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Background

• Exposed to a complex mixture of pollutants

• Multipollutant models can be used to understand 
the health effects of exposure to mixtures

• Exposures typically estimated using ambient 
monitoring data but these may not adequately 
capture

– spatial and temporal coverage 

– exposures in different microenvironments

– infiltration 
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Background

• Differing degrees of exposure error across 
pollutants

• Previous focus on quantifying and accounting for 
exposure error in single-pollutant models 

• Examine exposure errors for multiple pollutants 
and provide insights on the potential for bias and 
attenuation of effect estimates in single and bi-
pollutant epidemiological models
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Objectives

Quantify the relationships among multiple pollutants and 
their associated exposure errors across exposure 
metrics 
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Use empirical values to determine the potential 
attenuation of coefficients in bi-pollutant epidemiologic 
models



Methods

1. Compare exposure metrics within- and across-
pollutants

2. Compare exposure errors within- and across-
pollutants

3. Using results from 1) and 2) calculate attenuation 
factors for single and bi-pollutant model coefficients
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Methods: Exposure Metrics
• Estimated daily exposures to ambient air pollution for 193 

ZIP codes in the Atlanta, GA (1999-2002) 

1. CS: Central-site measurements
– From SEARCH, ASACA, and U.S. EPA’s AQS monitoring networks

– 24-hr average concentrations (PM2.5, EC, and SO4)

– Hourly concentrations aggregated to 24-hr averages (CO, NOx) or 8-hr 
maximum (O3)

2. AQ: Air quality model estimates
– Combines local-and regional-scale model results

3. PE: Stochastic population exposure model estimates
– Stochastic Human Exposure and Dose Simulation Air Toxics (SHEDS-AT) 

model

Dionisio et al. (2013). “Development and evaluation of alternative approaches 
for exposure assessment of multiple air pollutants in Atlanta, Georgia." J Expos 
Sci Environ Epidemiol 23(6): 581-592.
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Methods: Exposure Error

• Exposure error, δ, is calculated as the difference 
between two exposure metrics:

– δspatial = AQ – CS; exposure error due to a lack of 
spatial refinement

– δpopulation = PE – AQ; exposure error due to lack of 
human exposure factors 

– δtotal = PE – CS; exposure error due to lack of both 
spatial variability and human exposure factors
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Methods: Attenuation Factors for Single Pollutant Models
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λ = attenuation factor

δ = exposure error

var (δ) = the variance across days of δ

xfine =  the exposure metric with the greater degree of refinement (i.e., 
increased spatial resolution, or inclusion of weighting by population factors)

var(xfine) = the variance across days of xfine

β = model coefficients

λ = 1 indicates no attenuation

λ = 0 indicates null results
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Methods: Attenuation Factors for Bi-pollutant Models
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λx1
= attenuation factor for pollutant x1 in a classical error, bi-

pollutant model, assuming pollutant x2 has no effect (��$= 0)

S = covariance of the more refined exposure metric for x1 and x2

V = covariance of the exposure errors for x1 and x2

Modified from Zeger et al. (2000). "Exposure measurement error in time-series 

studies of air pollution: concepts and consequences." Environmental Health 

Perspectives 108(5): 419-426.
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Results: Relationships between multiple 

pollutants and their associated 

exposure errors 
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Distributions of pearson correlations between daily exposure 

metrics (n= 193 zip codes)
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Normalized (divided by annual average CS measurement) ZIP 

code-specific exposure error estimates 
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Colored regions represent ZIP codes in the study area, blue and brown lines indicate major 
roads. 

Legend is grouped by percentile, where 5% = -0.85; 25% = -0.66; 50% = -0.18; 75% = 0.63; 
and 95% = 1.73.
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Map of δspatial for NOx in Atlanta, GA



Results: Attenuation Factors
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Attenuation factors due to δspatial
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Solid boxplots = single pollutant models; Dashed boxplots = bi-pollutant models
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Attenuation factors due to δpopulation

Solid boxplots = single pollutant models; Dashed boxplots = bi-pollutant models



Attenuation factors due to δtotal
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Solid boxplots = single pollutant models; Dashed boxplots = bi-pollutant models



Summary and Conclusions

• Attenuation of coefficients for bi-pollutant models, 
particularly for local pollutants (CO, NOx, EC)

• Spatially varying attenuation due to spatial variability 
(i.e. differences between zip codes) 

• More research are exploring multipollutant approaches
– Effects on model coefficients will depend on 

relationships between pollutants and their errors

• Next step: simulation study including the empirically 
determined covariance structures to quantify the effect 
on bi-pollutant model coefficients
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Attenuation Factors for a local-regional pollutant pair 
example 
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Results: Parameters impacting attenuation and 

bias in a bivariate pollutant modela
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a All values presented are median across all ZIP codes; b Var(δ) represents variance of normalized 
exposure error
* builds upon the hypothetical simulation presented in Zeger et al. (2000) 


