8 ALC MDRs are imposed.
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Figure $8.4.7. Comparison of variance among HC;s estimates from 1,000 draws of 8 randomly chosen
saltwater GMAVs for fenthion compared to when the 8 ALC MDRs are imposed.
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Figure $8.4.8. Comparison of variance among HC; estimates from 1,000 draws of 8 randomly chosen
freshwater GMAVs for carbaryl compared to when the 8 ALC MDRs are imposed.
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Figure $8.4.9. Comparison of variance among HC; estimates from 1,000 draws of 8 randomly chosen
saltwater GMAVs for carbaryl compared to when the 8 ALC MDRs are imposed.
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Figure $S8.4.10. Comparison of variance among HCs estimates from 1,000 draws of 8 randomly chosen
freshwater GMAVs for propoxur compared to when the 8 ALC MDRs are imposed.
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Figure S8.4.11. Comparison of variance among HC; estimates from 1,000 draws of 8 randomly chosen
saltwater GMAVs for methomyl compared to when the 8 ALC MDRs are imposed.
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Notes: Figures in this series for malathion and propoxur freshwater tests are Figures 5 and 6 in the main
text. Panels represent a. maximum likelihood estimates, b. moment estimates, c. graphical estimates.
Note log,g scale of Y-axes.
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SMAVs) to the HC; estimated from all available freshwater SMAVs (n = 33).
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Figure $8.5.2. Average ratio of estimated HCss for chlorpyrifos from 1,000 draws of empirical data (n = 3
SMAVSs) to the HC; estimated from all available freshwater SMAVs (n = 34).
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Figure 58.5.3. Average ratio of estimated HCss for fenitrothion from 1,000 draws of empirical data (n = 3
SMAVs) to the HC; estimated from all available freshwater SMAVs (n = 36).
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Figure S8.5.5. Average ratio of estimated HCss for dichlorvos from 1,000 draws of empirical data (7 = 3
SMAVs) to the HCs estimated from all available freshwater SMAVs (n = 25).
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8.6. Variance plots of analyses at n = 3 using random SMAVs

Notes: Figures in this series for malathion and propoxur freshwater tests are Figures 8 and 9 in the main
text. Panels represent a. maximum likelihood estimates, b. moment estimates, c. graphical estimates.
Note logy scale of Y-axes.
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Figure §8.6.1. Variance in HC; estimates from 1,000 draws of 3 randomly chosen freshwater SMAVs for
diazinon.
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Figure $8.6.2. Variance in HCs estimates from 1,000 draws of 3 randomly chosen freshwater SMAVs for
chlorpyrifos.
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Figure $8.6.3. Variance in HC; estimates from 1,000 draws of 3 randomly chosen freshwater SMAVs for
fenitrothion.
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Figure S8.6.5. Variance in HCs estimates from 1,000 draws of 3 randomly chosen freshwater SMAVs for
dichlorvos.
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Figure $8.6.6. Variance in HCs estimates from 1,000 draws of 3 randomly chosen saltwater SMAVs for
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Figure $8.6.7. Variance in HC;s estimates from 1,000 draws of 3 randomly chosen saltwater SMAVSs for
fenthion.
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Figure S8.6.8. Variance in HCs estimates from 1,000 draws of 3 randomly chosen freshwater SMAVs for
carbaryl.
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Figure $S8.6.9. Variance in HCs estimates from 1,000 draws of 3 randomly chosen saltwater SMAVs for
carbaryl.
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Figure $8.6.10. Variance in HC; estimates from 1,000 draws of 3 randomly chosen freshwater SMAVs for
methomyl.
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8.7. Goodness-of-fit results for n = 20 and » = 50.
Table $8.7.1. Power of parametric bootstrap goodness-of-fit tests for maximum likelihood at # = 20.

normal logistic triangular Gumbel Pareto Weibull Burr

normal 0.020 0.067 0.080 0.087 0.733 0.167 0.033
logistic 0.080 0.073 0.193 0.173 0.773 0.133 0.093
triangular 0.080 0.107  0.047 0.127 0.727 0.120 0.080
Gumbel 0.167 0.113 0.427 0.040 0433 0373 0.047
Pareto 0.720 0.587 0.913 0.113 0.040 0.213 0.473
Weibull 0.273 0.187 0.467 0.247 0.940 0.040 0.353
Burr 0.067 0.067 0.247 0.093 0.733 0.240 0.033

Table $8.7.2. Power of parametric bootstrap goodness-of-fit tests for moment estimates at » = 20.

normal logistic triangular Gumbel Pareto

normal 0.040 0.047 0.040 0.187 1.000
logistic 0.093 0.067 0.133 0.267 1.000
triangular 0.073 0.087  0.053 0.240 1.000
Gumbel 0.240 0.193  0.300 0.047 1.000
Pareto 0.747 0.693 0.813 0.233 1.000
Weibull 0.307 0.247 0.360 0.733 1.000
Burr 0.093 0.067 0.107 0.133 1.000

Table S8.7.3. Power of parametric bootstrap goodness-of-fit tests for graphical estimates at z = 20.

normal logistic triangular

normal 0.033 0.007 0.053
logistic 0.127 0.053 0.180
triangular 0.053  0.027 0.067
Gumbel 0.260 0.160 0.313
Pareto 0.793 0.660 0.820
Weibull 0.327 0.207 0.347
Burr 0.113 0.027 0.180

Table S8.7.4. Power of parametric bootstrap goodness-of-fit tests for maximum likelihood at n = 50.

normal logistic triangular gumbel Pareto Weibull Burr

normal 0.080 0.067 0.247 0.293 1.000 0.513 0.073
logistic 0.073 0.053 0.520 0.320 1.000 0.553 0.067
triangular 0.073 0.113  0.087 0.260 1.000 0.407 0.107
Gumbel 0.460 0.227 0.840 0.040 0.960 0.647 0.073
Pareto 1.000 0.973 1.000 0.107 0.060 0.253 0.860
Weibull 0.500 0.307 0.880 0.400 1.000 0.047 0.607
Burr 0.113 0.067  0.507 0.340 1.000 0.533 0.080
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Table $8.7.5. Power of parametric bootstrap goodness-of-fit tests for moment estimates at » = 50.

normal logistic triangular Gumbel Pareto

normal 0.093 0.087 0.120 0.460 1.000
logistic 0.100 0.067 0.200 0.447 1.000
triangular 0.067 0.140 0.087 0.473 1.000
Gumbel 0.500 0427 0.580 0.060 1.000
Pareto 1.000 1.000 1.000 0:553 1.000
Weibuli 0.547 0440 0.633 0.973 1.000
Burr 0.133 0.073 0.227 0.387 1.000

Table S8.7.6. Power of parametric bootstrap goodness-of-fit tests for graphical estimates at » = 50.

normal logistic triangular

normal 0.100 0.027 0.153
logistic 0.173  0.060 0.247
triangular  0.040 0.047 0.067
Gumbel 0.507 0.380 0.607
Pareto 0.993 0.993 1.000
Weibull 0.607 0.400 0.680
Burr 0.193 0.073 0.300

8.8. Model selection results for SSDs fit to GMAVs when N = 8 and ALC MDRs
are met
Notes: The tables in this series pertaining to malathion is Tables 44 in the main text. Average is the

average of model-averaged estimates using Akaike weights, calculated following methods described by
Burnham and Anderson (2002).

Table $8.8.1. Mean estimated diazinon HCss when » = 8 freshwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.33 0.19 0.57 0.51 0.85 0.10 0.41 0.39
Moment Estimators 0.23 0.24 0.21 0.78 0.69

Graphical Methods 0.05 0.03 0.07

Table $8.8.2. Mean estimated chlorpyrifos HCss when » = 8 freshwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.05 0.04 0.09 0.10 0.14 0.01 0.07 0.07
Moment Estimators 0.04 0.04 0.04 0.11 0.12

Graphical Methods 0.01 0.01 0.02
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Table $8.8.3. Mean estimated fenitrothion HCss when » = 8 freshwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 1.64 1.45 2.29 1.77 243 1.41 1.30 1.14
Moment Estimators 1.16 1.24 1.03 3.25 2.06

Graphical Methods 0.34 0.23 0.45

Table 58.8.4. Mean estimated methyl parathion HCss when 7 = 8 freshwater GMAVs meeting the ALC
MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.76 0.53 1.53 1.22 2.25 0.39 091 0.89
Moment Estimators 0.53 0.59 0.50 1.92 1.89

Graphical Methods 0.12 0.08 0.17

Table $8.8.5. Mean estimated dichlorvos HCss when n = 8 freshwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.44 0.64 0.33 0:33 0.21 0.23 0.37 0.20
Moment Estimators 0.29 0.33 0.24 1.27 0.14

Graphical Methods 0.05 0.03 0.07

Table $8.8.6. Mean estimated chlorpyrifos HCss when » = 8 saltwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr  average
Maximum Likelihood 0.013 0.009 0.020 0.056 0.090 0.001 0.046 0.040
Moment Estimators 0.008 0.010 0.008 0.030 0.076

Graphical Methods 0.002 0.001 0.003

Table $8.8.7. Mean estimated fenthion HCss when n = 8 saltwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  0.039  0.023 0.061 0.070 0.065 0.015 0.008 0.041
Moment Estimators 0.025 0.028 0.023 0.101 0.050

Graphical Methods 0.005 0.003 0.007

Table $8.8.8. Mean estimated carbaryl HCss when # = 8 freshwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 6.97 8.88 7.17 5.50 6.16 544 6.31 2.96
Moment Estimators 4.84 5.43 443 12.19 5.06

Graphical Methods 1.70 1.10 193
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Table $8.8.9. Mean estimated carbaryl HCss when n = 8 saltwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 3.24 2.38 6.78 4.36 7.74 1.79 3.50 4.61
Moment Estimators 2.30 247 2.09 7.00 6.50

Graphical Methods 0.64 0.41 0.83

Table $8.8.10. Mean estimated propoxur HCss when n = 8 freshwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 18.0 131 31.6 345 38.6 2.0 333 27.7
Moment Estimators 135 14.4 124 34.1 33.9

Graphical Methods 4.7 3.3 5.9

Table $8.8.11. Mean estimated methomyl HCss when » = 8 freshwater GMAVs meeting the ALC MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 45.6 7o 1 59.1 56.0 71.1 27.1 55.2 53.5
Moment Estimators 393 40.7 37.4 63.4 67.9

Graphical Methods 22.8 18.7 25.6

8.9. Model selection results for SSDs fit to GMAVs when N = 8 regardless of ALC
MDRs

Notes: The tables in this series pertaining to malathion and fenitrothion are Tables 43 and 45 in the
main text. Average is the average of model-averaged estimates using Akaike weights, calculated
following methods described by Burnham and Anderson (2002).

Table $8.9.1. Mean estimated diazinon HC5s when » = 8 freshwater GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 143 19.1 12.4 17.7 6.5 17.1 141 0.6
Moment Estimators 114 11.7 13.0 304 7.6

Graphical Methods 4.5 4.0 5.0

Table $8.9.2. Mean estimated chlorpyrifos HC5s when » = 8 freshwater GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.16 0.12 0.21 0.21 0.29 0.06 0.19 0.08
Moment Estimators 0.12 0.11 0.12 0.30 0.24

Graphical Methods 0.04 0.02 0.05
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Table 58.9.3. Mean estimated methyl parathion HCss when » = 8 freshwater GMAVSs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 43.6 49.2 17.8 24.1 21.1 33.5 504 0.9
Moment Estimators 29.0 17.5 28.1 28.5 32.0

Graphical Methods 22.6 8.5 15.4

Table $8.9.4. Mean estimated dichlorvos HCss when n = 8 freshwater GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 7.7 4.9 9.3 9.8 15.1 1.9 125 0.6
Moment Estimators 6.6 5.6 49 121 9.5

Graphical Methods 2.5 1.5 2.7

Table $8.9.5. Mean estimated chlorpyrifos HCss when » = 8 saltwater GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood  0.044 0.031 0.059 0.093 0.130 0.008 0.091 0.055
Moment Estimators 0.031 0.031 0.029 0.077 0.125

Graphical Methods 0.011 0.008 0.013

Table $6.8.6. Mean estimated fenthion HCss when » = 8 saltwater GMAVSs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 0.49 0.89 0.63 0.38 0.39 0.89 0.57 0.05
Moment Estimators 0.37 0.40 0.31 0.93 0.34

Graphical Methods 0.14 0.06 0.19

Table $8.9.7. Mean estimated carbaryl HCss when n = 8 freshwater GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 83.9 95.5 103.8 82.6 82.4 75.7 95.0 15.0
Moment Estimators 84.0 74.5 724 142.5 95.9

Graphical Methods 534 38.9 57.3

Table $8.9.8. Mean estimated carbaryl HCss when #n = 8 saltwater GMAVSs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 6.00 7.50 9.16 6.02 8.21 5.66 5.46 4.86
Moment Estimators 437 4.68 3.91 12.05 6.84

Graphical Methods 1.31 0.89 1.72
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Table $8.9.9. Mean estimated propoxur HCss when » = 8 freshwater GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 314 28.3 43.2 44.0 50.7 11.5 404 22.6
Moment Estimators 25.7 27.0 26.1 54.3 47.1

Graphical Methods 12.2 8.8 13.1

Table $8.9.10. Mean estimated methomyl HCss when » = 8 freshwater GMAVs regardless of MDRs

Fitting Method normal logistic triangular Gumbel Pareto Weibull Burr average
Maximum Likelihood 91.3 98.4 98.1 96.4 92.6 77.3 93.0 68.3
Moment Estimators 85.7 87.2 82.5 125.6 86.5

Graphical Methods 51.7 49.0 57.0

8.9. Preliminary analysis of the use of MOA-specific parameters for the logistic
distribution

Kristina Garber

US Environmental Protection Agency
Office of Pesticide Programs
Washington, DC

de Zwart (2002) proposed that knowledge of mode of action (MOA) could be used to improve
the ability to fit SSDs at smaller sample sizes. He hypothesized that within an MOA, the average test
result among species would vary, but that the variance among responses would remain relatively
constant. Thus, given a set of pre-existing data concerning chemicals with a given MOA, the expected
variation in response to a new chemical with the same MOA could be specified a priori, and test results
for the new chemical could be used only to estimate the mean response. To illustrate this idea, de
Zwart used the logistic distribution and hypothesized that the location parameter (a) would vary among
chemicals, but that the scale parameter (B) would remain relatively constant.

As a preliminary assessment of de Zwart’s method, | estimated B for 23 chemicals (Table ?)and
estimated mean values of the estimated B by mode of action. These were compared to the mean B
values reported by de Zwart (2002). In total, it was possible to compare B values from 5 modes of action,
including nonpolar narcosis, polar narcosis, AChE inhibition by carbamate insecticides, AChE inhibition
by organophosphate insecticides and neurotoxicity caused by organochlorine insecticides. Of these
modes of action, the average B calculated for neurotoxicity for this analysis is closest to the average B
reported by de Zwart (2002), although the sample size used by de Zwart for this mode of action was very
small (i.e., N=2). The average B calculated in this analysis for the nonpolar and polar narcosis modes of
action falls within the standard deviation of the average B reported by de Zwart. For both AChE
inhibition modes of action, the average B calculated in this analysis falls outside of the standard
deviation of the average B reported by de Zwart. This indicates that the average B reported by de Zwart
may be applicable to narcosis modes of action and neurotoxicity of organochlorine insecticides, but may
be limited for AChE inhibitors.
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Table 1. FAVs derived according to 85 guideline methodology and HC; derived using de Zwart (2002)

methodology.

Chemical MOA FAV c5 # acute GMAVs B
Carbaryl AChE inhibition (carbamate) 4.4 96 55 0.50
Methomyl AChE inhibition (carbamate) 50 61 16 0.50
Propoxur AChE inhibition (carbamate) 9.6 116 13 0.50
Chlorpyrifos AChE inhibition (organophosphate) 0.074 0.47 30 0.71
Diazinon AChE inhibition (organophosphate) 0.54 13 28 0.71
Dichlorvos AChE inhibition (organophosphate) 0.083 15 20 0.71
Fenitrothion AChE inhibition (organophosphate) 0.11 11! 30 0.71
Malathion AChE inhibition (organophosphate) 2.4 29 57 0.71
Methyl parathion AChE inhibition (organophosphate) 7.3 17 29 0.71
DDT neurotoxicity 0.85 1.9 49 0.50
Dieldrin neurotoxicity 0.54 29 18 0.50
Endosulfan neurotoxicity 0.21 0.67 32 0.50
Endrin neurotoxicity 0.21 0.26 27 0.50
Lindane neurotoxicity 1.9 6.3 23 0.50
Benzenamine* Narcosis (polar) 45 24000 39 0.31
Nonylphenol* Narcosis (polar) 41 50 21 0.31
Ammonia Narcosis (nonpolar) 4800 7100 20 0.39
Benzene* Narcosis (nonpolar) 6300 12000 9 0.39
Chloroform* Narcosis (nonpolar) 26000 24000 8 0.39
Phenol Narcosis (nonpolar) 8600 8300 42 0.39
Toluene* Narcosis (nonpolar) 10000 9900 12 0.39
Pentachlorophenol  Uncoupling oxidative phosphorylation 20 24 40 0.38
1,3 Dichloropropene Reactivity 630 77 10 77

*Not a pesticide

Table 2. Comparison of mean B values reported by de Zwart 2002 and mean p values of example chemicals.

De Zwart 2002 Current analysis
Mode of Action Average Standard - Average Standard N+

B deviation of B * B deviation of B
Nonpolar narcosis 0.39 0.17 34 0.22 0.07 5
Polar narcosis 0.31 0.11 13 0.36 0.26 2
AChE inhibition (carbamates) 0.71 0.099 11 0.52 0.19 3
AChE inhibition (organophosphates) 0.50 0.26 27 0.87 0.10 6
Neurotoxicity (organochlorines) 0.50 0.18 2 0.51 0.10 5

*Calculated as: stdev of [ =SEM *JN

** N = number of chemicals used to determine average B

In comparing the results of this analysis to those of de Zwart, (2002) it is important to note three
major differences in the two methods. First, this analysis had more strict definitions of acute toxicity for
aquatic animals (i.e., 48-h duration for crustaceans, 96-h for fish and other invertebrates). Second, this
analysis developed $SDs based on acute toxicity data for genera, while de Zwart (2002) developed SSDs

for species. Third, this analysis developed SSDs using only aquatic animals, while de Zwart (2002)
included effects data to derive SSDs for aquatic animals, plants and bacteria. This limitation arises
because the modes of action of the different chemicals may be different for animals, plants and
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bacteria. The latter difference in methods represents a significant limitation of the application of mean B
values to estimation of C5 values intended to approximate FAVs, which are based on effects data for
aquatic animals only. This may explain why the AChE inhibitors, which primarily act upon animals, but
not plants, have average B values for only animals which differ from the average p reported by de Zwart,
which include plants.

Because Pennington’s (2003) work depends upon that of de Zwart (2002), it should be noted
that the uncertainties and limitations of the B values recommended by de Zwart (2002)would also
extend to the extrapolation factors reported by Pennington (2003). This is especially relevant to the use
of the extrapolation factors for AChE inhibitors, which are based on B values that may be affected by
inclusion of non-animal toxicity data in de Zwart’s (2002) analysis.

HC; values were generated for each example chemical using de Zwart’s (2002)approach (logistic
distribution with MOA specific B value) along with the full data set available for that chemical. For 20 of
the 23 chemicals considered, the de Zwart (2002)method generated HCs values that overpredict the
FAVs, with factors ranging 1.2x to 530x. Three of the 23 chemicals considered had HC; values that
underpredicted the FAV, but were still on the same order of magnitude as the FAV. In these cases, all
three chemicals (chloroform, phenol and toluene) are described by the nonpolar narcosis MOA.

Page 106



