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Abstract

This report focuses on the problem of “diving plumes”, a term which generally refers to
plumes that go deeper into aquifers with distance from their sources. As noted by
Weaver and Wilson (2000), plumes may dive for several reasons: aquifer recharge
supplying clean water above the plume, aquifer stratigraphy controlling the transport
direction, relatively deep pumping causing downward gradients, and the possibility of
oxygenated recharge water selectively enhancing biodegradation in the upper portion of
plumes. This document presents the mathematical basis of software for real-time
development and refinement of site conceptual models. The emphasis in the work is on
evaluation of ground water flow patterns and the proper placement of vertical sample
intervals. Lack of consideration of plume diving could result in underestimation of the
extent of contamination at these sites. The basics of the one-dimensional model are
presented first. Solutions are then developed for flow with three sets of boundary
conditions. The methodology is then extended to piecewise heterogeneous domains that
allow for more flexibility in the solution. A type of inverse problem is solved that uses
measured heads as a substitute for the recharge rate. The analytical method is extended
to aquifers with sloping bases. Lastly a numerical model is presented for heterogeneous
aquifers with uneven bases. The equations for streamlines that define plume diving and
travel time are given. A comparison is made to solutions for a homogeneous aquifer and
a piecewise heterogeneous aquifer.
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Foreword

The National Exposure Research LabordtoBcosystems Research Division (ERD) in
Athens, Georgia, conducts research on organic and inorganic chemicals, greenhouse gas
biogeochemical cycles, and land use perturbations that create direct and indirect,
chemical and non-chemical stresses, exposures, and potential risks to humans and
ecosystems. ERD develops, tests, applies and provides technical support for exposure
and ecosystem response models used for assessing and managing risks to humans and
ecosystems, within a watershed / regional context.

The Regulatory Support Branch (RSB) conducts problem-driven and applied research,
develops technology tools, and provides technical support to customer Program and
Regional Offices, States, Municipalities, and Tribes. Models are distributed and
supported via the EPA Center for Exposure Assessment Modeling (CEAM) and through
access to Internet tools (www.epa.gov/athens/onsite).

Proper assessment of ground water contaminant plumes requires decisions on where and
how deep to sample. These plumes follow ground water flow paths that are controlled by
the average aerial recharge, localized recharge and discharge zones, stratigraphy, and
potential oxygen-enhanced biodegradation of upper contaminated zones. Methods for
estimating plume diving can be used to make informed choices on locations for vertical
sampling. This report provides a suite of solutions for the ground water flow equations
that form the basis of plume diving calculation. The document is intended to serve as a
reference for plume diving calculations embedded in several models, including the
Internet tools at http://www.epa.gov/athens/onsite.

Eric J. Weber, Ph.D.

Acting Director

Ecosystems Research Division
Athens, Georgia



Leaking Underground Storage Tank Assessment Report
Series

A series of research reports is planned to present data and models for leaking
underground storage tank risk assessments. To date these include:

1. Gasoline Composition

Weaver, James W., Lewis Jordan and Daniel B. Hall, 2005, Predicted Ground Water, Soil
and Soil Gas Impacts from US Gasolines, 2004: First Analysis of the Autumnal
Data, United States Environmental Protection Agency, Washington, D.C.,
EPA/600/R-05/032.

2. Simulation Models

Gorokhovski, Vikenti M. and James W. Weaver, 2007, A Catalog of Ground Water Flow
Solutions for Plume Diving Calculations, United States Environmental Protection
Agency, Washington, D.C., EPA/600/R-07/122

Weaver, James W., 2004, On-line Tools for Assessing Petroleum Releases, United States
Environmental Protection Agency, Washington, D.C., EPA 600/R-04/101.

3. Model Background and Evaluation
Weaver, James W. and C. S. Sosik, 2007, Assessment of Modeling Reports for Petroleum

Release and Brownfields Sites, United States Environmental Protection Agency,
Washington, D.C., EPA 600/R-07/101.

As more reports are added to the series, timay be found on EP&'web site at:
https://cfpub.epa.gov/si/index.ctm.
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1. Introduction

EPA and other organizations advocate improved approaches to site assessment (US EPA,
2003, 2004, ITRC, 2003). EPA’s office of Underground Storage Tanks developed and
published a framework for expedited site assessment (US EPA, 1997). Their purpose
was to streamline corrective action at release sites, improve data collection and reduce the
cost of remediation. Their approach emphasized a flexible sampling plan, field-generated
data, on-site interpretation by senior staff working at the field sites.

Another widely adopted framework is called the Triad, which includes systematic
planning of goals for all site activities, dynamic work strategies that allow for real-time
decision making in the field, and real-time data gathering and assessment. EPA (2004)
further elaborated that real-time measurement includes rapid sampling, geophysical
analysis, and on-site data management software. One purpose of these technologies
(EPA, 2003) is to allow for real-time development and refinement of the conceptual site
model (CSM). Cheaper and faster site cleanups have been reported through use of the
Triad approach (EPA 2005, 2006, ITRC, 2003).

This document presents the mathematical basis of software for real-time development
and refinement of site conceptual models. The emphasis in the work is on evaluation of
ground water flow patterns and the proper placement of vertical sample intervals.

The work focuses on the problem of “diving plumes”, a term which generally refers to
plumes that go deeper into aquifers with distance from their sources. As noted by
Weaver and Wilson (2000), plumes may dive for several reasons: aquifer recharge
supplying clean water above the plume, aquifer stratigraphy controlling the transport
direction, relatively deep pumping causing downward gradients, and the possibility of
oxygenated recharge water selectively enhancing biodegradation in the upper portion of
plumes.

Weaver et al. (1996) presented results from a site on Long Island New York where a
plume dived due to a local feature in the landscape (a gravel pit) and due to diffuse areal
recharge. The first of these can contribute to localized recharge impacts and occurs over
small horizontal distances. Weaver et al., (2002) reported on a trichloroethene plume
that dove approximately 2 m as it emerged from below a paved parking lot. Runoff from
roofs and a paved parking lot discharged into an unlined ditch that ran perpendicularly
above the plume.

The second effect frequently requires either longer distances, longer times of transport or
high rates of recharge to be active and thus is typically a greater concern for more mobile,
less readily biodegradable compounds like methyl tert-butyl ether (MtBE) (e.qg.,

Dernbach, 2000). Diving plumes were evident in the data presented for the Borden
Landfill (MacFarlane et al., 1983) and the USGS Cape Cod field site (LeBlanc et al.,
1991). These effects are consequences of the hydrologic system, which can produce both



downward and upward flows. Landmeyer et al. (1998) presented data from a gasoline
release site where an MTBE plume followed the regional flow pattern, first diving deeper
into the aquifer, and further down-gradient, becoming shallower as the ground water
reached a surficial discharge point. Wilson et al. (2000) presented results from a
degrading MTBE plume where the maximum concentrations were co-located with the
maximum hydraulic conductivities in a vertical section, illustrating important aspects of
stratigraphic variation. Wilson et al. (2005) evaluated a site where plume diving was
controlled by geochemical conditions that prevented biodegradation of methyl tert-butyl
ether (MTBE) and a flow path dominated by stratigraphic differences in aquifer
materials. Nichols and Roth (2006) reviewed the various factors that may contribute to
plume diving, and suggests methods for evaluating the potential for plume dive at a site
that are based on the average recharge rate and flow rate in the aquifer.

Part of the problem with diving plumes is the potential for mischaracterization of sites
and the potential to miss downgradient contamination. An interactive example was
provided by Weaver (2004) on the EPA web SifEhis example shows that the

placement and the length of a well screen (or shorter sampling interval) plays important
roles in determining the observed concentration of a contaminant. A screen placed
above a contaminant plume may find little or no contamination and a long screen may
sample waters with varying contaminant concentrations, so that the mixed value is lower
than the maximum. Therefore well-bore dilution and screen placement are equally
important in proper characterization.

Complex ground water flow and transport models have been developed for simulation of
contaminant transport problems. The need for these models is self-evident from the
complex three-dimensional nature of the subsurface environment. These models,
however, require much data and their application depends on the availability of extensive
calibration data. For many cases, and for early stages of site characterization, far fewer
data are available for plume and aquifer delineation and for parameter adjustment during
calibration. Given these problems, the utility of models under these circumstances should
be carefully considered. Conversely, “screening” is often said to be an objective of
simplified models with limited data. For a simplified model to serve as a screening
model, it first must be demonstrated that the model has the ability to simulate all
significant phenomena at the site and be sufficient for the suggested purpose. In this
paper we develop a simplified model, we compare it against a more complex model and
field results, and finally provide a suggestion on how to incorporate the model into site
characterization activities.

Bear (1972) summarized one-dimensional steady-state solutions for unconfined flow in
homogeneous aquifers for flow between two aquifers, radial flow, flow on an inclined
base, flow in horizontal and vertically stratified aquifers, and flow with recharge. See
also Polubarinova — Kochina, 1962 and Strack, 1989. These solutions invoke the
Dupuit-Forchheimer assumption that equipotentials are vertical. From these solutions,
Weaver (2004) developed a method for plume diving estimation that uses piece-wise
application of analytical solutions to allow for non-uniform recharge and aquifer

! http://www.epa.gov/athens/onsite



properties on a horizontal aquifer base. Analysgcdutions for transient flow in aquifers
with sloping bases and various boundary conditisae developed by Childs (1971),
Brutsaert (1994), Telyakovskiy and Allen (2006)ddor problems including recharge by
Chapman (1994), Verhorst and Troch (2000), and tinénd Marino (2001). Work in
the area of hillslope hydrology has focused onpttodlem of flow over an uneven
aquifer base with recharge from a three-dimensisaéblock, representing flow in a
catchment to a stream or river. An approachdoce the geometric complexity to a
one-dimensional form was developed by Fan and @:288) and has been expanded
(Verhorst and Troch (2000), Troch et al. (2002)allow for variable base slopes
(Hilberts et al., 2004) with constant rechargee Béberts et al., 2004, especially, for a
review of developments in this area. Most recer@tgward (2007) presented a
piecewise heterogeneous aquifer solution for anfequith a stepped base.

This document contains a series of solutions ofigdovater flow for plume diving
calculations. The resulting models ($¢#://www.epa.gov/athens/onsgitare intended

for use in planning and conducting site assessmérsmportant question for these
activities is “At what depth should the sample &leen?” The solutions start with a
simple solution of one-dimensional ground watewfla an aquifer with an horizontal
base. Boundary conditions can be applied inrdmittonal way at the ends of the
domain, but to provide flexibility solutions thatgvide a means to set internal boundary
conditions were developed. This approach is cltcithe assessment strategy
developed by Weaver and Gorokhovski (2007).

Beyond these developments, the methods can bedextdor piecewise heterogeneous
aquifers (see Weaver, 2004). This approach greathgases the flexibility of the
solutions as parameters can be varied along tkedtomain.

The two greatest weaknesses in the approach aneétkto specify recharge rates and
the restriction to an aquifer with a flat base. @ternative procedure can be developed
that allows measured water levels in the aquifesuostitute for recharge rates. When an
uneven base is required for an aquifer, the mostragdgeous approach is to use a
numerical model. Thus there can be flexible speatibn of hydraulic conductivity, the
recharge rate, and the base of the aquifer, omal a scale as needed. The numerical
model was tested against a simple homogeneoussifstem and a piecewise
heterogeneous system. The errors were insigntficanhe water table elevation and the
upper bound of the contaminant plume for both cases

The document is organized by solution. The basfitee one-dimensional model are
presented first. Solutions are then developeddar with three sets of boundary
conditions. The methodology is then extended éogivise heterogeneous domains that
allow for more flexibility in the solution. A typef inverse problem is solved that uses
measured heads as a substitute for the recharge die analytical method is extended
to aquifers with sloping bases. Lastly a numengatel is presented for heterogeneous
aquifers with uneven bases. The equations foastliaes that define plume diving and
travel time are given. A comparison is made taitsohs for a homogeneous aquifer and
a piecewise heterogeneous aquifer.



2. Basic Model

The basic model describes ground water flow in@ufined (phreatic) aquifer with a
horizontal base. Figure 2.1 illustrates flow aduog to the standard approach for a
Dupuit-Forchheimer model (see Bear, 1972, page.38%3uming that water and soil are
incompressible and the validity of the Conservatiaw, we can write for a small

interval [x, x+ 4x] (Figure 2.1) the following balance equation:

(2.1)4Q = N4x

where4Q is the change in ground water flow per unit widtler the segmentx
[L%L/T], Nis the recharge rate JIL¥T].

Py
)

[——

E+ 4k

o 2 +AD

x x+dx
TSNS TN *

Figure 2.1. Schematic for deducing the ordirdifferential equation for one-
dimensional, steady-state ground water flow.

To introduce the thickness of the unconfined aquif¢L] into the model, we assume
that the flow is horizontal, and specific dischagdé */L%/T] does not depend on depth
(the Dupuit — Forchheimer assumption or approxiamgtiThen we can rewritéquation
21as

(2.2)4(gh) = NAx

Making transition to limits withfx going to zero, we obtain the ordinary differential
equation (ODE)

d(gh
2.3) d@h _
dx

Equation 2.3 includes two unknown variablesandh. To exclude one of them, we have
to relate them. So our next assumption is Darcgw kelating specific discharge and
hydraulic gradient:



2.4) q=-k2
dx

whereK is the hydraulic conductivity [L/T]. Substitutirtbe right hand side dquation
2.4 for g in Equation 2.3, we finally obtain the basic equation governing-alimensional
horizontal phreatic flow:

(5
df Kh—
25 — &/

dx

=-N

When solved foh(x), it yields thickness of aquifers with free watables. The
assumptions fit best aquifers with small absolatieies of the water table gradients and
not very low permeability.

2.1. Assumptions and Limitations

This governing equation is based on a conceptudkeimmnsisting of an unconfined
aquifer where the base is defined. The percese¢arated thickness of the aquifer (h)
depends on knowledge of the aquifer base. Inipgatiis would be defined through
coring of the aquifer. In cases where the aquiéese is not clearly definable, then a
series of simulations are needed to account foemioty in thickness.

The analytical solutions presented in Sectiong@uih 6 require the assumption of a
horizontal aquifer base and homogeneous aquifgrepties. Section 7 describes a model
where the aquifer base can slope in an arbitrarnynera If the aquifer hydraulic
conductivity varies over the vertical, this paraenetan be averaged and the average
value used in the solution (Bear, 1972, page 3a@i6yfound water flows. Other standard
assumptions apply: Darcy’s Law is valid, aquifensolidation is ignored and ground
water is incompressible.

Flow is one-dimensional in the conceptual modeir stngle-layer systems, as here,
vertical flows are unimportant in Dupuit-Forchhemneodels. These correspond to field
situations where the length of the flow systent ieast two times greater than the
aquifer thickness (Bear, 1972, page 365), and ther@o cones of depression or
seepages faces in the area of interest. Thusisl@ssumed to occur in a horizontal
plane and as noted above only one of the two rantadimensions are simulated. The
second of these is explicitly ignored, so thatrtiegdels do not reproduce
multidimensional behavior as would occur in wedldis, for example. Along a stream
line, however, the models applies. The key talfegdplication is the delineation of the
streamline pathway. In other cases the modelsstilhpe useful, particularly for high
velocity aquifers where flows are dominant in oirection. In other cases, the one-
dimensional simulation may give a ball-park estienait plume diving, that is subject to



verification and possible refinement through addiéil data collection and model
application.

3. Homogeneous Aquifer with a Horizontal Base and
Uniform Recharge

In the case of homogeneous aquifers, that is, excguifith uniform permeability,
Equation 2.5 can be written as

%)
dl h—
@1y —~ %N

dx K

N
BEEEEEER

iy By k{x) —;,_jf“———————_a

hL
Q= g,~=> K Q;|=—= Q; | ==
[ Xy x X, Fi x

Figure 3.1: One- dimensional steady state flow on interf@| L]

With K andN constant, the general solutionEquation 3.1 is
(3.2) h®=-Wx®+bx+c

whereb andc are arbitrary constants akidis the quotienN/K. To specify their values,
we need to impose two boundary conditions. Sulistg in Equation 3.2 that atx =0, h
=hg

(3.2a) c=hZ.

For the second coefficiertt, we differentiatéequation 3.2 and multiply the result bi:

2hK@ =—2Nx + Kb
dx

Where we have made use of the relationship



2
di’) _ ,,dh
dx dx

Again substitutingx = 0in the above equation reveals that

(3.2b) 2hK@ =Kborb= _2&
dx K

whereQ is the flow per unit width of the aquiferxat Q.

There are three possible ways to assign boundaditeans forEquation 3.1 (or
Equation 3.2) for an arbitrary intervdlxs, xo].

3.1. Case 1: Two head boundaries

Boundary conditions are given as the thicknest®fuifer at the ends of the segment
of interest:h(x, ) = h; andh(x,)=h,. The solution is (Bear, 1972, p.380):

2 2

(38.3) h*=h? —(Zl —hs -W(x, = X, ))(x—xl)—w(x—xl)2

2 1

wherew =%. By noting the similar form of Equations 3.8d&3.3, than

c=nh;
b2 Q
K
3.2. Case 2: One head and One Flux Boundary
Boundary conditions are givenxat x; ash; and atx,; as Kh% =-Q,. The first

X2

integration ofEquation (3.1) yields

(3.4) Kh% =-N(x-x,)+C

It follows from Equation 3.4 that



-Q, =-N(x,-%x;)+C.
and
(3.4a) C=-Q, +N(x,-x;)=-Q,

With conditionh (x;) =h;, we finally obtain

(8.5) h?=h? —2%(x %, ) =W (x - x;)°

3.3. Case 3: Two Flux Boundaries

iy : dh dh : .
Boundary conditions are given asd— =-Q, and Khd— =-Q,. In this formulation,
X

X
X1 X2

Equation 3.1 does not have a unique solution, dime@bove boundary conditions do not
permit obtaining coefficient in Equation 3.2. Therefore, these boundary conditions are
excluded from further consideration.

3.4. Extrapolation from a small interval to a large domain

The aboveCases 1and?2 are solutions for the intervit, xo] chosen arbitrarily within the
interval of interestf0, L]. However, the above solutions, or speaking moeethx their
boundary conditions, permit obtaining solutioniftterval[0, L]. To this end, let us
consider the case when the boundary conditiongiaes at one location ds =h(x,) and

dh
Kh— =-
dx Qe
X2

Based orkquation 3.5, we can write

2 _ .2 Q: 2
(3.6) h; =h; - 2?()(2 =X ) =W(X, - Xq)
Therefore,

h? =h’ + 2%(x2 - X, ) FW(X, - X, )

with Q; =Q, -N(x, -x,). The head at the left hand boundéwy,can be found from



Q
K
withQ, =Q, - Nx.

hg =h22 +2—-X, +Wx§

Thus, if boundary conditions are assigned as ireQashe problem for arbitrary interval
[X1, X2] can be extended on interJ@l L] easily. If the boundary conditions are given as
in Case 1, it can be reduced to Case 2 first, usimgexample, equation

_ K 2 _,2)_ N(x3=X%q)
(3.7) Ql——Z(XZ_Xl)(hl )~

Then the solution can be extended on the intgryak,].

3.5. Flows with a Ground Water Divide

In the case wher®, andQ, have different signgy Q,<0), there must be a water divide
within the segment of intere€d,[L]. It is at the location where flux is equal to @eQy—
Nxwp = 0. The location can be evaluated using the followmgniula (Bear, 1972):

L hZ-h?2
38) xy,=—=—-—2—*&
(3.8)  xwp > T WL

The Matlab Code ‘D1_Methodology’ implementing thHe®ae solution and example
applications are presented in Appendix 1.

4. Piecewise Aquifer with a Horizontal Base

In the context of this work, heterogeneity of anigegr means that either the hydraulic
conductivity, or recharge, or both depend on tleardinate. Because of relative
sparseness of available data, such aquifers asidewad here as being piecewise
homogeneous. That is, within a homogeneous segohémé aquifer, both the hydraulic
conductivity and the recharge are constant. theguifer segment shown in Figure 4.1,
ground water flow is described by equation

)
d K, h
a1 — /.

dx

-N.

where the leading subscript i refers to an indigiddegment. To elaborate further, the
notation for this section uses a leading substwipienote the function of head in a given
segment i: ;h. The trailing subscript refers to a head valua given location: h; =

h(x;).



To obtain an unique solution Eguation 4.1, we use the usual (external) boundary
conditions, for instancky = h(0) andh_=h(L), but also internal boundary conditions
between homogeneous sections of the aquifer (Wg2064, appendix 3)

(4.2a) ;,h(x;) = h(x;)

(4.20) Ky ahE

X—Xi

These conditions express the continuity of the watigle and the flux (the Law of
Conservatlon)

Ni Nia N1 Ny
hifimhlf&&\!f\kﬁzﬁﬂﬂif&
l'lu - = — — _

111 111 l‘l—i__ili:“‘xq_hhh
hn—l hn llL
E, K, Kj Ein K K x
0 x=L; x=L, =L x=Lm x-L

Figure 4.1: Heterogeneous aquifer on a horizdoatse.

Note that the object consistingmsections hag( n-1) internal boundaries and two
external ones at=0 andx=L.

4.1. Solution Per Aquifer Segment

The solution tdEquation 4.1 within a homogeneous intervad.f, x], within thei™
segment, the flow is described by equation

4.3) h?(x) = W, (X - |-i-1)2 + A2i—l(x - Li—l)+ Ao

N; -
wherew, = K—' andAyi.;andAyi; are unknown coefficients.
i

Thus for the first segment, we have

1h2(x) = _Wl(x' Lo)2 +A1(X' I—0)+Ao

10



SincelL (=0 and using the boundary conditiorxat O, we can rewrite the above equation
as

(h%(¥) = -W,x* + A;x +hZ

For the second segment, we have the equation
L0200 =W, (x- L, ) + As(x-L, )+ A,

For the third segment, we have the equation
Jh200 = W, (x- L, )" + Ag(x-L, )+ A,

And so on. To find unknown coefficiems, thelnternal Conditions (4.2) can be used.
Thus, the following equations apply to the firstén boundary:

-W,D? +A,D, +hi = A,
-2N,D, + KA, =K,A,

whereD;=L31— Lo =L;. Forthe second inner boundary, we get the fotigvequations:

-W,D + A,D, + A, = A,
- 2N,D, + K,A; = K A

WhereD2= Lo—L;.
For the inner boundary numbiethere are the two following equations:

2 _
WDy + Ay 1D + Ay, = Ay
=2N;D; + Kj Ay = Kiy1Asn
whereDi =Li—Ljy .

Only one equation is associated with the last banyndumbenn:
2 _ w2
_Wn Dn + A2n—1Dn + A2n—2 - hL

In this equation, the boundary conditiatx = L is used. Thus we haaa-1 equations to
find 2n-1 unknown coefficients\,.

Let us rewrite the above equations in the systetin kviown terms put in the right hand
side and terms including unknowns in the left hsige. Besides we group them: Finst
equations presenBoundary Condition 4.2a and followingn-1 equation represent
Boundary Condition 4.2b:
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4.4 " Aon-2tDnAons =h?+W, D2
n+1: KA —K,A; =2N;D;
n+2:  K,A; —K3Ag =2N,D,
n+i Ki Az~ Kir1Agisg =2N; D,
nen-1: K3 Agng = KpAgnog =2Np 31Dy

Solution ofSystem 4.4, coefficientsA,, is the sets of coefficients Bfjuations 4.3 for
every homogeneous segment.

4.2. Sequential Solution Method for Specified Flux
Boundary

Let the external boundary conditions are assigsdd a h(0) andQy=Q(0), the flux atx

= 0. Then within the first homogeneous segment the flogoverned b¥quation 3.8
that takes the form

(45) ,h*=h.- 2D -W, x?
Kl
N1 N.
where w, =—=. (Thereaftew, =—1)
1 Kl ! K;
For the second segment, we have

2h2 = hf—z%(x- Ll)_WZ(X' |—1)2

2

Due to the internaBoundary Conditions 4.2,
hy = 1h(|—1)2 andQ, = Q(Ll) =Q +NyL,y
For the segment i, we have

ihz = hiz—l_z%(x - Li—l)_Wi (X - I-i-l)2

(4.6)
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where
(4.7) hi2—1 = i-1h(|-i-1)2 andQ;; = Q(Li—l) =Qi, * Ni—l(Li - Li—l)

Equations 4.5 and4.6 describe a procedure that does not involve sol8ystem 4.4.
Starting with the most left boundary we obtain filvenula for the first segment. Using
this formula, we calculate the squared thicknegb®fquifer at the end of the first
segment. This squared thickness is the left baynondition for the second segment.
The flux at this boundary @1 = Qy + N; (L2 — Ly).

This algorithm is implemented in the code ‘hrzAQ@résented in Appendix 2.

The code ‘hrzAQT’ works only within intervalgy, x;] for which thickness of aquifers at
their endsh;=h; andhy= h, (x2), are known. However in most cases, observatiotiseat
ends of the objects of interest are not availabherefore, we need tool to overcome this
obstacle. The numerical ‘hrzD1_Unvis’developed to this end.

Code ‘hrzD1_Unvrslpermits solving systemf Equations 4.1 with internal boundary
conditions presented lyquations 4.2 and for two sets of ‘outer’ boundary conditions
numerically:

(4.8a) h(x,)=h, and h(x,)=h,, X; S X, S Xy, X SXpSX, X E X

dh
(4.8a) h(x,)=h, and Kh& =-Qy, X; € X, € Xy, XS Xp S X,
b

These two sets @onditions 4.8 correspond to cases implemented in Code
‘UnvhrzD1_Unvrs!

4.3. Case 1: Two head boundaries

Equations 4.8a are used as boundary conditio$he lesser ok, andx, is denoted as,
and the greater ag. (h, andhy, are also exchanged if necessary. ) Then an anyxilia
object, bounded by, andxy is made up. For this object, system of Equatidi®)(is
developed and solved. That permits calculating 8ugointx, , Qa. Knowing Q(Xz)
permits calculating influx at every segment boundary of the object. For gkanif x,
belongs to segmentthen

(49) Q =Q,+ Nj(Li — %)+ é’\' 1—1(Lj - Li-l)

Having known the flux at the ends of the segmeméscan calculatl&aj2 = hf(Lj ). Thus, if
Xa belongs to segment numiethen

13



(4.10) h? = h§+2%(xa ; Lj)+Wj (xa - Lj)2
j
QJ -1 (

j-1

I PRVVAN (W i

(4.11) h?, =n?+2- 1 (L,

N Nﬁl I"'I:nl n

hﬁiﬁtﬁd{&%t%\#ﬂrﬂ@&

hy o] ™~ —

K, K3

0 _

X =1 x=L; x=x,4 x=Ls i x= Loy ;7

Figure 4.2: Heterogeneous aquifer with a hotiabibase and two sets of boundary
conditions

And so on, until h? will be obtained. Then we can calculatg x) for any x based on
Equation 4.6 that we rewrite here as

(4.12) jh2=hj—2&(x L )-w,(x-L, F

I

4.4, Case 2: One head and One Flux Boundary

Equations 4.8a are used as boundary conditioie case differs from Case 1 with the
fact that we do not need to make up an auxiliajgabdevelop system of equations like
Equations 4.4, and solve it. Using knowledge @ at x,, we can immediately calculate
the flux at the ends of the segments, using praeediescribed by an equation like
Equation 4.9, and therkEquations 4.10 and4.11.

A listing of the code *hrzAQT’ and all included gatis providing the analytical solution
to the above problem are presented in Appendi& isting of the code *hrzD1_Unvrs’
and all included scripts providing the numericdlugon to the above problem are
presented in Appendix 3. This code is recommerrdanore flexible.
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5. Inverse Problems of One-Dimensional Flow in an
Unconfined Aquifer with a Horizontal Base

N
NEREEEEEEEEEEREE

ho h}{ \

K h,

D X L

Figure 5.1: Homogeneous aquifer with a horizonéeleb

Case 1: Homogeneous Sit®©ne-dimensional ground water flasvdescribed by
eguation

(5
dlf Kh—
61 — &

dx

=-N

With K andN constant, the general solution is
2 N >

(5.2) h°= X +bx+c

whereb andc are arbitrary constant. Their choice depends erbtundary conditions
(Bear, p.379).

5.1. Case la: Two Head Boundaries

The boundary conditions are givenhg8)=hy andh(L)=h.. Then

2 _p2 (Mo =hi N
(5.3) h°=h; 1 K(L X) | x (Bear, p.380)

DifferentiatingEquation 5. 3 and multipling the result big/2, we obtain:
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dh _

(5.4) Kh— _xhe-ht  NL
dx

2L

Equation 5.4 can be used to express the discharge (flow) atitmtx. Thus atx = Othe
discharge entering the sit@y, is

(55 Q, = -Kh —

Therefore the incoming discharge can be estimatddandK are known.

For locationx = L, Equation 5.4 gives

dh

)
(5.6) Q, - Kh— ho —hi [ NL
L dx

= K—+—
2L 2

L

So two known heads do not supply sufficient infotiorato estimatdN andK, as the
difference of two discharges yields a trivial résul

kh 9N
dx

_ndn
L dx

=-NL
0

5.2. Case 1b: Three Known Heads
The head is known at three locations:
h(0) = h, h(L,)=h, h(L,) = h,

With these three known heads, two equations camritten to describe flow:

2 _ 2
(573.) h2 = hg _(hol_—hl_%(Ll _X)JX
1

2 _ 2
(5.70) h®>=h; —(hOL hi —%(L2 —x)]x
1

There are also two equations for the dischargecaitionx = O

hé-h? NL
(5.89) Q —.kpdn _Mohi NL,
0 dx|, 2L, 2
h-h? NL
G.8) Q =-knd —Mo=hi Ntz
0 dx|, 2L, 2

16



Equations 5.8 permit finding ratio% from the equality

h§—h12+NL1 _th—thrNL2

(5.9) -k =
2L1 2 2|_2 2
Thus,
hg —hf h§ -h3
(5.10) L =L L _(nd-n2), -(n2 -n2)L,
K (Li-Lz) LiLy(L, —Ly)

5.3. Case 1c: A General Approach to Case 1b

General approach t©ase 1b. A general solution dEquation 5.1 can be written as

2
(5.11) h® = a+bx+cx

To find coefficientsa, b,and c, it suffices to know value of the above fimtat three
points

h(0) = h, h(L,)=h, h(L,) = h,

Sinceh = hy atx = 0, the coefficienta is immediately known as being equahid. There
are two equations for the remaining unknown coffits,b andc:

(5.12) bL, +cl? =h? -h?

bL, +cL2 =h -hZ

Solution ofSystem 5.12 is given by determinants:

hi—hg LI Ly hi-hg
hi-hg LS L, h7-hg
e TR N T
1 1 1 1
L, L L, L
or
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o (F =ng)3 - (n2 —ng)s
L:LLZ(LZ - Ll)

(5.14)
(h2 -n3)u, -(h2 -m3)r, _ (ng -n2)e, - (h3 -n3)L,

c= = -

L1|-2(|-2 _Ll) |—1|-2(|-1 ‘Lz)

Equation 5.14 shows that the unknown coefficientskmfuation 5.1 can be determined
without knowledge of the recharge ratg,and the hydraulic conductiviti(. The
physical meanings of the coefficieft&ndc can be determined frofquation 5. 3
which is slightly rewritten as

2 _ 2
(5.15) h? =h§—(h° hi —ﬁij-ﬁxz
L K K

Thus,

2 _p2
(5.16) b=EL—M, C=—ﬁ.
K L K

DifferentiatingEquation 11, we can also see that

dh b
5.160) b = 2h,— =—K—
( ) deo or Qo 2

where herd&), is the discharge at= 0.

It must be noted that becausguation 5.1 is governed by the dimensionless
paramete%, so the values of the individual paramefdrandK cannot be identified in

the above cases. To do so, knowledge of discharm@eyaone location is necessary.

Equation 5.16b can be used for finding gradient of the waterdadik = 0. Additional
options are given biquations 5.17 following from Equations 5.5 and5.6:

2 _p2 2_12

617 N =1 N, L Rohy | e Po—hg
2_12 2

cam I =_1 N, L o afer Mp—hp
d. 2| K h ~ hL | 2/h hL
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The gradient of the water table in any locationside the interval with known boundary
conditions follows fronEquation 5.4 as

2 _n2 2 _n2
'—'X_hO_hL _ 1 ho_h|_+CL-><

h hL T2 2nL h

G.1g) LN
dx 2| K

If there are more than three observed helagisation 5.11 can be rewritten as a
regression, and its coefficients, ,and c) can be evaluated as such. However, all three
parameter governing flowdp, K, andN ) cannot be calculated from the regression. One
must be determined independently.

5.4. Cases 1d to 1g: Combinations of Boundary Conditions
Case 1d The boundary conditions are givenha®) = hy and Kh% =-Q,, that

0
is the thickness and discharge are known at latat 0.

The first integration oEquation 5.1 yields
(5.19) Kh@ =-Nx+C
dx

It follows from the second boundary condition tBat - . SoEquation 5.19 can be
written as

(5.20) kn® = _Nx-q,
dx
The second integration yields the final result:
N >

- Q
(5.21) h? =h} —ZYOX—?X

Note. If we assume th&guations 5.11 and 521 describe the same system, we can see
again that

- _5Q
(5.22) b=-2-"

Therefore if either the hydraulic conductivity, or the discharg&)o, is known, then the
other can be determined from
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(hg - h2)13 - (g -3 )u2
I-1|-2 (LZ - Ll)

Qo _
(5.23) 20 =

In contrast, when we know valuestgfandh, only, we can usquation 5.3. In this
case

2 _ .2
(5.24) 2% - N Po-he
K K L

and the parametc%L must be known also.

Case 1e The boundary conditions are givenha® ) = hy and Kh% =-Q,:

L

This case can be reduced to the previous one bylaihgQo= Q. — NL. Then
Equation 5.21 becomes

(5.25) h*=hf - oML, N e
K K
Case 1f The boundary conditions are giverhad) = h_ and Kh% =-Q,:
0

Integratingequation 5.1 and using the second boundary condition yi&gisation 5.19.

The second integration yields
(5.26) h*=C- 2& X N x°
K K

The arbitrary constar@@ is equal to

(5.27) c=h +22 s N2
K K

So finally we have

(5.28) h? =h2 -2 (x-1)- N (x2 - 12)
K K
Case 1g The boundary conditions are giverha) = h_ and Kh% =-Q,:

L
This case can be reduced to the previous one bylatihgQo= Q_ — NL. Then
Equation 5 27 becomes

(5.29) h? =h2 -2 ;N" (x- L)—%(xz -12)
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6. Solution for One-Dimensional, Steady-State Flow  in
a Shallow Unconfined Aquifer with a Sloping Base

Differential equation describing one-dimensionabsly- state flow in an unconfined
shallow aquifer on an uneven base can be writteedan the Dupuit assumptions as

dh(x)
dx

(6.1) %(K(X)(h(x)- y(x)) ]+ N(x)=0

whereh(x) is the elevation of the water tabk(x) is the hydraulic conductivity\(x) is
the recharge, ang(x) is the elevation of the aquifer base.

The first integral of Equation 6.1 is
(6.2)  KE)(h)= yeo)h' (x) = -i N(x)dx=Qy
whereQy is an arbitrary consotant of integration. Its plgbsimeaning is the flux at= 0.
Equation 6.2 can be rewritten in terms of the theds of the aquifer
(6.3) b(x) =h(x) - y(x)
In this case
(6.4) h'(x) =y'(x) + b'(x)

Thus, Equation 6.2 can be rewritten as

(6.5) KOO () +b'(x)) = -I N(x)dx=Qq
0

6.1. Homogeneous Aquifer

Let us assume that we are looking for solutionagii&ion 6.1 (or Equation 6.5, that is
the same) on intervaD] L] for a homogeneous aquifer. The aquifer is a hanegus
one if

K(x) = K= constandN (x) = N = const. We assume also that the aquifer baseisgahg
linearly

(6.6) y(X) =mx

Equation 6.6 means thgt= m and that we assigned the elevation of the aghdee
equal to zero at = 0.
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Under these assumptions, we can rewrite Equatba®

Nx +Q,

(6.7) bX)b(x)+mb(x)=-

Equation 6.7 is not linear, but we can approxiniatéth a linear equation with
respect td?*(x). Indeed,

(6.8) beby+ M) _dlb?e), mip?e0) _ dlo*e0) m(b )
b(x) 2dx b(x) 2dx

whereb is some value of the aquifer thickness from intef@al]. Substituting this
approximation to the left hand side of Equation @& obtain

NXx +Q,

(6.9) (bz)'+%mb2=—2 <

Equation 6.9 is linear with respect to functiwre b*(x). Its generals is

_}(%dxx NX +Q }(
(6.10) b%=-2¢ © ITO 0 lax+C
0

Integrating exponents in Equation 10, we obtaingdeeral solution of Equation 6.10 in
the form

(6.11) b2 =-2¢ 5 INX;QOeB dx+C

[Note that foom = Q Equation 6.11 converts into the equation forutheonfined
homogeneous aquifer on the horizontal base]

We need two boundary conditions to find the unknanbitrary constant€ and
Qo. We consider two cases here.

6.2. Case 1: Two Head Boundaries

The boundary conditions are assigned as the wattér €levations at the ends of interval
[0, L] for which we seek the solution that is

(B.C.1.1) b?(0)=bZ and b?(L)=b?

22



Applying the condition ax = 0, we immediately obtain we can rewrite

2m X
(6.12) b =26 ?XINX—*QO
0

2m,
eb dx+b?
[Checking dimensions in Equation 6.12:
[o)- —2401[ j[L]e[°1[L]]+[L2]
0

Thus, with respect to dimensions, everything is OK]

Consider integral in Equations 6.12:

X 2m X 2m X 2m
(6.13) Ime b " dx =ﬁj‘xe b de+&‘[e b “dx
o K Ko K9

Integration of the first term in Equation 6.16 el

2m X 2m
X

2m,  b2%b  (2m b2 P (2m b?
(6.1481)."xeb dx = (?x—l) =—(?x—1)+
0

4m? 4m?

0

Integration of the second right hand term in temnEquation 6.13 yields

X — 2m
= b len*_
2m
0

Substituting these results in Equation 6.12

£ 2m, b 2my
b dx=—_geb
(6.14b).c[e dx o ©

(6.15) b2 =- %62 Q5

To obtain the final solution to the thickndssve have to find the unknown rechax@e
(0) =Qo. To this end, let us define the average thickoésise aquifer as

hy +h, L

(6.16) b= -

Then
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(6117) QO =K

L 2

Thus finally, the solution to Equation 9 is

m
2m =X 2m

, N, ™5 X" hoh - NL)e P -1
(6.18) b%=-b +p[ o= pg NLIE T 7L,
K L K2) m

Equation 6.18 solves the Case 1.1 problem.

The solution presented by Equation 6.18 must agevi® the solution of the
problem of the filtration in the aquifer with a montal base, that is, wittm = O,
However straight forward substitution into Equaté&®8 leads to uncertainti®f0 in the
first and second terms of Equation 6.18. Applying L’Hopital’s rule to the fractions
containingm, we obtain

m 'ZTX 2 -mex 2 _Zme
1-—x-e b —=X+=xe P -=5 X% 1
m-0 om m-0 4m m-0 2 b2
2mx —ZTmX
b1 -=Xe 5 o2m 5
(619b)|lm e—: lim b—: lim|-=xe P X =—-=X
m-0 m m-0 1 m-0 b b

Substituting the results presented by Equation8 iBitb Equation 6.18, we obtain

6.20)p2 =N y2 o fo=hpg NLY 12
K L K 2

Let we puty(x) = 0 meaning that(x) = h= b Then Equation 6.20 becomes

2 _ 12
(6.21) h?=h? —%x+%(L—x)x

This result is the exact analytical solution foe 8teady-state one-dimensional flow in the
unconfined aquifer on the horizontal base (Bear219.380).

Returning to the water table elevation with a plppase of the aquifer in
Equation 6.18, we finally have

2m ‘ZTmX 2m
2 N_Zl_TX_e ° | hO_hL_ N L e_b -1
(6.22) h()={by +- b p— +b[ b |y
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6.3. Case 1.2: One Head and One Flux Boundary

The boundary conditions are assigned as the wattbr €levation and the flux at the left
end of interval Q, L]:

(B.C.1.2) h(@Q)=hy and Q (0)=Qo

In this case we can use as the solution presegtetibquation 6.15 rewriting it as

om _2m,
—x=1+e P 5 %

— k2 N- p
h(x)= [bg - ?b o +?b -

(6.23)

7. Heterogeneous Aquifer on an Uneven Base:
Numerical Solution

Analytical solutions provide a rapid means for enadihg solutions for ground water
flow. Analytical solutions are limited in appltoan to homogeneous aquifers. The
segmented aquifer solution, originally developed¥saver (2004) allows piecewise
variation in parameters and overcomes some ofrthitation of the analytical solution.
Weaver’s solution, however, does not allow for guoiter with a varying base, a situation
commonly encountered. In principle, however, atiedy solutions for sloping bases
could be pieced together. In practice, howevesersolutions require linearization and
the solution of a non-linear system of algebraigagipns. These features negate the
benefits of the analytical solutions. In thists@ta numerical solution to the one-
dimensional ground water flow equation is presenfEais solution allows for varying
aquifer properties (hydraulic conductivity and reife) as well as a variable aquifer
base.

The algorithm and the program are universal inséese that they work for the steady-
state one-dimensional flow in heterogeneous or lgameous unconfined aquifer on a
horizontal base as well, that is for all cases llesd above. The MatLab program
‘D1_Flow’ implementing the algorithm is presentadAppendix 4.

7.1. Homogeneous Aquifer

Let the aquifer be homogeneous. That is, its hytdraonductivity,K, and the recharge
N, are constant. Its base is described by functierY (x)(Figure 7.1). The following
differential equation, based on the Dupuit-Forchteiassumptions describes steady-
state, one-dimensional, ground-water flow in tlasec
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Figure 7.1: Conceptual rendering of flow system fomodel development.

(7.1) i(K(h(x)—Y(x))dh(X)j =-N
dx

dx
Integrating Equation 1 yields

(7.2) K(h(x) - Y(x))% =-Nx +C

whereC is an arbitrary constant.
Let us consider different boundary conditions folvsrg Equation 1.

Case 1. The boundary conditions are assigned as therwadite elevation and the flux
at the origin:

h(0)=handQ (0)=Q

Substitutingk= 0into Equation 2 gives, according to Darcy’s law,
C=-Qo

Thus, Equation 7.2 becomes

(7.3) o _“MX=Q
dx _ K(h()=Y(x))

Equation 7.3 can be approximated with a finiteedt#ghce scheme and solved by a proper
method under the boundary conditioif0) = hy.
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Case 2: The boundary conditions are assigned at the egt of the object as
h (L) =h.andQ (L) =Q
In this caseC in Equation 2 becomes

C=—QNL)=-Qo
Thus Equation 2 becomes

(7_4) ﬂ = (L _X)N -Qu

dx  K(h(x)-Y(x))
Equation 7.4 can be approximated with a finiteettéghce scheme and solved by proper
method under the boundary conditioifL) = h, .

Case 3: The above boundary conditions are assigned as

h (x1) =hy and Q (%) = Q

Locationsx; andx, are within the object, that i) £ x; <L] and P < x; < L]. X; may
equal to or differ fronx,. This case is a combination of Cases 1 and 2.ekample, if
X2 > % andQ (x2) is known, we can calculate flUQ (x;) and then solve an appropriate
finite difference problem backward to the origirddorward to the right end of the
object.

Case 4: The boundary conditions are given as the wat#e televations in two locations:
h (X]_) = hyandh (Xz) =hp

To reduce this problem to the previous ones, we t@&nd constanC in Equation 2.
This goal can be achieved by employing the shootiathod(Mathews and Fink, 1999;
Boyce and DiPrima, 2000). First, we find interv@lfn, Qmad such that it contains the
unknown valueC. Then,garting withQ = (Qnint Qmax)/2, we solve Equation 2
numerically with the boundary conditiohgx,) = h, andQ(x;) = Q. This Q becomes one
of the boundaries of a new interv&lfin, Qnay- The iterative process narrowing interval
[Qmin, Qmax] IS continued until valudé; is reproduced with required accuracy. The value
of Q obtained in this way than is used with one of valueor h, in the appropriate Case
1to 3.

7.2. Stream Functions

In the case of one—dimensional horizontal grountewféow in a vertically homogeneous
aquifer, according to thBupuit-Forchheimer assumptiotise specific recharge is
constant at any vertical section of the aquifer.
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Let a stream functiogF originate at locatioxyr on the water table of the aquifer (Figure
7.2). Since according to the Dupuit assumptiorsgieific flux does not depend on
depth, we can write for any locatian

I A AU N AR !

oo
\F\H{x}

g

—_—
Hyr &)

Q{_x}._\\ kr

z or
—_—
/ A

i XgF x I
Figure 7.2 Definition of streamlines for calculaton of plume diving.

(75) Q(x)—qF = Q(x)
HX) =Hg () HX)=Y(x)

whereH(x), Hqe(X), Y(X), are the elevations of the water table, the stresnctiongF,
and the base at locatienrespectively, an@(x) is the flux at the same location.
It follow from Equation 7.5 that the elevation (&etory) of the stream functiagF is

(7.6) qu(x)=H(x)—(l—gT':X))(H(x)—m)

As follows from the Dupuit-Forchheimer assumptiaih®, incoming recharge pushes
down the already existing stream functions Stra€89). It is interesting to note that in
this model, the stream functigfr = Ois vertical at the location of a ground water devi
It extends to the base of the aquifer.

7.3. Plume Diving Trajectory

Plume delineation is one of the most importantsaskhe early stages of site
investigation. According to Weaver and Wilson (@0)0n case of the advective
contaminant transport, the contaminant plume cdelayethe landfill located in interval

[Xiit, Xrght] 1S limited by the stream tube defined by theatmgfunctions corresponding;
andxqgnt, that is, corresponding tfF X4n: as the upper boundary in case of the flux in the
positive direction and the lower boundary in caseemative flux, as it relates to Figure
7.2, andgFx giving the second boundary. Thus, the spacectstrby the trajectories

of the stream functiongFxix andgF Xx.qn: define boundaries for the plume.
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Since contaminant plumes develop in time, thee noyeach the entire extent defined
by the object boundaries. Also transverse vertdigersion may spread the
contaminants beyond the delineated boundaries.

7.4. Travel Time

The following algorithm permits evaluating the tehtime for the contaminant to reach
any location. The algorithm is based on the Dupoitthheimer assumptions about the
underground flow which is steady-state and thatthaminant transport is only
advective, meaning the absence of sorption ancdispty. The absence of sorption
excludes the retardation factor and decreasesti¢ravel time.

The time for a contaminant particle to travel frlmoationxsto x along the streamline
coinciding with stream functiogF(xsy) is

d H(@2)\?
Sy « 1+(q ()J
_ R_ds_Rn J- dz
V(S

q(z)

qF( )I( H(2))-Y(2) 1,{ q ()}
st

wheres denotes the point on the trajectory traveled leyparticle v(s)is the velocity of
the participle at poind, nes andR are the effective porosity and retardation faaz),
H (z,) F (Xsp, oH (2), andY(z),are theDarcy velocity, water table elevation, stream
function starting axs, stream function elevation , and aquifer baseatiem at locatiorz
representing a current coordinaten integration.

st st

The following finite difference procedure approxtes Equation 7.7in the case of the
positive direction of the flow moving the contanmtan direction of increasing:

2
(7.8) t,, =t +Rn aHi*aH 1 =i =Yin 1+ aH oM, AX
j+1 j eff ZqFxsl AX

In Equation 8, the initialis defined by the indeX; corresponding t&s; (Xi = Xsy) and
j=i-ig+l

For contaminant movement in the negative direcfiEtreasing) or in both negative
and positive directions (from a water divide) regsaislight changes in the procedure
described by Equation 8. If a water divide isurigd in the simulation, we cannot
calculate the travel times along the no flow stréanction. However we can come as
close to this flow line as we wish for an approxienealculation.
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7.5. Horizontally Heterogeneous Aquifer with an Uneven
Base

For the heterogeneous aquifer Equation 7.1 1 ke farm

(79) 5 K0a00-ve 5 )= -nico

dh(x)

(6.\.10)KE)(h(x) =Y () — = IN(Z)dZ— Q(0)

Let us consider a piecewise heterogeneous aquifesisting oln homogeneous

segments with boundaries at locatidgsl, .., Lj.1, Lj,Lj1, ., .. L, (Figure 3)That is,

the hydraulic conductivity; and recharg8l; are constant within any interval;[ L;+1].

(Note that in the case of the travel time calcuolai the piecewise homogeneity assumes
that the retardation factor and the effective pibyase constant within any interval;

Ljal.)
Within a homogeneous intervdl;[ L;+1], Equation 1 takes form

(K (h(x)- Y(x))dh(x))
=-=N.

(7.11) — ,

The first integral of Equation 11 is

(7.12) K, (3 -Yo ) =

-N;(x-L;)+C;

= P2
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Figure 7.3 Piecewise heterogeneous aquifer.
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It follows from Equation 7.12, according to the Dg@s law thatC; = — Q, that is, to the
influx through the left boundary of intervdl[ L;+1]. And finally, we have the following
equation analogous to Equation 7.3:

(7.13) dn TN, X2y )=Q,

dx K (h(x)-Y(x))

Thus the filtration within each homogeneous segreedéscribed by a specific Equation
7.13. Those equations are connected with the ino@ndary conditions on the continuity
of the water table elevations and fluxes:

dh(x ) dh(x+ )

(7.14) h(x.)=h(x, ) and K. )(h(x.)=Y(x.))— == K(x, )((x, )= Y(x, )— *=

Conditions 7.14 are satisfied automatlcally infinal difference procedures used in
D1 Flow program.

There may be two kinds of boundary conditions favieg Equations 11. First, the
boundary conditions are assigned as the water ééNation at locatior; and the flux is
assigned at locatiaxy, that is,

h (x1) = h; andQ () = Q
The boundary conditions are assigned also as thex tedle elevations at two locations:
h (X]_) = h; andh (Xz) =hp

If both x; andx , belong to the same interval, than we work withlmoanogeneous
segment and can obtain water table elevationsmitlas described in Section 2.1.
Obtaining the water table elevations and fluxehatend of the segment, we can proceed
moving in both directions, that is, Xo= xo, the left edge of the object, andxde x,, the

right end of the object.

The procedure is analogous to those describeddtioBer.1 can be applied i andx
belong to different segments. In this case theguomes take in consideration the
heterogeneity of the object. All other proceduesuire only minimal changes. Thus the
travel time procedure, described by Equation 8 rhasewritten as

2
H.+ H.,.,=Y =Y, H. . —-,H:
J 2qFXst

7.6. Program D1_Flow

Program D1_ Flow implementing all above algoritheritten in Matlab (Mathews and
Fink, 1999). The program permits practically anmited number of piecewise segments
for assignment of the recharge, hydraulic condugtivetardation factor and effective
porosity if calculating the travel time is desirethe base of the aquifer is assigned as a
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set of points (defined by coordinate and elevation) with linear interpolatlmetween
them. Any piecewise representation or smooth fanat representation of the aquifer
base is acceptable. Defining the elevations oathefer base at the endpoints of the
object is mandatory.

To solve the finite differences equations, the fanrdvand backward second and the fourth
orders Runge-Kutta and the backward Euler methmelssed. By default, incremesix

is equal to 0.01, meaning that if the object dinn@mss given in meters, all calculations
are being done with increment 1 cm, if the objectehsion is given in kilometers the
calculations are being done with increment 10 rd, smon.

Other default characteristics are the retardatator equal td, and the effective

porosity equal t@.4. All default characteristics can be easily chanifeécessary.

The outer boundary conditions: the water tablealens at two different locationk; =
h(x1) andh, = h(xz) or the water table elevatidm = h(x;) and the flux

Q2 = Q(x) (X1 = x2 is permitted in this case) can be assigned anymivihin the object.
The program consists of several subroutines. Adlatteristics of the object are to be
input in subroutine “object”. Calculating of the t@atable elevations and the fluxes at all
locations of the object go automatically. All otleadculations, the plume diving, stream
function and travel time can be done by request uger.

The program executes rapidly. However it workseflasthen boundary conditions are
assigned as water table elevation and flux atdheesor different location. In this case
there are no iterations that are necessary indbe assigned as water table elevations at
two locations.

The program is stable. However, it may happenttit@assigned boundary conditions
and the aquifer characteristics are contradictdig contradiction can lead to yielding
the water table elevations that exceed the objgtace or that are below the base of the
aquifer. In such cases the program continues aloglthe water table elevations, plots
them, and prompts the consumer about the occuamttaciction.

7.7. Verification of the Code D1_Flow

Verification of program D1_Flow is a complicatedplem since there are very few
analytical solutions to the one-dimensional flonuirconfined aquifers with not
horizontal base. All existing analytical soluticassume the base being a sloped plane
and apply other simplifying assumption such as hgegneity of the aquifer, absence of
recharge, and some others. Some of them are catealiand require considerable
efforts to realize them (Polubarinova-Kochina, 198@ar 1972; Hantush and Marino,
2001). For these reasons, we limited ourselves wéttiying program D1_Flow using
cases of homogeneous and heterogeneous aquifaesinantal bases. This permits us
also verifying plume diving and streamlines basedh& solutions presented by Strack,
1989, and Weaver and Wilson, 2000.
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Two examples were compared against the segmerdgdohtal-base, solution
developed by Weaver (2034)In the first problem there was a drop in head®meters
over a 1070 meter distance. The aquifer, in thgeavas assumed to be homogeneous
with hydraulic conductivity of 60.96 m/d and recparate of 558.8 mm/y (Table 7.1).
The maximum error between the analytical and nuraemodels was 8.%10°for the
water table and 9.210° for the upper stream line bounding the diving phunfrigures
7.4 and 7.5 show the errors in water table and thogrstreamline, respectively.

The second case allowed for variation in rechaate in one of seven aquifer segments
and hydraulic conductivity in three of the sev@ine maximum error between the
analytical and numerical models was £ B0*for the water table and 8x110* for the
upper stream line bounding the diving plume. Fegiu6 shows the errors in water table
and bounding streamline.

Table 7.1 Parameters for comparison of D1_Flow a@&inst an analytical solution.

Segment Length Boundary | Case 1 Case 2

(m) Head (m) | K(m/d) |N (mm/y) |K(m/d) |N (mmly)
1 152 16.76 60.96 558.8 60.96 558.8
2 152 n/a 60.96 558.8 60.96 558.8
3 152 n/a 60.96 558.8 60.96 1117.6
4 152 n/a 60.96 558.8 60.96 558.8
5 152 n/a 60.96 558.8 6.1 558.8
6 152 n/a 60.96 558.8 6.1 558.8
7 152 6.76 60.96 558.8 6.1 558.8

x 10

1 ______________________________________________________________
[ PR SRy g L1 U i gsges: | | | |1
g 5057 T Bog T T iy

Figure 7.4: Errors in the water table elevatiomsudated by
program D1 Flow against the resutttamed analytically

2 See http://www.epa.gov/athens/onsite
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Figure 7.6: Errors of the results simulated by papogD1_Flow
with respect to the result obtaiaedlytically.

The solution of a problem with a sloping aquifeséavas compared against a solution of
Polubarinova —Kochina (1962, p.415) which doesimdtide recharge. The solution,
rewritten in notation of this text, is

Km,,
(7.15) x=Ae® PLLIL)

m  Km?

whereh is the water table elevatiox(h) is the distance from the origim is the slope of
the aquitardK is the hydraulic conductivityQ is the flux, andA is the arbitrary constant
(m, K, andQ are constants). For the boundary condition asdigsg(hy) = 0 where is
the water table elevation on the left end of therwal of interest(, L], Equation 7.15
takes form

LS
(7.16 x=i[h+&_(ho+&)e " “o)]
m mK mK
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Table 7.2 Summary of cases for comparison of D1_Flo w and
Polubarinova—Kochina sloping aquifer solution.

Case Boundary Conditions Aquifer Base Infinite
Elevation (m) error norm
Upgradient Dqgwngradient b(0) b(L) (m)

1 h(0)=31.27m Q(0)=2.68976 0.00 p2.34 9.05 x 10 ™
nt/day

2 h(0) =31.27m  Q(0) = 4.05062 0.00 11.17 2.4 x 10 ™
nt/day

3 h(0)=31.27m h(L)|=28.27m 0.00 11.17 6.05 x 10 ®

4 h(0)=31.27m h(L)|=28.27m 0.00 22.34 9.97 x 10

Four cases were used to compare D1_Flow and thaglaquifer solution of
Polubarinova-Kochina (Table 7.2). In each casesthations were essentially
indistinguishable from each other and the maximurors were less than 1 x on.

The effect of increasing the base slope was teas® the maximum error for both of the
two sets of boundary conditions.

'lIlI:I T T : T :
E 1 1 E 1 E
i 3':' e T N | L ;?..'_‘_"'
I:I,:i '
= M pmmmmmmmmmaa Lemmmmmmmm=m Lemmmmmmmm=m TEEEE PR EER Locmaann =1l ---
C 1
Q 1 1 : 1 1
L1 T T R
w : : : : :
0 | | | | |
a 200 400 B0 800 1000

Distance ()
Figure 7.7: Graphical comparison of the resultsusated by program
D1 Flow and the analytical solution of Polubarineiachina
(They are not distinguishable at this scale.)
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Figure 7.8 Case 1: Errors of the resultsusated by program D1_Flow against
the analytical solution of Polubarinova -Kochina
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Figure 7.9 Case 2: Errors of the tsssimulated by program D1_Flow
against the analytical solution of PolubarinovacKina
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Figure 7.10 Case 3: Errors of the results simulbiegrogram D1_Flow against the
analytical solution of Polubarinova —Kochina, Syséic nature of the error is caused
small difference between QO and q that are fountebgtion.
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Figure 7.11Case 4.:Errors of the results simulated by progedmFlow
against the analytical solution of PolubarinovabeKina. Systematic
nature of the error is caused small difference betwQO and g that
are found by iteration.
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7.8. Comparison of One- and Two-Dimensional Modeling
Results for the Borden Landfill

7.8.1. Borden Landfill Site

Data and simulation results from the Borden Lahdfdre used for testing the model.
The Borden Landfill plume was the object of threémehsional characterization reported
by MacFarlane et al. (1983). The reported ingesitbn at the site lasted from 1974 to
1980. The Borden Landfill is situated between twothward-flowing streams that feed
the Georgian Bay of Lake Superior. Glacial depofsitm the dominant surface material
in this region (Eyles et al., 1992) The unconfisedacial aquifer consists of beds and
lenses of fine-, medium- and coarse-grained saedyrg an extensive deposit of
clayey and sandy silt.

Following the presentation by MacFarlane et al8@)9ongitudinal cross sections are
used to represent the contaminant plume. Chlevaekechosen as a tracer to represent the
contamination. MacFarlane et al. (1983) used thppn contour as the boundary
between the plume and uncontaminated water. Tdtese evidence of recharge-driven
plume diving as the plume generally becomes daegée aquifer with distance from

the landfill, and there is a localized deepeninthefcontaminant plume beneath the sand
quarry (7.7). The plume exhibits other interacsiovith the hydrologic system as it drops
to the base of the aquifer beneath the ephemearyahdrwater divide located near the
southern edge of the landfill. The purpose of canmg results with the Borden Landfill
was to determine the ability of the new plume divmodel D1_Flow to reproduce these
gualitative features and to assess its abilitefyaduce them quantitatively, using a full
calibration data set. Since the intended purpbfieeomodel is to aid in site
characterization, the model was also applied teatistof the data. This application was
intended to show how the model results can be purated into an iterative site
characterization approach.
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Figure 7.7 Cross section showing the distributbohloride from the Borden Landfill (MacFarlaneagt,
1983). The outermost contour represents 10 ppanidh, while the inner contour interval is 100npp
starting at 100 ppm.

The quantitative task is split into two partsrsFEis the matching of model results to the
calibrated model of Frind and Hokkanen (1987), basethe earlier model developed by
Frind and Matanga (1985) to establish the capadititis simplified model. The Frind
and Matagna (1985) model is well suited for our parson, because it is based on full
simulation of the vertical and horizontal flows, il@hour model assumes, according to
Dupuit, that the aquifer can be represented byzbatal flows only. The second test is
to use the model in a simulated site assessmdhidtvate its potential use in
characterizing an aquifer of this type.

7.8.2. Reproducing Two-Dimensional Modeling Results

In this exercise, we reproduced the flow system ptesegraphically by Frind and
Hokkanen (1987). The recharge pattern was siraglifs shown in 7.3 as simulation 1.
The hydraulic conductivity, 1.16 x Iftm/s, was the same as used by Frind and
Hokkanen (1987). The boundary conditions weregassl at x = 0 as the elevation of the
water table, 222.36 m, and the flux of 70 cm/¥he results gave a ground water divide
at 136.83 m with elevation of 222.37 m. At thevdgradient end of the flow domain
there was a water table elevation of 218.49m anddf 0.63 ri/day.
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Table 7.3 Simulation parameters for three tesblpras, including the discretization intervals, rece
rates and hydraulic conductivities.

Simulation | Interval (m) 0-140 140-300 300-600 /00 800-1050

1 Recharge (cml/y) 15 55 15 45 15
Hydraulic Conductivity 1.16*107° 1.16*107° 1.16*1072 1.16*107° 1.16*1072
(cml/s)

2 Recharge (cmly) 5 5 0 0 0
Hydraulic Conductivity 1.16*107° 1.16*107° 1.16*1072 1.16*107° 1.16*1072
(cml/s)

3 Recharge (cmly) 15 55 15 45 15
Hydraulic Conductivity 1.16*107° 1.16*107° 0.812*107 0.986*107 2.32*107°

(cml/s)

A graphical comparison of results is presentediguie 7.8. Close agreement of the
modeled water table was obtained between the sesURrind and Hokkenan (1987) and
the current model. The maximum deviation from ttegew table presented by Frind and
Hokkanen (1987) is 0.10 m. It can be seen, howelat both model results are biased
with respect to the actual observations, especaigre they over predict the water table
elevation over the region between 300 m to 900amfthe origin.
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Figure 7.8 Comparison between measured waterslévelvo seasons (April and December) with
simulations performed by Frind and Hokkenan (198%) the current model.
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These water level data were collected in April anBecember. The April data show
evidence of the ephemeral ground water mound whiahsaid to dissipate in the late
summer and fall. By the December sampling the ™douas gone and water levels were
generally lower throughout most of the domain. c&ese of the seasonally transient
nature of the site, application of a steady statdehis a compromise. To further
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evaluate the fit to the water table, we used alimegression to estimate the least-squares
representation of the water table. The result was

E = -2576x10° x* — 7.753x 10 x + 22263

where E is the water table elevation (m) and késdistance from the origin (m). Figure
7.9 shows two additional simulation results. Hingre is a very close agreement
between the regression equation and the preserdlroalibrated by changing the
recharge pattern and keeping the conductivity fitxethe value used by Frind and
Hokkanen (Table 7.3, simulation 2). Insofar as teicharge pattern is plausible, this
model could represent the flow system. The re@harghis system, however, was low
with 5 cm/y in the landfill and O cm/y downgradienThe second result uses the
recharge pattern of Frind and Hokkenan and alltshiydraulic conductivity to vary.
Here the conductivities varied by a factor of thf€able 7.3, simulation 3). The
lowered water tables achieved in the first of thr@smulations may represent wintertime
conditions with reduced recharge due to frozen timms, while conductivities used in
the second simulation are within the range measioretthe site. Differing parameter
sets are in part a consequence of differing pugpossimulation. Matching water tables,
transport times, or streamline positions lead tfent parameter sets (Gorokhovski
1977, 1996).
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Figure 7.9 Comparison between measured waterslévelvo seasons (April and December) with
simulations performed by Frind and Hokkenan (198%) the current model.

Streamlines from simulation 1 and the actual boundathe 10 ppm chloride contour
are shown in Figure 7.10. These streamlines argasito those produced by Frind and
Hokkenan, differing mainly due to differences igharge assumptions. We used an
infiltration rate of 55 cm/y from the ground waftaw divide at the southern edge of the
land fill, throughout its 160 m length. Conseqie0t24 nf/d of water flows between
the divide and the streamline on the downgradidgeef the landfill. The ability of a
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Dupuit-Forchheimer model to transfer recharge wiatelepth within an aquifer was
explained by Kirkham’s (1967) slot-slab interpraiat Water is conducted downward in
slots that are adjacent to slabs of porous methaus it is expected that the D1_Flow
model can represent downward flow at the grounémdivide and the sand quarry.
Thus the simplified model has the ability to reproel qualitatively and quantitatively the
plume behavior at this site.
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Figure 7.10 Streamlines originating at assumathtaries of the land fill. 10ppm contours arettpld
showing that the streamlines lie within the envelopeated by these data.

8. Conclusions

A series of solutions for one-dimensional groundewéiow have been developed. These
begin with an analytical solution for a homogeneagsifer with an horizontal base, and
progress to a numerical solution for a piecewiderogeneous aquifer with a sloping
base, where the “pieces” can be arbitrarily smaéHhe latter solution was shown to
reproduce results from 1) an analytical solutionaio aquifer with an horizontal base, 2)
an analytical solution for a piecewise heterogesemuifer and 3) field data from the
Borden Landfill. Both the water table and uppeutb streamline were reproduced
accurately numerically. These comparisons dematesthat under suitable site
conditions the numerical model can be used for pldiwing calculations.
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Appendix 1: Script D1_methodology and Examples of
its Applications

%D1_methodology

%All solutions are based on equation h(x)"2=c 2 iii)x"2

%In cases 1 to 2, coefficients 'c' and 'b' areutated.

%Detailed Algorithm is presented in D1 Flow: Compl&lethodology:
%3. Solutions for uniform horizontal aquitards

R1_='SIMULATED AQUIFER THICKNESS is KEPT in ARRAY H’;
R2_="To ACCESS H at LOCATION x, TYPE H(100*x+1) "
R3_="Thus,H at x=25 CAN be OBTAINED by CALLING H(@%)’;

%clearing previous graphs
%Input Data on Object

K=60.96;
N=558.8/1000/365*30;
L=1066.8;

%Preparing Object Relating Data for Calculations
%
W=N/K;
dX=0.01;
X=0:dX:L;
n=length(X);
H2=zeros(1,n);
%
%Prompts Calling for Different Cases;

C='Input the number of appropriate boundary coodm "
CO="from the following list:
C1='1. Thickness are known at two points x1 and x2 1y
C2="2. Thickness h is known at point x1 and Fluat@oint x2: 2"
S = '
txt=[C;C0;S_;C1;S ;S ;C2;S ];
disp(txt);
%
k=input ('Input appropriate number from the abast k=");
disp(S_);
%Prompts for Boundary Conditions Inputting for @dliCases
%

x1_='Input coordinate x1 where thickness h1l is kmoxl=" %C1&C2
hl_ ='Input thickness at x1: h1=h(x1)=" %C1&C2
x2_='Input coordinate x2 where thickness h2 is kmox2=" %C1
h2_='Input thickness at x2: h2=h(x2)=", %C1
x2hQ_='Input coordinate x2 where Flux Q is know2=X% %C2
Q_='Input Flux Q at x2: Q=Q(x2)="; %C2

%
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switch k;
case 1
x1=input(x1 );
hl=input(hl );
X2=input(x2_);
h2=input(h2_);
Q1=(h172-h2"2)*K/2/(x2-x1)-N*(x2-x1)/2;
Q0=Q1-N*x1;
b=-2*QO0/K;
c=h172-b*x1+W*x1"2;
case 2

x1=input(x1 );
hl=input(hl );
x2=input(x2hQ_);
Q=input(Q_);
Q0=Q-N*x2;
b=-2*QO0/K;
c=h1"2-b*x1+W*x1"2;

end

H=c+b*X-W*X.*X;

H=sqrt(H);

hold off;
plot(X,H);

grid

hold on
[x,h]=ginput();

results=[x";h’]
plot(x,h,'mo")

if QO*(QO+N*L)<0
waterDivide= L/2-(HB(1)*2-H(n)"2)/2/LIW
wd_ Index=round(100*waterDivide)+1;
H_at waterDivide=H(wd_Index)

end

disp([R1_;R2_;R3_])

%end of D1_Methodology

% /

Examples

There are three groups of examples below. In din&t, the water is monotonic. In the second Zetleaist
water dividers inside of the interval of interdstgroup 3, evaporation takes place
Data inputting from key board is bold italic.

Example 1 Characteristics of the Object:The length of the segmebt 1066.8
Recharg®&l=558.8/1000/365
Coefficient of filtrationK=60.96

Al.

>> D1_methodology

Input the number of appropriate boundary conditions

from the following list:

1. Thickness are known at two pointsandx2;

2. Thickness h is known at poixt and FluxQ at pointx2; 2

Input appropriate number from the above kstl

[N
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Input coordinate x1 where thickneskis known:x1=0
Input thickness atl: h1=h(x1)=19.81

Input coordinatex2 where thicknesk?2 is known:x2=L
Input thickness at x2h2=h(x2)=9.81

J Figure 1
File Edit Wiew Insert Tools Desktop  Window  Help u
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Example Al: The thickness of the aquifer

resultss 1.0e+003 * 0.2005 0.3995 0.6014 0. 8005 0.9995  xcoordinate
18.2281 16.57894.7644 12.7895 10.6140 thickness
(The above is results of graphical evaluating of thickness at points x)

SIMULATED AQUIFER THICKNESS is KEPT in ARRAYH
To ACCESSH at LOCATIONX, TYPEH(100*x+1)

Thus,H atx=25 CAN be OBTAINED by CALLINGH(2501)
H(200.46*100+1)=18.2323

A2,

Input the number of appropriate boundary conditions
from the following list:

1. Thickness are known at two pointsandx2;

2. Thickness h is known at poixt and FluxQ at pointx2; 2
Input appropriate number from the above kstl

[N
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Input coordinate x1 where thickndskis known:x1=1000
Input thickness atl: h1=h(x1)=H1(1000*100+1)

Input coordinatex2 where thicknesk?2 is known:x2=100
Input thickness at xh2=h(x2)=H1(100*100+1)

SIMULATED AQUIFER THICKNESS is KEPT in ARRAYH
To ACCESSH at LOCATIONX, TYPEH(100*x+1)
Thus,H atx=25 CAN be OBTAINED by CALLINGH(2501)

[H(1.4*100+1) H(399.5*100+1) H(601.5*100+1) H(800*100+1)
19.8011 16.9767 15.2465 13.2542

A3.

Input the number of appropriate boundary conditions

from the following list:

1. Thickness are known at two pointsandx2; 1
2. Thickness h is known at poixt and FluxQ at pointx2: 2
Input appropriate number from the above kst2

Input coordinate x1 where thickndskis known:x1=0

Input thickness atl: h1=h(x1) 19.81

Input coordinatex2 where FluxQ is known:x2=0

Input FluxQ at x2 Q=Q(x2) =Q00

SIMULATED AQUIFER THICKNESS is KEPT in ARRAYH
To ACCESSH at LOCATIONX, TYPEH(100*x+1)
Thus,H atx=25 CAN be OBTAINED by CALLINGH(2501)

[H(1.4¥100+1) H(399.5%100+1) H(601.5%100+1) H(800*100+1)
19.8011 16.9767 15.2465 13.2542

A4,

Input the number of appropriate boundary conditions
from the following list:

1. Thickness are known at two pointsandx2;

2. Thickness h is known at poixt and FluxQ at pointx2; 2
Input appropriate number from the above kst2

Input coordinate x1 where thickneskis known:x1=L

Input thickness atl: h1=h(x1)} 9.81

Input coordinatex2 where FluxQ is known:x2=500

Input FluxQ at x2 Q=Q(x2) =Q0+N*500

[N

SIMULATED AQUIFER THICKNESS is KEPT in ARRAYH
To ACCESSH at LOCATIONX, TYPEH(100*x+1)
Thus,H atx=25 CAN be OBTAINED by CALLINGH(2501)

[H(1.4*100+1) H(399.5*100+1) H(601.5*100+1) H(800*100+1)
19.8011 16.9767 15.2465 13.2542

H(L*100+1) ]
9.8100

H(L*100+1) |
9.8100

H(L*100+1) ]
9.8100

Group B: Characteristics of the Object: The length of thgnsentL= 1066.8
Recharg&l=558.8/1000/365*3&

Coefficient of filtrationK=60.96

B1.

>> D1_methodology

Input the number of appropriate boundary conditions
from the following list:



1. Thickness are known at two pointsandx2; 1
2. Thickness h is known at poixt and FluxQ at pointx2: 2
Input appropriate number from the above listl

Input coordinatex1 where thicknesfl is known:x1=0

Input thickness at1: h1=h(x1) =19.81

Input coordinatex2 where thicknesk?2 is known:x2=_

Input thickness ax2: h2=h(x2)=9.81

J Figure 1
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Example B1: The thickness of the aquifer

Resultsx= 1.0e+003°0.0014  0.2005  0.3995  0.604D.7977  0.9995  1.0659
H= 0.0198  0.0216  0.02190.0209 0.0182  0.0130  0.0098
H(141) H(20051) H(39951) H(60411) H(79771)(39951) H(106591])
19.8285 .GM8 21.9628 20.8639 18.2396 12786 9.8595
HB=H; Q00=Q0 =-16.0355

B2.

>> D1_methodology

Input the number of appropriate boundary conditions

from the following list:

1. Thickness are known at two pointsandx2; 1
2. Thickness h is known at poixt and FluxQ at pointx2: 2
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Input appropriate number from the above kstl
Input coordinatex1 where thicknesh1 is known:x1=951
Input thickness atl: h1=h(x1)=HB(951*100+1)
Input coordinatex2 where thickness h2 is knowx2=732
Input thickness at2: h2=h(x2)=HB(732*100+1)

H(141) H(20051) H(39951) H(60411) H(79771)99951) H(106591
19.8285 21.6248 21.9628 20.8639 23® 12.8687 9.8595

waterDivide= 349.1395
H_at_waterDivide= 22.0063

B3.

>> D1_methodology

Input the number of appropriate boundary conditions
from the following list:

1. Thickness are known at two pointsandx2;

2. Thickness h is known at poixt and FluxQ at pointx2: 2
Input appropriate number from the above list2

Input coordinatex1 where thickneshl is known x1=300

Input thickness at1: h1=h(x1) =HB(100*x1+1)

Input coordinatex2 whereFlux Q is known x2=500

Input FluxQ at x2: Q=Q(x2) =Q00+500*N

=

H(141) H(20051) H(39951) H(60411) H(79771)(99951) H(106591)
19.8285 21.6248 21.9628 20.8639 23% 12.8687 9.8595

waterDivide= 349.1395
H_at_waterDivide= 22.0063

Group C: Characteristics of the Object: The length of the segmebt 1066.8
RechargeN=— 558.8/1000/365—Evaporation
Coefficient of filtrationK=60.96

>> D1 _methodology
Input the number of appropriate boundary conditions
from the following list:
1. Thickness are known at two pointsandx2; 1
2. Thickness is known at poink1 and FluxQ at pointx2: 2
Input appropriate number from the above lkstl
Input coordinatex1 where thicknesh1 is known:x1=0
Input thickness at1: h1=h(x1)=19.81
Input coordinatex2 where thicknesk?2 is known:x2=L
Input thickness at2: h2=h(x2)=18.9
results = 10e+003 * 0.1839 0.5544 1.0659
0.0195 0.2190.0189
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Example C: The thickness of the aquifer

SIMULATED AQUIFER THICKNESS is KEPT in ARRAYH
To ACCESSH at LOCATIONX, TYPEH(100*x+ 1)
Thus,H atx=25 CAN be OBTAINED by CALLINGH(2501)
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Appendix 2: Script ‘hrzAQT’
%hrzAQT

%The script solve analytically filtration in uncaméd heterogeneous aquifer on horizontal aquitard

clear
%Geometry of Object------------=-m-emmmmmmcmmeeee e \
n=6;
segEnds=[0 50 135 200 500 900 1000];%load homogeneo us interval
%boundaries

D=segEnds(2:n+1)-segEnds(1:n);  %lengths of int ervals
L=segEnds(n+1); %left end of o bject
%ENd of Geometry------------mmmmmrm e s /
%Properties of Object \
K=[30 30 60 40 20 10];%m/day
N=107(-4)*[15 50 15 10 20 10];%m/day
%Case of a Homogeneous Object---------- \
if n==1

n=2;

K=[K K];

N=[N,NJ;

D=[L L)/2;

xB=segEnds(1);

segEnds=[xB,xB+D(1),L];
end % /
W=N./K;
agBtm = 3.048; %elevation of the aqui fer bottom
h_0=11;%19.81; %elevation of the up gradient water
table
h L=10;%9.81; %elevation of the down gradient water
table
%End of Properties of Object------------------- /
%Developing Boundary Conditions at the Ends of Obje Ct------m--- \
hO=h_0-agBtm; %left boundary condition
h02=h0"2;
hL=h_L-agBtm; %right boundary conditi on
hL2=hL"2;
%End of Developing Boundary Conditions at the Ends of Object---/
%Developping matrix for evaluation of model paramet ers----------- \
sizeC=2*n- 1, %size of the matrix of coefficien ts.
C=sparse(sizeC); %declaring sparse matri xC
b=zeros(sizeC,1); %declaring sparse right hand vector
%assigning coefficients for first equation: j=1---- -\
C(1,1)=-D(2);
C(1,2)=1;
b(1)=h02-W(1)*D(1)"2;% -/
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%assigning coefficients for n_th equation: j= n----
C(n,2*n-2)=1;
C(n,2*n-1)=D(n);
b(n)=W(n)*D(n)"2+hL2;

%assigning coefficients for quations: j=2 to n-1---
for j=2:n-1

C(j,2%-2)=1;

C(j:2-1)=D();

C(j.2*5)=-1;

b()=W(@)*D()"2;

end %

%assigning coefficients for quations: j=2 to n-1---
m=0; %counter of homogeneous segments
for j=n+1:2*n-1

m=m-+1,

i=2*m-1,;

C(i.)=K(m);

C(j,i+2)=-K(m+1);

b(j)=2*N(m)*D(m);
end %
%End of Developing matrix for evaluation of model p

sol=C\b; %solving the system

%Converting Vector Solution in Matrix: ------------
%Three Coefficients for each homogeneous segment
A=zeros(n,3);

A(:,3)=-W;

A(1,1)=h02;

A(;,2)=so0l(1:2:2*n-1);

A(2:n,1)=so0l(2:2:2*(n-1));

%

%Calculating Water Table:(h(x))*2=A(j,1)+A(j,2)*(x-
%Preparing Arrays for calculating ------------ \
step=.01; %increment of calculat
X=segEnds(1):step:L; %creating X array
xL=length(X);
H2=zeros(1,xL);
thickness
jH=round((segEnds-segEnds(1))/step)+1;%finding inde
% /
%Calculating Water Table------------------- \
for j=1:n %loop calculating squar

xJ=X(H());

for i=jH(j):jH(+1)

H2()=[1 X(i)-xJ (X(i)-xI)"2]*A(,:)";

end
end
H=sqrt(H2)+ agBtm; %H2-->elevation H
% /

%creating arrey for ke

%Calculating flux at boundaries of homogeneous segm
QO0=-K(1)*A(1,2)/2; %incoming flux
Q(1)=Q0;

%]

-/
arameters----- /

LA)+W((x-L({)"2-\

ion (deltaXx)

eping squared

xes for segment ends

ed thickness H2

ents---\
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for i=1:n
Q(i+1)=Q(i)+N(i)*D(i);
end
%End of calculating array of flux -----------------

%PIlotting Elevations------- \
plot(X,H)

grid on

hold on

% /

%Graphical Evaluatiing of Elevations H ------------
T1='Do you want to evaluate of water table graphica
T2="If YES, type Y. If NO,type N. Strike ENTER.
T3='Having finished grahical evaluation, strike ENT
disp([T1;T2;T3]); %displaying above prompt
reply =input('Thus: Y or N? ''s");
if reply =="Y"
[x.,y]=ginput;
disp('Results of Graphical Evaluations:’)
disp([x;y])
end
%

%Analytical(Exact)Evaluatiing of H at assigned loca
T4='Do you want to evaluate of water table analytic
T5="at locations assigned by you?

T6="If YES, type Y. If NO,type N. Strike ENTER.
T7="Type x coordinate of desired location and strik
T8="Having finished evaluation, type desired coordi
T9="that is out of the object and strike ENTER.
disp([T4;T5;T6]); %displaying above prompt

reply =input(‘'Thus: Y or N? ','s");

if reply =="Y' %evaluation=search for proper elemen
i=0; %three lines preparing search
LO=X(1);
x=L/2;

while (x>=L0|x<=L)
disp([T8;T9])
x=input(T7);
if (x<LO|x>L) %exit from searc
break;
end
i=i+1;
XH(i)=x;
evX=round(x/step)+1;
evH(i)=H(evX);
disp([XH(i),evH()]);
end
if i>0
disp('Results of Analytical Evaluations:")
disp([XH;evH])
end
end %
disp('The program is terminated’)
%end of hrzAQT
%

_—

-\
ly?";

ER. "

-/
tions x---\
ally

e Enter:’;
nate x ;

tin H array---\
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Appendix 3: Script ‘hrzD1_Unvrsl’

%hrzD1_Unvrsl

%Script for calculating elevations of water tabieheterogeneous object
%with horizontal aquitard that has elevation hAQT

object;

prompts;

disp(txt);

k=input ('Input appropriate number from the abdse k="); %inputting k
if k==1

CASE_1;
elseif k==2
CASE_2;
else % k is not equal tol or 2
disp('Wrong k. Program is terminated’)
return
end
flux_Q; %array of fluxes at segmenubdaries
hO_squared; %calculating squared thickness ofequi
%at most left boundary ofeutij
waterTable; %calculating elevations otevdable
display_; %displays elevations and fiirends of object
waterDivide; %coordinate and elevation oditéf Divide if it exists
graph_H; %graphing elevations if dedir
graphINPUT; %obtaining data from grapletgvations, if desired
anltc_H; %obtaining elevations anaigtiy, if desired
disp(txtR) % explaining how to get elgoa for a given
% coordinate when the codeiminated
hold off

%End of hrzD1_Unvrsl

7

%object
%Script Introducing Object

name='Object 2"; %name of object must be typed inesgngle quotes
%Geometry
n=6; %number of homogeneous segments

segEnds=[0 50 135 200 500 900 1000]; %ends of hemegus segments
%End of Geometry /

%Properties \

K=[30 30 60 40 20 10]; %coefficients of filtratiai segments
N=10"(-4)*[15 50 15 10 20 10]; %recharge withimmageneous segments
hAQT = 3.048; %elevation of the aquifer bottom

%End of Properties /
%End of Object 2 /
disp=(name) %displays object’'s name
%Preparing Working Arrays: \

D=segEnds(2:n+1)-segEnds(1:n);  %lengths efuats
L=segEnds(n+1)- segEnds(1); %length of cbje
W=N./K;
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Q=zeros(1,n+1); %preparing array of flux
step=.01; %default increment of caltiola(deltaX)
%for another increment, chastep
X=segEnds(1):step:L; %array x coordinates wheteevaf H are
%calculated

xL=length(X); % number of elements in array X
jH=round(segEnds/step)+1; %array of indexesé&mment ends

H=zeros(1,xL); %array for calculadvations

%Preparing Working Arrays: /

%End of object

=T C S /
%prompts

%Set Including Most of Prompts
='Input the number of appropriate boundary caxmuist "

CO ='from the following list:

C1_='1.Elevations hl and h2 are known at two po«ﬂ]tand x2: k=1";

C2_='2.Elevation is known at point x1 and Flux (aint x2: k=2

S = B

txt=[C_;CO0_;S_;C1_;C2_;S_]; %in text array txt@léments have the same length:61
% although it may not be seen here

x1 ='Enter coordinate x1 where elevation hl is kmoxdl="; %cases 1&2

hl ='Enter elevation at x1: h1=h(x1)=" %cases 1&2
x2_='Enter coordinate x2 where elevation h2 is kmox2="; %case 1
h2_='Enter elevation at x2: h2=h(x2)=",; %case 1
XQ_='Enter coordinate x2 where Flux Q is known; x=' %case 2
Q_='Enter Flux Q at x2: Q=Q(x2)="; %case 2
XQ_='Enter coordinate x2 where Flux Q is known: XxQ=  %case 2
Q_='Enter Flux Q at x2: Q=Q(x2)=", %case 2

T1_='Do you want to evaluate of water table graalty@ ;
T2_='If YES, enter Y. If NO, enter N.

T3_='Having finished graphical evaluation, stnIdEI'EER "
txtT=[T1_;T2_;T3_];

T4_='Do you want to evaluate of water table aneh}ly "
T5_='"at locations assigned by you? ;
txtA1=[T4_;T5 ;T2_]J;

T6_='Enter x coordinate of desired location "
T7_='Having finished evaluation, enter such cocaithrx '
T8_='that is out of the object and strike ENTER. '
txtA2=[T6_;T7_;T8_];

G_='Do you want graph? If Yes, enter Y. If No,ente;

R1_='SIMULATED ELEVATIONS are SAVED as ARRAYH
R2_='"To ACCESS H at LOCATION x, TYPE H(100*x+1)
R3_='Thus, H at x=25 CAN be OBTAINED by CALLING H§Q1);
txtR=[R1_;R2_;R3_];

%End of prompts

%

~
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%CASE_1

%boundary conditions: elevations at two locatideast

input_1 %input x1 and h1 and x2 and h2

reordering; %if x1< x2han x1 and h1 become x1 and h2and x1 and h2 bexbraed h2
intervalsi; %evaluates intervals to which xlandgbng

fluxQx1_Casel; %calculates flux at x1 when x1 afde&long to the same homogeneous %segment
auxMaking %creates auxiliary object in intervel [x2] to evaluate flux at x1

systemMatrix;  %developing matrix based on auxiliabject
systemSolving; %finding coefficient permittingawvaluate flux at x1

fluxQx1_Casela; % calculates flux at x1 when x1 @&delong to different homogeneous
%segments

%-End of CASE_1

% /

%input_1

% CASE_1: k=1: input (x1, h1) and (x2, h2)-----\

x1=input(x1 );

hl=input(hl )-hAQT; %hAQT=elevation of aquitard
X2=input(x2_);

h2=input(h2_)-hAQT;

%-End of input_1

%

%reordering

%CASE_1 assumes that x1<x2
%If it is not, this script reorders x1 and x2

if x1>x2 %reordering x1 and x2 in case of jx1>jx2-
t=x2; x2=x1; x1=t;
t=h2; h2=h1; hl=t;

end

%End of reordering

~~

intervalsl
%Script for finding intervals for x1 and x2 for CES1

x1=1; %Finding segment to which x1 belongs-\----
while x1>=segEnds(jx1+1) jx1=jx1+1; end
%x1 belongs to segment #jx1 f
if x2<=segEnds(jx1+1)
X2=jx1;
else
jx2=jx1; %Finding segment to which x2 belongs-\
while x2>segEnds(jx2+1) jx2=jx2+1;end
if x2==segEnds(jx2) jx2=jx2-1;end
%x2 belongs to segment #jX2--------------=-=--- /
end
d=x1-segEnds(jx1); %distance from the left segnbenindary and x1
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% end of intervalsl
%

<

%fluxQx1_Casel,; %calculates flux gtwhen x and % belong to the same homogeneous segment

%Finding flux at x1 for Case 1
%x1 and x2 belong to same segment------------——--\

Qx1 =(h172-h272)*K(jx1)/(x2-x1)/2-N(jx1)*(x2-x1)/2;
%End of case of x1 and x2 belong to same segmert+--
%End fluxQx1l_Casel

%

<

%auxMaking

%Making up Auxiliary Object, Based on Segmentsnitidl Object

%within Interval [x1,x2] \
NA=jx2-jx1+1; %number of segments in Miaxy Object
aEnds=zeros(1,nA+1); %preparing array for desonipdf Auxiliary Object
aN=zeros(1,nA); %
aK=zeros(1,nA); %
aW=zeros(1,nA); %
%Making First and Last aSegments \
aEnds(1)=x1; %left end of the first segnt
aEnds(nA+1)=x2; %right end of the last segment
=1,
m=jx1;
if x1<segEnds(jx1+1)
aK(j)=K(jx1); %K of thigrst segment
aN(j)=N(jx1); %N of thiest segment
aD(j)=segEnds(jx1+1); %length of thesfisegment
=i+
m=m+1,
end
if x2>segEnds(jx2)
aK(nA)=K(jx2); %K of thast segment
aN(nA)=N(jx2);; %N of thadt segment
aD(nA)=x2-segEnds(jx2);  %length of thet lssgment
end
% First and last segment of aObject are done——--------- /
%Making up Internal Segments of aObject \
for i=m:jx2
aEnds(j)=segEnds(i); %end of aObject seginen
aK(j)=K(i);
aN()=N();
=i+
end %End of making up internal segmehteQabject-----/
aD=aEnds(2:nA+1)-aEnds(1:nA); %length of aSeume
aW=aN./aK; YaWaSegments

%End of auxMaking
%

~
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%systemMatrix

%Developing Matrix for Auxiliari Object to Findin@jx1-------------- \
sizeC=2*nA-1; %size of the matrixaafefficients.
C=sparse(sizeC); %declaring sparse m@tri

b=zeros(sizeC,1); %declaring right haadtor

%Assigning coefficients for first equation: j=1 lkdson known h1----------- \
C(1,1)=-aD(1);

C(1,2)=1;

b(1)=h172-aW(1)*aD(1)"2;

%End of assigning coefficients for first equatigrit /

%Assigning coefficients for nA_th equation: j= nAleal on known h2----\
C(nA,2*nA-2)=1;
C(nA,2*nA-1)=aD(nA);
b(nA)=aW(nA)*aD(nA)"2+h2"2;
%End of assigning coefficients for nA_th equatipnnA-------------------- /
%Assigning coefficients for equations: j=2 to nAakled continuty of elevations at boundaries---A-----
for j=2:nA-1
C(j,2%-2)=1;
C(j,2*-1)=aD());
C(j,2%)=-1,
b()=aW(j)*aD(j)"2;
end %End assigning coefficients for equatief: o nA-1 /
%Assigning coefficients Equations j=nA+1 to 2*nAxpeessing continuity of flux: \
m=0; %counter of aSegtaen
for j=nA+1:2*nA-1
m=m+1;
i=2*m-1;
C(j,)=aK(m);
C(j,i+2)=-aK(m+1);
b(j)=2*aN(m)*aD(m);
end
%End of assigning coefficients for equations: j=AA® 2*nA-1
%End of systemMatrix
%

<

<

%systemSolving

sol=C\b;
%End of %systemSolving
%

~

%fluxQx1l_Casela
%Finding flux at x1 for Case 1a: hl and h2 are kmawdifferent segments

Qx1=-sol(1)/2*aK(1);
%End of fluxQx1_Casela
%

~

%CASE_2 %boundary conditions: elevatibaree location

61



%and flux in one location: k=2
%input_2
%intervals2
%fluxQx1l_Case2
%End of CASE_2
%

~

%input_2

%lInput for CASE_2: (x1,h1) and (x2, Qx2) are give---------- \
x1=input(x1 ); %location with known h1l
hl=input(hl )-hAQT; % h1 - elevation of aquitard
x2=input(xQ_); %location with known flux Qx2

Qx2=input(Q_);
%End of input_2
%

-~

%intervals2
%Script for finding intervals for x1 and x2 for CES2

x1=1; %Finding segment to which x1 belongs----\
while x1>segEnds(jx1+1) jx1=jx1+1; end
%x1 belongs to segment #jx1 {

x2=1; %Finding segment to which x2 belongs-t--
while x2>segEnds(jx2+1) jx2=jx2+1;end
%x2 belongs to segment #jx2 /

d=x1-segEnds(jx1); %distance from the left segnb@undary and x1

%End of ‘intervals2
%

<

%fluxQx1l_Case2
%Script for calculating flux Qx1 at x1 in CASE_ 2--—------------- \

if jx1==jx2 Qx1=0Qx2+(x1-x2)*N(jx1); %Done for caseith x1 and x2
%belongingthe same segment
elseif jx1>jx2 %x1 belongs to a segment to rightti the segment of x2
Qx1=0Qx2+N(jx2)*(segEnds(jx2+1)-x2)+N(jx1)*d;
for j=jx2+1:jx1-1
Qx1=Qx1+N(j)*D());

end
%Done for case jx1>jx2
else %x1 belongs to a segment to lefnfthe segment of x2

Qx1=0Qx2-N(jx2)*(x2-segEnds(jx2))+N(jx1)*d;
for j=jx2-1:-1:jx1
Qx1=Qx1-N(j)*D();
end
end
%Done for case jx1<jx2
%End of fluxQx1_Case2
%

~

% Note: goal of CASE_1 and CASE_2 is to find fluxa, Qx1.
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% Knowledge of Qx1 permits evaluating flux Q ats@gment boundaries

% Knowledge of Q permits calculation thicknesslbsegment boundaries

% Knowledge of Q(1) and hO_squared at the moselds of object (at segEnds(1))
% permits on calculation elevations of water takidr increment ‘step’

%flux_Q
%Calculating Array of Flux at Boundaries of Object;

Q(jx1)=Qx1-N(jx1)*d;
if jx1>1
for j=jx1:-1:2
Q(-1)=Q())-N(-1)*D(-1);
end
end
for j=1:n

Q(+1)=Q()+N()*D();
end

%Ends of flux_Q;
% /

%h0_squared
%Calculating Squared Thickness of Aquifer at Mostt[Boundary of Object

h02=h1"2+2*Q(jx1)/K(jx1)*d+W(jx1)*d"2;

if jx1>1
for j=jx1-1:-1:1

h02=h02+2*Q(j)/K()*D(j)+W()*D(j)"2;

end

end

%End of h0_squared

%

<

%waterTable

%Calculating Water Table:(hj(x))*2=hj*2+bj*(x-L(EWV]((x-Lj)"2-------- \
%with bj=-2*Qj/Kj

jH=round(segEnds/step)+1; %finding indexes fgmsent ends

H2(1)=h02; %squared thicknaeskeft end

for j=1:n %looplecalating squared thickness H2
p=-2*Q(j)/K());
w=W(j);
h2=H2(jH(j));

x=segEnds());
for i=jH():jH(+1)
H2(i)=h2+p*(X(i)-x)-w*(X(i)-x)"2;
end
end
H=sqrt(H2)+ hAQT; %H2-->elevation H
%End of waterTable
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%

<

%display_

disp('Elevations at Ends of Object, HO and HL:")
disp( HO HL)

disp([H(1) H(L*100+1)])

disp('Flux at Ends of Object, Q0 and QL:")
disp( Q0O QL)

disp([Q(1) Q(n+1)])

%End of display_

%

<

%waterDivide

%Calculating Coordinate and Elevation at Water @gvif it exists

if Q(1)*Q(n+1)<=0
[M,I]=max(H);
xWD=(I-1)/100;
disp('Water Divide at x=")
disp(xWD)
disp('Elevation at Water Divide=")
disp(M)

end

%End of waterDivide

%

~

%graph_H
disp(G_) %prompts asking to whether the optioteisired
graph_=input("Y/N?','s");
if graph_=="Y"
plot(X,H,'b"
grid on
hold on
end
%End of graph_H
%

~

%graphINPUT

disp([T1 ;T2 ;T3 ]); %prompts asking to whetheg tiption is desired
reply =input('Thus: Y or N? ','s");
if reply =="Y"
if graph_~="Y'
plot(X,H,'b"
grid on
hold on
end
[x.y]=ginput;
plot(x,y,'ma")
disp('Results of Graphical Evaluations:")
disp([x;y'])  %initial x and y are vertical viexs, but they displayed as horizontal ones
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end
%End of graphINPUT
%

<

%anltc_H

%Analytical Calculating Elevations if Desired

disp(txtAl) %prompts asking to whether the opi®desired
reply =input('Thus: Y or N? ','s");
if reply =="Y"

i=0;

LO=X(1);

x=L/2;

while (x>=L0|x<=L)
disp([T8_;T2_])
X=input(T7_);
if (x<LO|x>L)
break;
end
i=i+1;
XH(i)=x;
evX=round(x/step)+1;
evH(i)=H(evX);
disp([XH(i),evH(i)]);
end
if i>0
disp('Results of Analytical Evaluations:")
disp([XH;evH])
end
end
%End of anltc_H
%

<
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Appendix 4: Script ‘D_1 Flow’

Program D1_Flow' solves numerically one — dimensional flow probleanhomogeneous and
heterogeneous unconfined aquifers with horizomél@on-horizontal bottoms assuming that the flow is
horizontal (the Dupuit assumptions). It calculakeder table elevations, fluxes at any point ofdbgect,
stream functions, plume counters, travel time fmtaminant particles. It is universal in the sethsd it
solves all the problems that the all scripts désttiin this report do and even more.

The program consists of set of scripts. All itsiables are global.

Listing of ‘D1_Flow
In this listing the factual information is that frehe Borden Landfill calculations.

%D1_Flow

clear all
subplot(2,1,1,'replace)
subplot(2,1,2,'replace")
prompts
object
caseChoosing
switch k
case 1
CASE_1
case 2
CASE_2
otherwise %k is not equal to 1 or 2
disp('Wrong k. k must be 1 or 2. Program is terminated")
return
end
if flag==1
disp('Failure: cannot find interval containg Q at x1")
disp('Program is terminated’)
return
end
if flag==2
disp('Failure: cannot find Q1 at x1")
disp('Program is terminated’)
return
end
waterTable
throwingErrors
if flag ==
disp('The aquifer cannot LET the Flow TROUGH")
disp(‘'under assigned Boundary Conditions or Rec harge")
disp('see the plot’)
disp('Program is terminated’)
return
end
plumeD1
disp(" )
disp('If you wish to calculate and plot stream func tions,")
disp('Enter command: streamFunction and follow i nstructions'’)
disp(" )
disp('If you wish to calculate and plot travel time )
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disp('Enter command: travelTime and follow instru
%end of D1_Flow
%

ctions")

/
!

%prompts Subscript of D1_Flow
%Set of Prompts for CASE_1 and CASE_2

CO00="Input the number corresponding to assigned bou
CO0_="from the following list:

C1_='l.Elevations h1l and h2 are known at two points
C2_="2.Elevation is known at point x1 and Flux Q at
S0 =

txt=[C00;CO0_;S0_;C1_;C2_;S0_J;

x1_='Enter coordinate x1 where elevation h1l is know
1&2

hl_='Enter elevation at x1: hl=h(x1)=";

1&2

x2_='Enter coordinate x2 where elevation h2 is know
h2_='Enter elevation at x2: h2=h(x2)=";

XQ2_='Enter coordinate x2 where Flux Q2 is known: x
Q2_='Enter Flux Q2 at x2: Q2=Q(x2)=";

%End of prompts

%

%object Subscript of D1_Flow.

name='Borden Site";

disp(name)

%Geometry \

segEnds=[0 140 300 600 800 1050];% m
n=length(segEnds)-1; %number of homogeneous
X0=segEnds(1); %left end of the object
XL=segEnds(n+1); %right end of the objec
%End of Geometry /

%Properties \
N=[7,34,10,20,10]/365/100;%pInmN=[32.7862,9.5269,-1
9.7853]

K=11.7*107(-3)*60*60*24/100%1 1 1 1 1];%

nEff=0.38*ones(1,n); %
%Aquitard coordinates:
%aqtX=[X0,XL];
%aqtH=[204.6,204.6];
%aqtX=[X0,100,350,600,800,XL];
%aqtH=[195.3,195.3,204.6,210.8,211.78,211.78];
aqtX=[X0 29.41 49.54 89.78 126.93 148.61 185.76 218
266.25 300.31 348.3 374.61 396.28 445.82 467.49 495
577.4 597.52 628.48 659.44 696.59 749.23 792.57 848
998.45 XLJ;

aqtH=[191.09 192.49 193.42 194.82 196.69 197.93 200
204.31 204.62 204.31 204.62 205.09 206.02 208.04 20
210.22 210.38 210.84 211 211 211.31 211.62 211.78 2
213.33 213.33];

ndary conditions *;

x1 and x2: k=1 *;

point x2: k=2

n: x1="; %cases
%cases

n: x2="; %case 1
%case 1

2=" %case 2
%case 2

segments *ones(1,n)

t

.3694,2.7794, -

.27 232.2 243.03
.36 515.48 543.34
.3910.22 948.92

.11 202.6 203.69
8.67 209.44 209.91
12.4 212.87 213.02

67



%
%End of Properties

~

%Preparing Working Arrays:

%descritizing X and assigning properties for each e

step=0.01; %increment of calculati
%CHANGE HERE IF YOU WAN

X=X0:step:XL; %array for descritised

xL=length(X);

H=zeros(1,xL); %array for water table

Q=H; %array of flux

arrkK=H; %array of coefficients
arrN=H; %array of recharges
arr_nEff=H;

jEnds=zeros(1,n+1); %array of indexies of s

JEnds(1)=1;

jEnds=round((segEnds-X0)/step+1); %calculating the

for j=1:n %filling descritized arrays arrK an
arrK(JEnds(j):JEnds(j+1))=K(j); %loop to fi
arrN(Ends(j):;jEnds(j+1))=N(j);  %within seg
arr_nEff(JEnds(j):jEnds(j+1))=nEff(j);
end %end of filling arrays arrK, arrN and n_Eff----
aquitardElevation %interpolates aquitard
%point of array X linea
surface=bordenSurface;
%End of preparing Working Arrays:----
eps=107(-3); %default acceptable err
%CHANGE HERE IF YOU WAN
ITR=50; %default acceptable num
%CHANGE HERE IF YOU WAN
itrtn="50 iterations are performed’;
itr=0; %counter of iterations
%here to enable proceed
flag=0;
%end of object
% /

%caseChoosing Subscript of D1_Flow

%Two kinds of boundary conditions are optional:
%CASE_1: k=1->h(x1)=h1; h(x2)=h2
%CASE_2: k=2->h(x1)=h1; Q(x2)=Q2

disp(txt); %string ‘txt’ from ‘prompts’ explains c

k=input ('k? =");
%End of caseChoosing
% /

%CASE_1 Subscript of D1_Flow

%calculates array Q of fluxes at points of array X

lement of X-------- \
ons

T A DIFFERENT ONE
X coordinates
elevations

of filtration

egment ends

above indexes

d arrN-------- \
Il properties
ment j
______________ /

elevations on every
rly

or of calculations

T A DIFFERENT ONE
ber of iterations

T A DIFFERENT ONE

in CASE_1: assigned
ing in CASE_2

hoice of k
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%when boundary conditions are assigned as: h(x1)=h1

input_1; %inputs x1,h1,x2,h2
reordering %if x1>x2, x2 becomes x1, x
%h1 becomes h2, and h2 beco

Q1 _intervalSearch %looks for interval [minQ,
if itr>=ITR
flag=1,;
return;
end %fails to find [minQ, maxQ]
Q1 _iteration %iterations to find Q1=Q(x1
if itr>=ITR
flag=2;
return;
end %fails to find Q1l:terminates CA
Q1 Q %calculating array Q at all poi
%End of CASE_1
% /

%input_1 Subscript of D1_Flow
% CASE_1: k=1: input (x1,h1) and (x2, h2)-----\

disp('CASE 1"

x1=input(x1_); %x coordinate of water table elevat
hl=input(hl ); %water table elevation hl at x1
x2=input(x2_); %x coordinate of water table elevat
h2=input(h2_); %water table elevation h1l at x2
%End of input_1

% /

%reordering  Subscript of D1_Flow

%CASE_1 assumes that x1<x2
%If it is not, script reorders x1 and x2

if x1>x2 %reordering x1 and x2 in case of jx1>jx2-
t=x2; x2=x1; x1=t;
t=h2; h2=h1; hl=t;
end %reordering is finished
x1L=round((x1-X0)/step+1); %index of x1
x2L=round((x2-X0)/step+1); %index of x2
%End of reordering
% /

%Q1_intervalSearch  Subscript of D1_Flow

%Search for interval such that QL and QR have diffe

minQ=-2.03; %minQ=default minimal influx
maxQ=8.2; %maxQ=default maximal influx
erMin=1; %initial error for hl evaluated
erMax=erMin; %initial error for hl evaluated
itr=0; %counter of iterations

z=0;

while erMin==erMax %searching loop using backward

and h(x2)=h2
1 becomes x2,
mes hl

maxQ] containing Q1

:terminates CASE_1
)in [MminQ, maxQ)]

SE_1
nts within Object;

ion hl

ion h2

rent signs

at x1
at x1
with minQ
with maxQ
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itr=itr+1;
minH=h2;
maxH=h2;
sm=sum(arrN(x1L:x2L-1))*step;%loop to calculate
for i=x2L:-1:x1L+1 %loop calculating minH and
minH=minH+(minQ+sm)*step/arrK(i)/(minH-hAQT
maxH=maxH+(maxQ-+sm)*step/arrK(i)/(maxH-hAQT
sm=sm-arrN(i-1)*step;
end  %end of loop calculating minH and maxH
erMin=sign(minH-h1); 9%calculating signs of e
erMax=sign(maxH-h1); %calculating signs of e
if erMin~=erMax %the interval is found
return
end
if erMin>0 %need to decrease minQ
mMinQ=2*minQ;
end
if erMax<0 %need to increase maxQ
maxQ=2*maxQ);
end
end %end of searching loop using backward E
if erMin==erMax
z=1,;
disp(itrtn)
return
end
%End of 'Q1_intervalSearch’
% /

%Q1 _iteration Subscript of D1_Flow

Q1=(minQ+maxQ)/2; %minQ and maxQ come from Q1 _int
H(x2L)=h2;
stpK=step./arrK(1:xL); %loop to fast main loop be
sm=sum(arrN(x1L:x2L-1))*step; %summing recharge to
foritr=1:ITR %iterations to find Q1=Q(x1L)------
QR=Q1+sm;; %Q(x2L) for currently t
for i=x2L:-1:x1L+1 %backward Euler to evaluate
H(i-1)=H(i)+QR*stpK(i)/(H(i)-hAQT(i));
QR=QR-arrN(i)*step; %Q(i-1) for currently t
end %
erl=H(x1L)-h1;
if abs(erl)<eps % calculations are over
H(x1L)=h1; %substituting approximation H(x
break %return

end
if erl<0 %narrowing interval of search [minQ
minQ=Q1,;
else
maxQ=Q1,;
end %
Q1=(minQ+maxQ)/2;
end
%
if itr>=ITR
z=2;
disp(itrtn)

recharges at x2
maxH at x1----\
O)X
O)X

rror with minQ
rror with maxQ

ervalSearch

low

find QR=Q1+Q(x2L)
__________________ \
ested Q1
H(x1L)----\

ested Q1

1L)by exact value hl

, maxQ]--\
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return
end
%End for_Q1_iteration
%

~

%Q1_Q Subscript of D1_Flow

%Fills array of flux Q based on Q1

Q(x1L)=Q1;

for i=x1L-1:-1:1 %going from x1 to the left end
Q(i)=Q(i+1)-arrN(i)*step;

end

for i=x1L:xL-1 %going from x1 to the right end of
Q(i+1)=Q(i)+arrN(i)*step;

end

%End of Q1_Q

%

~

%CASE_2 Subscript of D1_Flow

%calculates array Q of fluxes at points of array X
%when boundari conditions are assigned as: h(x1)=h1
input_2

Q2 _Q  %calculating array Q at all points within
%End of Case 2

% /

%input_2 Subscript of D1_Flow

%Input for CASE_2: (x1,h1) and (x2, Q2) are given
x1=input(x1_); %location with known elevation of w
hl=input(hl ); %h1 - elevation of water table at x
x2=input(xQ2_); %location with known flux Q2
Q2=input(Q2_); %flux at x2 (x2=x1 is permitted)
x1L=round(x1/step+1); %calculating index for x1
x2L=round(x2/step+1); %calculating index for x2
%End of input_2

%

%Q2_Q Subscript of D1_Flow

%Fills array of flux Q based on assigned Q2
Q(x2L)=Q2;
for i=x2L-1:-1:1
Q(i)=Q(i+1)-arrN(i)*step;
end
for i=x2L:xL-1
Q(i+1)=Q(i)+arrN(i)*step;
end
%End Q2_Q
% /

%waterTable Subscript of D1_Flow

of object

object

and Q(x2)=Q2

Object;

ater table,h1
1
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%calculates and plots array of water table elevatio
%evaluates them graphically and analytically elevat
Hx1 HO %calculates H in [X0, x1)in Cases 1
Hx21 HL %calculates H in(x2,XL]in Case 1 an
waterTablePlotting  %plotting results
flag=0;
for i=1:xL %checking whether water tab
lesser
if Hi)<hAQT(i) %than aquitard elevation
flag = 3; %if Yes the script stops an
break;
end
end

waterDivide  %calculates coordinate and water ta
%water divide if it exists

onEndValues %displays elevations and fluxes at

%End of waterTable

%

%Hx1 HO Subscript of D1_Flow

%calculates array H in from x1 to the left boundary
%using backward Runge-Kutte method of 4th order
if x1L==1 return; end
dX=step/2;
stp=step/6;
H(x1L)=h1;
for i=x1L:-1:2
Y1=hAQT(i);
Y2=hAQT(i-1);
Y=(Y1+Y2)/2;
h=H(i);
q1=Q(i);
q2=Q(i-1);
g=(q1+q2)/2;
Cl=arrK(i);
C2=arrK(i-1);
C=(C1+C2)/2;
k1=q1/C1/(h-Y1);
k2=q/C/(h+dX*k1-Y);
k3=q/C/(h+dX*k2-Y);
k4=q2/C2/(h+step*k3-Y2);
H(i-1)=h+(k1+2*k2+2*k3+k4)*stp;
end
%End of Hx1_HO
%

~

%Hx21 HL 9%RK 4 Subscript of D1_Flow

%in CASE_1 (k=1):
%calculates array H from x2 to the right boundary o
%in CASE_2 (k=2)
%calculates array H from x1 to the right boundary o

ns

ions

and 2

d (x1,XL]in Case 2

le elevation is

d throws the error

ble elevation at

ends of Object

of Object’

f Object

f Object
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%uses the 4th order forward Runge-Kutte method

if k==1 %CASE_1
X21=x2;
x21L=x2L;
H(x21L)=h2;
else %CASE_2
x21=x1;
x21L=x1L;
H(x21L)=h1;
end
if x21==segEnds(n+1) %water table is calculated
return %or by Hx1_HO (CASE_2)
end
dX=step/2;
stp=step/6;
for i=x21L:xL-1
h=H(i);
Y1=hAQT(i);
Y2=hAQT(i+1);
Y=(Y1+Y2)/2;
q1=Q(i);
q2=Q(i+1);
q=(q1+92)/2;
Cl=arrK(i);
C2=arrK(i+1);
C=(C1+C2)/2;
k1=-q1/C1/(h-Y1);
k2=-q/C/(h+dX*k1-Y);
k3=-g/C/(h+dX*k2-Y);
k4=-q2/C2/(h+step*k3-Y2);
H(i+1)=h+(k1+2*k2+2*k3+k4)*stp;

end

%End of Hx21 HL

% /
%waterTablePlotting Subscript of D1_Flow

subplot(2,1,1)
plot(X,H,'b",X,hAQT,'k’)

hold on
plot(surface(1,:),surface(2,:),'k")
grid on

xlabel('Distance (m)’)
ylabel('Elevation A.S.L. (m)")
%end of script waterTablePlotting
% /

%throwingErrors Subscript of D1_Flow

%throwing out errors if boundary conditions or rech
%do not let flow through aquifer

for i=1:xL
if H(i))<hAQT(i)
flag=3;
break;
end

by Hx2_ Hx1 (CASE_1)

arge
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end

for i=1:length(surface(1,:))
srfX=(surface(1,i)-X0)/step+1;
if surface(2,i)<H(srfX)
flag=3;
break;
end
end
%End of script throwingErrors
%

<

%waterDivide Subscript of D1_Flow

%Calculating Coordinate and Elevation at Water Divi
%if it exists

if sign(Q(1))~=sign(Q(xL))
[M,Il=max(H); %matlab function to find maximu
wtDivindx=l;
XWD=(I-1)/100; %recalculates index in x coordi
disp('Water Divide at x=")
disp(xWD) %displays coordinate of water divid
disp('Elevation at Water Divide=")
disp(M) %odisplays elevation of wtar table at
end
%End of script waterDivide
% /

%onEndValues Subscript of D1_Flow
%displays water table elevations and fluxes at Obje

HO=H(1);
HL=H(xL);
Q0=Q(1);
QL=Q(xL);

disp(' )

disp('On the Object Ends:")

disp( HO Qo0 HL QL)
disp(num2str(JHO QO HL QL]))

%End of script onEndsValues

%

<

%plumeD1 Subscript of D1_Flow

%Evaluates Elevations of Plume Top and Bottom
%Based on the Dupuit Assumption

disp('Do you want to trace POLLUTION PLUME?")
disp('If YES, enter Y and strike "ENTER".")

de

m H and its index

nate

e

water divide

ct ends
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disp('If NO, strike,"ENTER":")
gw_='Thus, Y or N?';
reply=input(qw_,'s");
if reply=="Y"
plumeZone
if out == 1 return; end
plumeLeftBoundary
plumeRghtBoundary
else
return
end
plot(plumeTopX,plumeTopH,'r',plumeBtmX,plumeBtmH
%End of script plumeD1
% /

%plumeZone Subscript of D1_Flow

%Defining Plume Zone and corresponding stream funct

out=0; %indicator of error: no error
pl=input(Input coordinate of left, smaller, bounda
zone=");

if p1<XO0||p1>XL
out=1; %indicator of error: error
disp('Left boundary is out of object. Try again
return

end

p2=input('Input coordinate of right, greater, bound
zone=");
if p2<X0||p2>XL
out=1; %indicator of error: error
disp('Right boundary is out of object. Try agai
return
end
pL=round((p1-X0)/step+1); %index of p1
pR=round((p2-X0)/step+1); %index of p2

gFL=Q(pL); %flux at pl (stream functio
gFR=Q(pR); %flux at p2 (stream functio
%End of plumeZone

% /

%plumeLeftBoundary Subscript of D1_Flow

znk=sign(gFL);
if znk ==0  %qF=0:Stream function coincides wit
-\
plumeBtmX=X; plumeBtmH=hAQT;
plumeBtmH(wtDivindx)=H(wtDivindx); %qElv at w
defined

1)

ions

ry of polluting

ary of polluting

n’)

n staring at p1)
n staring at p2)

h aquitard surface--

ater divide is not
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%and is drawn a
plot(plumeBtmX,plumeBtmH,'r")
return
end  %script is done for calculating and plotti

StPt=pL;
if znk==1
gX=zeros(1,xL-stPt+1);
else
gX=zeros(1,stPt);
end
gElv=gX;
if znk==1
jSt=1;
jFn=length(gX);
else
jSt=stPt;
jFn=1;
end
i=stPt;
for j=jSt:znk:jFn %Calculating elevations of strea
aXx@)=X();
qEIv()=H(i)-(H(i)-hAQT(i))*(1-aFL/Q(1));
i=i+znk;
end
plumeBtmX=gX;
plumeBtmH=qElv;
%End of script plumeLeftBoundary
% /

%plumeRghtBoundary Subscript of D1_Flow

znk=sign(gFR);

if znk ==0  %qF=0:Stream function coincides wit
plumeTopX=X; plumeTopH=hAQT;
plumeTopH(wtDivindx)=H(wtDivindx);
plot(plumeTopX,plumeTopH,'r")

strFnct=[plumeTopX;plumeTopH]; %Preparing array

%result if needed
%The result should be saved
return
end  %script is done for calculating and plotti

StPt=pR;
if znk==1
gX=zeros(1,xL-stPt+1);
else
gX=zeros(1,stPt);
end
gElv=gX;
if znk==1
jSt=1;
jFn=length(gX);
else
jSt=stPt;
jFn=1;
end

s vertical line

ng for gF=0-------- /

m function

h aquitard surface-\

for saving the
with different name

ng for gF=0------- /



i=stPt;

for j=jSt:znk:jFn %Calculating elevations of strea
aX(@=X(i);
qEIV(j)=H(i)-(H(i)-hAQT (1))*(1-aFR/Q(i);
i=i+znk;

end

plumeTopX=gX;

plumeTopH=gElv;

%End of script plumeRightBoundary

% /

%streamFunction Subscript of D1_Flow

%Finding stream function of given value gF
%Inputting and analyzing gF

gF=input('Input the value of stream function of int
if gF<=Q0&gF<=QL
disp('Too small stream function value gF");
disp('Try the code again with larger gF value")
return;
end
if gF>=QL&qF>=Q0
disp('Too large stream function value qF");
disp('Try the code again with smaller gF value'
return;
end %
streamFunctionCalculation
plot(gX,qElv,'b")
strEnct=[gX;qElv]; %Preparing array for saving the
%The result should be saved with
disp('Results are in D2 array strFnctn(gX,qEIv)")
disp('Rename the array if you want save them')
disp( )
disp('If you wish to continue calculating and plott
functions.")
disp('Enter command: streamFunction')
%End of streamFunctions
%

%streamFunctionCalculation Subscript of D1_FlI

%Finding the point on water table where stream func

%and calculating

znk=sign(gF);
if znk == %qF=0: gF starts at water divide---

gX=X; qelv=hAQT; %arrays for x coordinate an

gEIv(wtDivindx)=H(wtDivindx); %at water divide
plot(gX,qElv,'k")
strFnct=[gX;qElv]; %Preparing array for saving
%Result should be saved with
return
end  %script is done for calculating and plotti
for i=1:xL-1 %Finding index of gF starting point

m function

-\

erest: gF =);

);
]

result if needed
different name

ing stream

ow

tion starts

d elevations
gF is vertical

the result if needed
different name

ng for gF=0-------- /
gF
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if (Q(i)<=qF)&(qF<=Q(i+1))
stPt=i;
break
end
end
if znk==1 Y%preparing arrays for qF>0
gX=zeros(1,xL-stPt+1); %array of x coordinate
jSt=1;
jFn=length(gX);
else %preparing arrays for gF<0
gX=zeros(1,stPt);
jSt=stPt;
jFn=1;
end
gElv=gX; %array for elevations qElv

i=stPt;

for j=jSt:znk:jFn %Calculating elevations of strea
ax@)=x();
qEIV()=H(i)-(H(i)-hAQT(i))*(1-aF/Q(i));
i=i+znk;

end

%

%End of streamFunctionCalculation

%travelTime  Subscript of D1_Flow

%calculated based on Dupuit Assumption and assumpti
%the shortest travel time is for the upper boundary
%The longest travel time is for the lower boundary

disp('Input x coordinate (stX), starting point of t
Function');
disp(‘for which you wish to calculate TRAVEL TIME:'

stX =input(‘'stX ? ="); %Starting point of tr

if stX<X0
disp('Too small stX?";
disp('Try the code again with larger stX value'
return;

end

if stX>XL
disp('Too large stX");
disp('Try the code again with smaller stX value
return;

end

stPt=round((stX-X0)/step+1);

qF=Q(stPt);

if gF==0
disp('Coordinate stX coincides with water divid
disp('There is no advection along qF=0 infor th
disp('TRAVEL TIME TO ANY POINT along gF=0is IN
disp('You may start again with command travelT

slightly")
disp('Code is terminated")

m function

on that
of plume
of plume

he stream
);

avel

e and gF=0."

is model. Thus,")
FINITY")

ime CHANGING stX
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return
end
trajectoryCalculation
travelTimeCalculation
%End of travelTime
%

%trajectoryCalculation ~ Subscript of D1_Flow

%Finding the point on water table where stream func
%and calculating

znk=sign(gF);

if znk==1 Y%preparing arrays for qF>0
gX=zeros(1,xL-stPt+1); %array of x coordinate
jSt=1;
jFn=length(gX);

else %preparing arrays for gF<0
gX=zeros(1,stPt);
jSt=stPt;
jFn=1;

end

gElv=gX; %array for elevations qElv

i=stPt;

for j=jSt:znk:jFn %Calculating elevations of strea
aX()=X(i);
QEIV()=H(0)-(H()-hAQT())*(1-aF/Q(i);
i=i+znk;

end

%End of trajectoryCalculation

%

%travelTimeCalculation Subscript of D1_Flow

time=zeros(1,length(gX));

i=stPt;

for j=jSt:znk:jFn-znk %Calculating elevations of s
m1=(qElv(j)+qElv(j+znk)-hAQT(i)-hAQT(i+znk));
ds=sqrt(step”2+(qElv(j+znk)-qElv(j))"2);
time(j+znk)=time(j)+znk*arr_nEff(i)*m1*ds/2/qF;
i=i+znk;

end

time=time/365;

trvITm=[gX;time];

subplot(2,1,2)

plot(gX,time,'k");

grid on

xlabel('x coordinate (m)")

ylabel('time (years)’)

hold on

%Calculating travel time to location fniIX
disp('Do you want to know TRAVEL TIME to some LOCAT

tion starts

m function

tream function

ION?")
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disp('If YES, enter Y and strike "ENTER™)
disp('If NO, strike "ENTER"™:")
gw_='Thus, Y or N?';
reply=input(qw_,'s");
while reply=="Y"
disp('Enter coordinate X of the LOCATION of int
fnIX=input ('X? =);
answer=['travel time ="' num2str(time((fnIX-stX
disp(answer);
disp('If you want to continue, enter Y. Otherwi
key’);
reply=input(qw_,'s";
end
%End of travelTimeCalculation
%

erest’)
)step+1))];

se just strike ENTER
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