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ABSTRACT 30 

Sources of uncertainty involved in exposure reconstruction for short half-life chemicals were 31 

characterized using computational models that link external exposures to biomarkers.  Using 32 

carbaryl as an example, an exposure model, the Cumulative and Aggregate Risk Evaluation 33 

System (CARES), was used to generate time-concentration profiles for 500 virtual individuals 34 

exposed to carbaryl.  These exposure profiles were used as inputs into a physiologically based 35 

pharmacokinetic (PBPK) model to predict urinary biomarker concentrations.  These matching 36 

dietary intake levels and biomarker concentrations were used to (1) compare three reverse 37 

dosimetry approaches based on their ability to predict the central tendency of the intake dose 38 

distribution; and (2) identify parameters necessary for a more accurate exposure reconstruction.  39 

This study illustrates the trade-offs between using non-iterative reverse dosimetry methods that are 40 

fast, less precise and iterative methods that are slow, more precise.  This study also intimates the 41 

necessity of including urine flow rate and elapsed time between last dose and urine sampling as 42 

part of the biomarker sampling collection for better interpretation of urinary biomarker data of short 43 

biological half-life chemicals.  Resolution of these critical data gaps can allow exposure 44 

reconstruction methods to better predict population-level intake doses from large biomonitoring 45 

studies. 46 

 47 

 48 

  49 
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1.1 INTRODUCTION 50 

Biomonitoring is a relatively efficient and cost-effective means in which to measure compounds or 51 

their metabolites in blood, urine, or other specimen samples (CDC, 2009a; NRC, 2012). 52 

Biomonitoring is often used to track changes in exposures over time or to establish reference 53 

ranges for different population cohorts (e.g., gender, lifestage).  Biomarkers measured in 54 

biomonitoring studies may also support risk assessment when integrated with complementary data 55 

on epidemiology, toxicity, exposure, and pharmacokinetics (NRC, 2006).  One of the approaches 56 

for using biomarkers in risk assessment is to convert measured concentrations into intake doses 57 

(i.e., reverse dosimetry) for comparison against exposure guidance values already demonstrating 58 

risk connotation, such as the Environmental Protection Agency’s (EPA) Reference Dose (RfD) 59 

(NRC, 2006). 60 

Reverse dosimetry, however, is not a straightforward process.  Cross-sectional biomonitoring 61 

studies such as the CDC’s National Health and Nutrition Examination Survey (NHANES) (CDC, 62 

2009a) involve taking a single spot measurement for each individual.  Spot measurements reflect 63 

many interacting variables, such as timing of sample collection, as well as exposure sources, 64 

routes, magnitude, duration, and frequency.  Spot measurements also reflect the variability 65 

inherent in human pharmacokinetics, namely absorption, distribution, metabolism, and excretion 66 

(ADME) of a chemical in the body.  Collection of such information regarding these interacting 67 

variables, and its integration using physiologically based pharmacokinetic (PBPK) models, can aid 68 

in obtaining reasonable estimates for exposures based on biomarker data. 69 

PBPK models can predict the time course of a chemical’s and its metabolites’ (if applicable) 70 

concentrations in biological tissues under various exposure and pharmacokinetic scenarios.  71 

Several research groups have demonstrated the utility of PBPK models in conducting reverse 72 

dosimetry (Allen et al., 2007; Ellison et al., 2012; Liao et al., 2007; McNally et al., 2012; Tan et al., 73 
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2006a; Tan et al., 2006b; Ulaszewska et al., 2012).  Reverse dosimetry has also been conducted 74 

using simpler pharmacokinetic (PK) models (Lorber, 2009; Lu and Andres, 2012), ratio calculations 75 

(Bartels et al., 2012) methods (Georgopoulos, 1994; Roy and Georgopoulos, 1998), or Bayesian 76 

approaches (Allen et al., 2007; Sohn et al., 2004).   77 

Despite the large body of literature associated with using reverse dosimetry to estimate exposure 78 

concentration from biomarker data, efforts for evaluating such predictions have been hampered by 79 

the lack of corresponding measurements of biomarker data with “true” exposure conditions 80 

(Clewell et al., 2008).  Exposure reconstruction is challenged by the need for inferring exposures 81 

from extremely limited information commonly gathered in large-scale biomonitoring studies (e.g., 82 

biomarker data, body weight, and urine volume) for individuals. The objective evaluation of the 83 

appropriateness of different reverse dosimetry methods, influencing determinants of dose-84 

biomarker relationship, and errors in reconstructed dose estimates is difficult in the absence of 85 

matched exposure/biomarker measurements. As with prior exposure-dose modeling approaches 86 

(Knaak James et al., 2012), the current study utilized a combined exposure-PBPK model for 87 

carbaryl to generate corresponding time profiles of dietary intake doses and urinary biomarker 88 

concentrations in a virtual population.  Exposure-dose modeling approach has been previously 89 

applied to investigate health impacts from dermal dietary exposures to an organophosphate 90 

pesticide in members of general population (Ellison et al., 2012; Hinderliter et al., 2011; Price et al., 91 

2011).  In this current study, exposure-dose modeling is used to examine sources of variability in 92 

biomarkers of exposure and identify critical data gaps that might render the ability to reconstruct 93 

intake doses from biomarker data difficult. Our proposed approach can be applied to models for a 94 

wide variety of chemicals, and here carbaryl was selected as a case study to demonstrate the 95 

approach.     96 

Carbaryl is a widely used carbamate insecticide with a relatively short biological half-life of 9 hours 97 

(Feldmann and Maibach, 1974), whose routes of exposure include oral ingestion (via food and 98 
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water), as well as inhalation and dermal contact during application (Howard, 1991). The major 99 

metabolite 1-naphthol (1-N) is found in the urine of exposed individuals and is commonly used as a 100 

biomarker for carbaryl exposure (CDC, 2009b; Meeker et al., 2007).  PBPK models for carbaryl in 101 

rats and humans have previously been developed (Nong et al., 2008; Yoon et al., 2015; Yoon et 102 

al., 2012) to predict the disposition of both carbaryl and 1-N.  In addition, within-day exposure 103 

profiles (magnitude, frequency, and duration) for food and water exposure from the use of carbaryl 104 

is available from the Cumulative and Aggregate Risk Evaluation System (CARES) (ILSI, 2009) 105 

making carbaryl an ideal candidate for a case study to compare reverse dosimetry approaches and 106 

to investigate critical data needs.  The two objectives of this study were to: (1) compare three 107 

PBPK model-based reverse dosimetry approaches based on their ability to predict the central 108 

tendency of the intake dose distribution; and (2) identify information necessary for a more accurate 109 

dose intake estimate from biomarker data of short biological half-life chemicals.  110 
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METHODS 111 

Estimating dietary exposures to carbaryl using CARES 112 

A dietary exposure model, the Cumulative and Aggregate Risk Evaluation System (CARES) 113 

Version 3.0 (ILSI, 2009), was used to estimate carbaryl exposure from food and water 114 

consumption.  The CARES model has been formally reviewed and approved by the EPA’s Science 115 

Advisory Panel (USEPA, 2004)  and has been used by the EPA’s Office of Pesticide Programs 116 

(USEPA, 2006a; USEPA, 2006b; USEPA, 2007) to estimate carbaryl intake in the general 117 

population.  The CARES model combines data on food and water consumption with data on 118 

pesticide residues, such as carbaryl, in order to characterize variation in total dietary exposure in 119 

the U.S. population.  CARES produces sequential estimates for periods of up to one year with a 120 

resolution of 10 minutes.  CARES uses the Gower’s Similarity Coefficient to identify demographic 121 

and anthropometric records that correspond to individuals with statistically similar characteristics, 122 

such as gender and age.  Using this technique, year-long (365 days) dietary profiles (time-dose 123 

relationships of carbaryl exposures) were constructed for a set of simulated individuals (n=500) 124 

(Crop-Life-America, 2002).  125 

Dietary exposure from food and water was determined based on consumption data from the 126 

Continuing Survey of food Intake by Individuals (CSFII) from 1994-1996, and 1998 (USDA, 2000).  127 

The nationwide survey indicates the time of day a food and/or meal was consumed which allows 128 

the exposure to be characterized by each meal or eating event.  To allow the CSFII food 129 

consumption data to be expressed as raw agricultural commodities (RACs) or processed 130 

commodities, the Food Commodity Intake Database (FCID) was used to provide translation 131 

recipes (USEPA and USDA, 2000).  Additionally, the CSFII database contains water consumption 132 

data for indirect water (i.e., water added to foods and beverages during final preparation), and for 133 

water consumed directly.  A nationally representative water consumption survey has been 134 
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conducted to address how often, when, and how much water is consumed at specific times during 135 

the day (Barraj et al., 2009).  These data were incorporated into CARES to give the time of day 136 

information for water consumption.         137 

Simulating spot urinary 1-N concentrations using a PBPK model  138 

A human PBPK model for carbaryl (Yoon et al., 2012) was used to predict the disposition of the 139 

parent chemical (i.e., carbaryl, the active species for acetyl cholinesterase [AChE] inhibition) and 140 

the principal metabolite and primary biomarker used to indicate carbaryl exposure, 1-N.  The 141 

model was parameterized using human-specific in vitro-derived metabolic constants of carbaryl in 142 

combination with knowledge gained from modeling carbaryl kinetics and responses in the rat (see 143 

parameters used for the PBPK model in Supplementary Table 1).  The PBPK model predicts the 144 

urinary concentration of total 1-N (free, plus conjugates) as reported in biomonitoring studies.  For 145 

each of the 500 CARES individuals, the synthetic daily intake doses were added directly into the 146 

gut compartment of the PBPK model. 147 

Sensitivity Analysis of the PBPK model 148 

A local sensitivity analysis was conducted to identify PBPK parameters with the greatest influence 149 

on predicted 1-N urinary concentrations.  Seven days were sufficient for the model-predicted 150 

urinary 1-N excretion to reach pseudo steady state.  Three dose levels were tested: the 5th 151 

percentile, the 50th percentile, and the 95th percentile of the distribution of the largest single dose 152 

per day for all individuals (N = 365 days × 500 individuals =182,500).  These doses were 0.7359, 153 

35.09, and 154.9 ng carbaryl/kg body weight/day, respectively.  The elapsed time between the final 154 

dose at each level and the time of urine sampling was also fixed at one of three values: 1, 4, or 12 155 

h.  In summary, a sensitivity analysis of all model parameters was performed for nine separate 156 

cases, with each case being a unique combination of dose level and the elapsed time between 157 

dosing and urine sampling.  Model parameters (other than the one undergoing sensitivity analysis) 158 
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were set to their mean values (either the arithmetic mean or geometric mean, depending on the 159 

shape of the distribution for that variable).  Normalized sensitivity coefficients were computed by 160 

dividing the change in the urinary 1-N concentration by the change in the parameter value after 161 

perturbing the value by 0.1% of its mean.  Sensitive parameters were considered to be those with 162 

normalized sensitivity coefficients ≥ 0.1. 163 

Generating the Synthetic Data for Paired Intakes and Biomarkers 164 

Since reconstructing intermittent doses at random times from a single spot urine biomarker 165 

measurement proves difficult, the food and water exposure profiles simulated in the CARES model 166 

required simplification using two assumptions to generate synthetic daily intake doses: 167 

(1) Each of the 500 individuals received one dose per day, for 5 days.  This daily dose was the 168 

mean of 365 daily intake doses (sum of all intermittent doses within a 24 h period) from the 169 

CARES simulations, which will henceforth be referred to as the synthetic daily intake 170 

doses.   171 

(2) Each individual received a single daily dose at the same time each day (2:42 pm) in order 172 

to consistently simulate daily intake of contaminated food or water.  The time of exposure 173 

was the median of 365 time points at which the maximum dose occurred, unique to each 174 

individual.   175 

 176 

Each of the 500 CARES individuals was assigned a unique vector of parameter values: body 177 

weight (kg) was taken from the CARES model (range from 35.6 kg to 158.8 kg, with an average of 178 

74 kg), and sensitive parameters (results in Supplementary Table 2) were randomly chosen from 179 

their distributions (see Supplementary Table 1).  These distributions were truncated at ±1.96 X σ, 180 

where σ is the standard deviation. This truncation limited sampling to approximately the central 181 

95% of the total distribution and prevented extreme values from being sampled.  All non-sensitive 182 
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model parameters were fixed to their mean (see Supplementary Table 1).  This vector of sensitive 183 

and non-sensitive parameters is henceforth referred to as individual values for the synthetic 184 

individuals (known parameter values).  The model was then used to predict the rate of production 185 

of 1-N in urine, r(t) (ng/h) as a function of time for each individual. 186 

The model output, as a rate, required conversion to a spot urinary concentration (e.g., in ng/L), the 187 

units typically reported in biomonitoring studies.  This conversion was accomplished through the 188 

use of two equations.  The first equation used urine volume and the time between voids: 189 

Equation 1: 𝑐𝑐(𝑡𝑡𝑠𝑠) =  1
𝑉𝑉𝑢𝑢
∫ 𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑠𝑠
𝑡𝑡𝑠𝑠−1

= 1
𝑉𝑉𝑢𝑢

 [𝑚𝑚(𝑡𝑡𝑠𝑠) −𝑚𝑚(𝑡𝑡𝑠𝑠−1)], 190 

where 𝑐𝑐(𝑡𝑡) is the concentration of 1-N in urine (ng/L) at time t, Vu is the volume of the urine void 191 

(L), ts is the time of sampling (h), ts-1 is the time of the most recent urine void before the sampling 192 

time (h), r(t) is the mass flow rate of 1-N into the urine (ng/h), and m(t) is the cumulative amount 193 

(ng) of 1-N in urine.   194 

An alternative equation based on urine flow rate calculated the quantity of urine produced in a 195 

specified period of time.    196 

Equation 2: 𝑐𝑐(𝑡𝑡𝑠𝑠) =  �𝑟𝑟(𝑡𝑡𝑠𝑠)
𝑓𝑓𝑟𝑟 � � , 197 

where fr is the urine flow rate (L/h).   198 

For this study, values for urine volumes, time between voids, and urine flow rates were obtained 199 

from the NHANES 2009-2010 dataset (CDC, 2011).  The two methods for calculating the urine 200 

concentration from the model output were compared (See Table 1 for simulation description 201 

summary).  It was found that the predicted spot urinary 1-N concentrations using both equations 202 

were nearly identical (see Supplementary Figure 1).  Thus, the second equation, which required 203 

only one additional parameter (urine flow rate) rather than two parameters (urine volume and time 204 
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between voids), was used to compute spot urinary 1-N concentrations for the synthetic individuals.  205 

For each of the 500 CARES individuals, urine flow rate was randomly sampled from the NHANES 206 

2009-1010 dataset. 207 

The elapsed time between the final dose and spot urine sampling was constrained to be no more 208 

than 24 h.  The NHANES dataset includes a “sampling session” variable, which was used to assist 209 

in setting the time of spot urine sampling.  These sampling times were designated as occurring in 210 

the morning (8:00 am – 12:30 pm), afternoon (1:30 – 5:30 pm), or evening (5:30 – 9:30 pm).  The 211 

exact sampling time for each individual is kept confidential in NHANES, so a time was randomly 212 

assigned in our study from a uniform distribution in one of the sampling session windows.  Based 213 

on NHANES data collected between 1999 and 2010, 46.7% of simulated individuals were sampled 214 

in the morning, 35.7% in the afternoon, and 17.7% in the evening (see Supplementary Table 3).   215 

Since the time of daily exposure was fixed for each simulated individual, some biomarkers for 216 

some were sampled on the 5th day after the 5th dose, while biomarkers for others were sampled on 217 

the 5th day between the 4th and 5th dose. 218 

In summary, each of the 500 CARES individuals were assigned values for the following variables: 219 

a fixed daily dose of carbaryl which was the mean of his/her 365 CARES-simulated daily doses; a 220 

fixed time of exposure which was the mean of his/her 365 CARES-simulated time at which 221 

maximum dose occurred; a urine flow rate randomly sampled from NHANES 2009-2010; and a 222 

spot urine sampling time on the 5th day, randomly sampled from a distribution generated based on 223 

NHANES sampling sessions.  Next, using the PBPK model, a corresponding urinary 1-N 224 

concentration (CARES-predicted intake doses, PBPK-predicted urinary 1-N concentrations, and 225 

model parameter values are listed in Supplementary Table 4) was predicted using these inputs 226 

(see Supplementary Figure 1, Eq. 2, red dotted histograms).  These data were used in the 227 

subsequent analyses to compare three reverse dosimetry approaches.  The synthetic daily intake 228 

doses were fit to a log-normal distribution for ease of comparison to population distribution 229 



12 
 

estimates generated by reverse dosimetry approaches.  All simulations described in this article are 230 

summarized in Table 1. 231 

 232 

 233 

Comparing three reverse dosimetry approaches 234 

In the current study, three PBPK model-based reverse dosimetry approaches were evaluated: 235 

Exposure Conversion Factor (ECF), Discretized Bayesian (DBA), and Markov Chain Monte Carlo 236 

(MCMC) (Georgopoulos et al., 2009; Tan et al., 2006a).  For all three methods, the only “unknown” 237 

parameter estimated from the urinary 1-N concentrations was daily intake dose.  All other model 238 

parameters were kept the same for the synthetic individuals, using each method. Daily intake 239 

doses estimated from these three methods were compared to the synthetic daily intake doses.   240 

The ECF method required a Monte Carlo (MC) simulation of the PBPK/PD model, given a unit 241 

dose of carbaryl (1 ng/kg/day) (Liao et al., 2007; Tan et al., 2006a; Tan et al., 2006b).  In this 242 

analysis, however, MC randomization was not performed since the only “unknown” was the intake 243 

dose.  Rather, a distribution of 500 urinary 1-N concentrations was generated by running the PBPK 244 

model using the same parameter values as those generated from the synthetic data, given a unit 245 

dose of carbaryl.  Next, the reciprocal of the distribution of predicted urinary 1-N concentrations 246 

(generated from the unit dose) was calculated as the ECF distribution, in units of 
ng carbaryl

kg body weight
ng 1-N
L urine

� .  247 

The ECF distribution was then convolved with the distribution of synthetic urinary 1-N 248 

concentrations to obtain an estimate of the distribution of daily intake doses of carbaryl.  The ECF 249 

method is only applicable when the dose-biomarker relationship is linear.  The other two methods 250 

(DBA and MCMC) do not require this assumption. 251 

The DBA method was based on Bayes’ formula (Liao et al., 2007; Tan et al., 2006a): 252 
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Equation 3: �𝐶𝐶𝑗𝑗�𝑁𝑁� = 𝑃𝑃(𝑁𝑁|𝐶𝐶𝑗𝑗)𝑃𝑃(𝐶𝐶𝑗𝑗)
∑ 𝑃𝑃�𝑁𝑁�𝐶𝐶𝑖𝑖�𝑖𝑖 𝑃𝑃(𝐶𝐶𝑖𝑖)

 , for i,j= 1,2, … , T 253 

where C is the intake dose of carbaryl, N is the urinary 1-N concentration, P(Cj|N) is the probability 254 

of a carbaryl intake concentration, Cj, given an observed urinary 1-N concentration, N; P(Cj) is the 255 

prior distribution for the discrete carbaryl doses, Cj; and P(N|Cj) is the probability of a urinary 1-N 256 

concentration, N (predicted by a model that describes the dose-biomarker relationship), given a 257 

carbaryl dose, Cj. T is the total number of discrete carbaryl doses Cj and corresponding predicted 258 

urinary 1-N concentrations, Nj.   259 

The ability to specify a prior distribution for exposure concentrations and to handle a non-linear 260 

dose-biomarker relationship differentiates the DBA from the ECF method.  A MC simulation was 261 

run for each of the T discrete exposure doses to generate distributions of P(N|Cj).  The prior 262 

exposure concentrations, Cj, were selected to cover the range of possible doses and the non-263 

linear range of the dose-biomarker relationship.  This matrix for P(N|C) involved rows 264 

corresponding to the number of exposure concentrations tested (T) and columns corresponding to 265 

the number of MC iterations.  The matrix for P(N|C) was then transformed into the posterior, 266 

P(C|N) using the equation above. The transformed matrix was then multiplied by the distribution of 267 

observed biomarker concentrations, P(Nobs), to obtain the estimated distribution of carbaryl 268 

exposure for the population, P(C), according to Equation 4.  269 

Equation 4: P(C) = P(C|N) X P(Nobs). 270 

In our analysis, the discrete carbaryl daily doses ranged from 10-2 ng/kg/day to 106 ng/kg/day, with 271 

increments on a log10-scale by 100.08 (T=101).  This range was chosen based on the result of the 272 

ECF method, after adding a buffer of one order of magnitude.  Both ECF and DBA are 273 

deterministic methods.  Parameter values for each of the 500 CARES individuals were used to 274 

generate a predicted urinary 1-N concentration at a given dose.  The total number of simulations 275 
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for the DBA method was 500 parameter sets × 101 unique doses = 50,500 iterations.  Two priors 276 

of carbaryl intake P(Cj) were used:  277 

(1) A uniform prior (for each carbaryl intake dose Cj, the probability was the same, [10-2, 106] 278 

ng/kg/day), and 279 

 (2) A biased prior (a normalized lognormal distribution with a geometric mean of 1× 103 ng/kg/day 280 

and a geometric standard deviation of √10, and the prior was truncated at 1 ng/kg/day and 106 281 

ng/kg/day).   282 

The first prior was chosen to represent a non-informative case, in which only the bounds on intake 283 

doses were suggested.  The second prior was chosen to represent a situation in which supporting 284 

data provided a reasonable mean exposure value; this second prior was approximated by a 285 

lognormal distribution with a large standard deviation to capture uncertainty.  Even when a prior is 286 

supported, it may impose bias as it relates to the biomonitoring data used in reverse dosimetry.  287 

We wished to observe whether DBA could correct for this bias in the prior.  Both ECF and DBA 288 

methods were executed using the web-based tool, PROcEED (Grulke et al., 2013) 289 

http://www.epa.gov/heasd/research/proceed.html). 290 

The MCMC approach used an iterative application of Bayes’ theorem, with the distributions 291 

regarded as continuous rather than discrete (McNally et al., 2012; Ulaszewska et al., 2012).  In 292 

other words, MCMC was not confined to the range of exposure values given in the priors, in 293 

contrast to what was seen in the case of the DBA method.  Specifically, 𝑃𝑃(𝐶𝐶|𝑁𝑁) ∝ 𝑃𝑃(𝐶𝐶)𝑃𝑃(𝑁𝑁|𝐶𝐶), 294 

where P(C) is the prior distribution for intake doses of carbaryl, P(N|C) is the likelihood function, 295 

and P(C|N) is the posterior distribution of the carbaryl exposure given the observed urinary 1-N 296 

concentrations.  MCMC algorithms stochastically approximate the joint-posterior distributions 297 

without having to sample the entire space and were particularly well-suited for solving non-linear 298 

inverse problems.  In this study, the deterministic PBPK model was configured to run with the 299 
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population means and standard deviations for its kinetic and metabolic parameters (see 300 

Supplementary Table 1).  The priors for the population mean intake were set based on a 301 

normalized lognormal distribution with a geometric mean μC = 100 ng/kg/day and geometric 302 

standard deviation of 200, truncated at 10-4 ng/kg/day and 1 × 105 ng/kg/day.  The priors for the 303 

population variance were set based on a normal distribution with a mean μC = 100 ng/kg/day and 304 

standard deviation of 50 ng/kg/day, truncated at 10-4 ng/kg/day and 103 ng/kg/day.  These priors 305 

were based on the results from the ECF and DBA methods (DBA: uniform prior) since both 306 

methods had similar distributions and a large standard deviation.  The function, N=f(C), represents 307 

the PBPK model for carbaryl using dose, C (ng/kg/day), as input and 1-N concentrations in urine, 308 

N (ng/L), as output.  The input, “C”, was inferred by estimating the distributions of population mean 309 

and variance (Bois, 2000) using AcslX (The AEgis Technologies Groups, Inc., Huntsville, AL).  It is 310 

a common practice to remove the burn-in from the resulting chains, and thus, the first 7,000 311 

iterations were removed in our analysis.  Fifty sets of mean and variance were selected from the 312 

MCMC output chains to generate 50 possible distributions of “C”, and then 500 values were 313 

randomly selected from each of the 50 distributions to obtain 25,000 “C” possibilities, which 314 

contributed to the final estimates of the distribution of “C”.   315 

 316 

Evaluating the value of information in exposure reconstruction 317 

The approach presented above allowed us to evaluate the efficiency of different reverse dosimetry 318 

methods in reconstruction of daily intake doses when these doses were the only unknown (referred 319 

to as “all parameters known”).  The impact of missing information in exposure reconstruction was 320 

evaluated by (1) setting all parameter values to their means, (2) setting individual parameter values 321 

to either (2) their known value, or (3) a random value from population distributions supported by 322 

literature.   The parameters we tested in this analysis were: (1) elapsed time between the final 323 



16 
 

dose and urine biomarker sampling (potentially measurable), (2) urine flow rate (potentially 324 

measurable), and (3) urinary elimination rate of 1-N and its metabolites (the most sensitive 325 

parameter from the local sensitivity analysis, but not directly measurable in humans). 326 

A common practice for reconstructing daily intake doses based on real-world biomarker data 327 

involves setting model parameters to their respective means, which is assumed to result in 328 

reasonable estimates in the absence of measured data.  Thus, in this first analysis (Case 1), 329 

certain model parameters of interest were replaced with their respective means.   330 

Case 1 (Means): All of the parameters being tested were set to their means. 331 

(1) The elapsed time between the final dose and urine sampling was set to -0.865 332 

hours (after the fourth day’s dose, but just before the fifth day’s dose).  This was 333 

the mean from our 500 synthetic individuals. 334 

(2) The urine flow rate was set to 0.6526 mL/min based on the mean of NHANES 335 

2009-2010 (CDC, 2011) . 336 

(3) The most sensitive PBPK parameter, the urinary elimination rate was set to its 337 

mean, 0.2/h/kg-1/4 (Yoon et al., 2012). 338 

The MCMC method, with the same priors as described above, was used to reconstruct daily intake 339 

doses to investigate the impact of using population means for all model parameters on 340 

reconstructing population intakes (Case 1). 341 

In the next two components of the analysis (Cases 2 and 3), all parameters were set to their mean 342 

values, except for the three parameters mentioned above (e.g., elapsed time between dose and 343 

sampling, urine flow rate, and urine elimination rate).  Rather than using the means for all three 344 

parameters as with case 1, two parameters were set to their means one at a time, while the third 345 

was altered as described below for each individual case:  346 
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Case 2 (Default): The parameter being tested was assigned independently to the synthetic 347 

individual values used to generate the urinary 1-N concentrations.  This case corresponds to a 348 

situation in which measurements of the elapsed time, urine flow rate, or urinary elimination rate 349 

are collected as part of a biomonitoring study. 350 

Case 3 (Random): The parameter being tested was randomly selected from a distribution:  351 

(1) A normal distribution for elapsed time between the final dose and urine sampling, 352 

telapsed~ N(-.86523, 6), in hours.  This distribution was obtained from the synthetic 353 

individuals, with a wider standard deviation to account for uncertainty. 354 

(2) A lognormal distribution for the urine flow rate with a geometric mean of 0.6526 mL/min 355 

and a geometric standard deviation of √10.  This distribution was obtained from 356 

NHANES 2009-2010 (CDC, 2011) , with a wider standard deviation to account for 357 

uncertainty. 358 

(3) A lognormal distribution for the urinary elimination rate of 1-N, with a geometric mean of 359 

0.2/h/kg-1/4 and a geometric standard deviation of 1.  This distribution was obtained from 360 

the literature based on animal values (Knaak, 1968; May et al., 1992; Yoon et al., 361 

2012), with a wider standard deviation to account for uncertainty.  362 

Case 3 is similar to setting all parameter values to their respective means (Case 1); however, 363 

the parameter distribution was inferred from other information in addition to the mean values.   364 

For example, the exact time of exposure events may not be recorded in the biomonitoring 365 

study, but the general time frame for sampling collection might be known (e.g., between 9 am 366 

and 5 pm).  Or, urine flow rate may be estimated from a carefully measured urine void volume 367 

and self-reported time between voids, which were subject to uncertainty inherent in human 368 

recalls.  Or, a distribution of urinary elimination rate of 1-N may be obtained from the literature 369 

since this parameter is only measurable in animals.   370 



18 
 

As described earlier, the burn-in of 7,000 iterations were removed in all cases, except when 371 

examining the influence of urinary elimination rate.  Because the Markov chain converged faster 372 

when updating urinary elimination rate, only the first 3,000 iterations were removed.  These six 373 

additional trials (from Cases 2 and 3:  3 parameters × 2 cases) aided in the evaluation of the value 374 

of incorporating additional information for specific parameters, using the MCMC method.   A 375 

summary of the different simulations and analyses described above is given in Table 1. 376 

A Welch t-test was conducted to determine if the means of each of the MCMC posterior 377 

distributions of intakes were significant different than the mean of the CARES-synthetic intake 378 

distribution.  This test was repeated for each of the MCMC simulations. 379 

 380 

  381 
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RESULTS 382 

The CARES model was used to estimate daily carbaryl intake doses for 500 simulated individuals, 383 

which were then fit to a log-normal distribution (Figure 1).  These synthetic intake doses were then 384 

compared against other “reconstructed doses” (Tables 2 and 3).  The CARES-synthetic geometric 385 

mean was 70 ng/kg/day, and the geometric SD was 4.1 (Table 2).  Comparison of the population 386 

distribution estimates of carbaryl daily intake doses from the three reverse dosimetry methods with 387 

the distribution of the CARES- synthetic daily intake doses showed that all three methods were 388 

reasonably good at estimating the mean of the distribution (Table 2).  The estimated geometric 389 

mean daily intake was 97, 100, 251, and 92 ng/kg/day for the ECF, the DBA (uniform prior), the 390 

DBA (biased prior) and MCMC, respectively (Table 2).  The mean intake doses estimated by the 391 

three reverse dosimetry methods (ECF, DBA: uniform prior, and MCMC) were more similar to each 392 

other than to the mean CARES-simulated dose, and all three methods overestimated the mean 393 

intake dose (Table 2).  The ECF and the DBA (both priors) methods provided similar estimates of 394 

the population SD, but both these estimates were significantly larger (about 200 times) than the 395 

CARES-synthetic SD.  On the other hand, the MCMC-estimated geometric SD was 4.5, which was 396 

fairly similar to the CARES-synthetic geometric SD. Thus, out of the three reverse dosimetry 397 

methods, MCMC performed the best in our dose reconstruction analysis.    398 

Comparing the posterior distributions obtained from two different priors in the DBA method, the 399 

posterior mean updated from the uniform prior was more similar to the population geometric mean 400 

of the CARES-synthetic intake doses (Figure 2a, black line vs blue dashed-dotted line).  While the 401 

posterior mean updated from the non-uniform (biased) prior remained biased (Fig 2b. black line vs 402 

blue dashed-dotted line), the posterior mean was improved compared to its prior (Fig 2b, black line 403 

vs red dotted line).  Additionally, the posterior distribution updated from the non-uniform prior was 404 

tighter and more precise, though less accurate, than that updated from the uniform prior (Figure 2).   405 
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Next, the impact of missing information was evaluated.  The MCMC analysis from the method 406 

comparison was included for purposes of comparison.  The distribution generated assuming “all 407 

parameter values are known” had a GM of 92 ng/kg/day, and a GSD of 4.5; while the distribution 408 

generated by “setting all parameter values to their respective means” (case 1) had a geometric 409 

mean of 47 ng/kg/day, and the geometric SD was 0.8 (Table 3).    410 

For five of the six MCMC trials, the inferred GM (ranging from 352 to 690 ng/kg/day) overestimated 411 

the CARES-synthetic GM (70 ng/kg/day) by one order of magnitude (Table 3).  The only exception 412 

was for the case in which urine flow rates were randomly selected from a distribution (Table 3, 413 

“Urine Flow Rate, MCMC-random”).  In this case, the geometric mean, 45,968 ng/kg/day, was 414 

three orders of magnitude greater than that of the CARES-synthetic daily intake doses (Table 3).  415 

All six MCMC trials overestimated the geometric SD (ranging from 59 to 30,055).  Again, the “Urine 416 

Flow Rate, MCMC-random” case resulted in the largest estimate of the geometric SD (Table 3).  417 

Intake doses in the “Urinary Elimination Rate, MCMC-default” and the Urinary Elimination Rate, 418 

MCMC-random” cases were similar to each other, with slightly less error in the MCMC-random 419 

case (Table 3).  Estimated intake doses for the elapsed time and urine flow rate, MCMC-random 420 

cases showed a larger geometric mean/SD than did intake doses in the MCMC-default cases for 421 

both parameters (Table 3).  However, the performance of the dose reconstruction was extreme in 422 

both cases for urine flow rate. MCMC-default (Case 2: urine flow rate) performed the best among 423 

the six cases, while the MCMC-random (Case 3: urine flow rate) performed the worst among the 424 

six cases (Table 3).  This finding indicates that knowledge of urine flow rate is critical when 425 

attempting to reconstruct doses based on urine metabolites of short half-life chemicals.   426 

A Welch’s t-test revealed that the means of each of seven out of the eight MCMC distributions 427 

were significantly different (0.05 level) from the mean of the CARES-synthetic distribution (Table 428 
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3). When all parameters were set to their means (Case 1) the mean of the MCMC distribution was 429 

not significantly different than the mean of the CARES-synthetic distribution.   430 
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DISCUSSION 431 

In their publication “Exposure Science in the 21st Century”, the National Research Council reported 432 

that biomarker data “will be essential for evaluating the efficacy of exposure reduction policies, and 433 

for prioritizing and assessing chemical risks” (NRC, 2012).  One way to achieve these goals is to 434 

convert biomarker data to intake doses for comparison to an established exposure guidance value.  435 

Exposure guidance values are usually determined through animal toxicity studies, in which 436 

administered target tissue doses are known and measurable.  In humans, however, most target 437 

organs cannot be examined, and often only biomarkers in accessible media can be collected.  Due 438 

to the difficulty in directly associating biomarker measurements with target tissue doses, the 439 

common approach for biomarker use in risk assessment is conversion of its concentration to an 440 

exposure level.  One basic assumption that is often ignored with this approach is that the 441 

biomarker should have a strong, direct correlation with intake doses (LaKind et al., 2014).  In cases 442 

where the biomarker is a poor surrogate of intake doses, which often occurs for short half-life 443 

chemicals, these biomarker measurements are only suitable for trend analysis (e.g. do biomarker 444 

concentrations change with time?) or comparison among different groups (e.g. male/female).      445 

In the current study, the ability of three different reverse dosimetry approaches to reconstruct 446 

intake doses was investigated using model-simulated data.  Corresponding intake doses, 447 

physiological measurements, and pharmacokinetic data are rarely collected in conjunction with 448 

biomarker measurements.  Thus, the most viable approach is to generate “unmeasured” data 449 

using models (Georgopoulos et al., 2009; Phillips et al., 2014a; Phillips et al., 2014b).  For 450 

example, Georgopoulos et al., (2009) also compared the performance of the ECF and the DBA 451 

models using actual biomarker data with known exposure data or “synthetically augmented” data 452 

(i.e., missing information was filled using randomly sampled values from distributions) and found 453 

that reconstruction using the synthetic data better facilitated the evaluation of reverse dosimetry 454 

methods and characterization of the value of additional information.     455 



23 
 

In our study, comparison of the three reverse dosimetry approaches in reconstruction of intake 456 

doses based on urinary biomarkers suggests that MCMC exhibited the best capability at identifying 457 

the population variance.  The use of the MCMC, however, requires increased computational 458 

resources compared to the other two methods explored in this study. Seventy-two hours was 459 

necessary for the completion of a hierarchical analysis on a quad-core 2.2 GHz i7 MacBook, while 460 

only minutes were necessary for completion of the ECF and the DBA models using PROcEED 461 

(Grulke et al., 2013).  Further computational/runtime improvements may be possible if the 462 

population size was reduced from 500 individuals, as the number of simulation runs required per 463 

MCMC iteration scales with the number of individuals.  Such reduction, however, is unlikely to be 464 

realistic when interpreting biomarker results from large-scale studies, such as NHANES.  465 

Other reverse dosimetry approaches that are not evaluated in the current study, such as 466 

optimization or trial-and-error approach (Mosquin et al., 2009; Roy and Georgopoulos, 1998) and 467 

“multiplier” (e.g., fraction of total dose in urine) can back-calculate intake doses from biomarker 468 

data (Lakind and Naiman, 2008; Lorber et al., 2011; Payne-Sturges et al., 2009).  The 469 

performance of the “multiplier” approach depends solely upon the accuracy of the “multiplier”, and 470 

the performance of the optimization approach is highly related to the optimization routine selected.  471 

Bayesian approaches, such as the DBA method examined in the current study, can also be 472 

implemented as an optimization scheme.        473 

Given that the MCMC method exhibited the ability to closely infer the population mean and 474 

variance of synthetic daily carbaryl intakes simulated from CARES, this modeling approach was 475 

also used to evaluate the impact on reconstructed doses from uncertainty in specific parameters.  476 

Case 1, which is the only MCMC case that estimated a population mean not significantly different 477 

from the CARES-synthetic mean, is analogous to representing the entire population using an 478 

“average individual”.  Thus, the estimated average intake dose adequately reflects the CARES 479 

average synthetic intake dose.  This finding is consistent with the general agreement that the 480 
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central tendency of the distribution of biomarker concentrations is to reflect long-term average 481 

exposures in a population (Aylward et al., 2012; Pleil and Sobus, 2013; Rao et al., 2012).  Since 482 

the only variability in this case came from urinary 1-N (biomarker) concentrations (all parameters 483 

were set to their means), the estimated SD was the smallest among all cases.        484 

The MCMC case in which all parameter values were “known” and independently assigned for 485 

individuals would have been expected to provide the best estimates of intake dose.  While the 486 

estimated mean from this case slightly overestimated the CARES-synthetic mean, this MCMC 487 

case did provide the best estimate of the overall distribution (Table 3).   In addition to the variability 488 

in urinary 1-N concentrations, this MCMC case also included the variability in PBPK parameters, 489 

urine flow rate, and time of urine sampling.  The inclusion of these parameter values provided 490 

sufficient information for updating the intake estimates.  As a result, this MCMC case was able to 491 

predict a similar variance as the CARES-synthetic distribution.    492 

In our simulation study, the value for each parameter was known, which made the MCMC-default 493 

case possible (MCMC from method comparison, and Case 2).  In real life, however, it is not often 494 

feasible to collect a specific piece of information from each individual in a population.  In some 495 

cases, certain data (e.g., time between urine voids) can be collected as part of the biomonitoring 496 

study if the study designers are aware of these parameters’ importance.  Often, information is 497 

available only at the population level, and the value of an unmeasured parameter may be 498 

estimated based on the central tendency of a distribution (set all parameter values to their means) 499 

or the entire distribution for the population (randomly select parameter values from distributions).   500 

Out of the three parameters selected for evaluating the impact of missing information in this study, 501 

urine flow rate was the most influential on the performance of the dose reconstruction.  Dose 502 

reconstruction using MCMC requires the comparison of model predictions to measured biomarker 503 

data, in this case the concentration of 1-N in urine, to update the intake dose estimates.  Urinary 1-504 
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N concentration is calculated by dividing the PBPK model-predicted mass flow rate of 1-N into the 505 

urine (ng/h), r(t), by the urinary flow rate, fr (see the flow rate calculation, Eq. 2).  In other words, a 506 

single urinary 1-N concentration may be calculated from infinite combinations of model-predicted 507 

1-N excretion rates and urine flow rates (i.e., no unique solution).  As a result, MCMC was unable 508 

to estimate a reasonable intake distribution when urine flow rate was allowed to vary (“Urine Flow 509 

Rate, MCMC-random”, Case 3, Table 3).  Alternatively, when fr was assigned using each 510 

individual’s value (“Urine Flow Rate, MCMC-default”, Case 2, Table 3), the reconstructed mean 511 

intake dose was the closest (of the six presented cases) to the CARES-simulated mean despite a 512 

significant difference still existing between the two means.  Another study that examined 513 

contributors to biomarker variability, assuming a single dose, also identified variability in urine flow 514 

rate as a major influence compared to variability in other physiological or pharmacokinetic 515 

parameters (Phillips et al., 2014a).  In 2009-2010, urine flow rates began being included in the 516 

NHANES sampling data set  (CDC, 2011).  To accomplish this, volume of urine was collected and 517 

participants were asked to recall the time of their last void.  Urine flow rate was obtained by 518 

dividing urine volume by the time between voids.  This is a promising step towards fixing data gaps 519 

in the use of biomarker data to understand exposure, although it should be noted that uncertainties 520 

in recollection of void times could still lead to data inaccuracies.       521 

The second circumstance in which it proved difficult to predict a parameter value was 522 

demonstrated through the uncertainty in the parameter investigated: elapsed time between the 523 

final dose and the time of urine sampling.  For short half-life chemicals, a larger intake dose with 524 

longer elapsed time and a smaller dose with shorter elapsed time may result in the same 525 

biomarker concentrations.  Comparing between the two MCMC cases, “Elapsed Time, MCMC-526 

default” and “Elapsed Time, MCMC-random”, (Cases 2 and 3, respectively, Table 3), the difficulty 527 

of accurately estimating the magnitude of intake doses was demonstrated when the elapsed time 528 

between the final exposure dose and urine sampling is not recorded in a biomonitoring study 529 
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(Case 3: MCMC-random).  Both elapsed time and urine flow rate (or, alternatively, the void volume 530 

and time between voids) are data that can be collected easily.  The accuracy of these values can 531 

be greatly improved when the study managers are made aware of importance of recording these 532 

data rather than having the participants recall the information.   533 

The third parameter investigated in our study was the urine elimination rate.  The estimated intake 534 

doses were similar whether this parameter was set to known values (“Urine Elimination Rate, 535 

MCMC-default”, Case 2) or assigned randomly from a distribution (“Urine Elimination Rate, 536 

MCMC-random”, Case 3) (Table 3).  In other words, randomly sampling from a distribution was 537 

appropriate enough to represent the urine elimination rates for individuals.  This finding is 538 

reassuring because urine elimination rate is not measurable in humans, and its distribution may be 539 

obtained from animal studies.   540 

We generally found that all of the six cases (MC-default and MCMC-random) overestimated the 541 

population mean and variance of the carbaryl intake doses compared to the MCMC case in which 542 

all parameters were set to their respective means.  A likely explanation for this overestimation is 543 

that urine flow rates and urine elimination rates are log-normally distributed.  This implies that 544 

values much larger than the geometric mean were included in the MCMC analysis, resulting in 545 

larger estimations of intake doses.  While the elapsed time between the final dose and urine 546 

sampling was assumed normally distributed, we did increase the SD of the distribution to account 547 

for uncertainty.  As a result, much longer elapsed times were included in the MCMC analysis, also 548 

resulting in higher estimated intake doses.    549 

  550 
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CONCLUSIONS 551 

In conclusion, our study has illustrated the trade-offs between using non-iterative methods for 552 

exposure reconstruction (e.g. ECF, and DBA) vs. iterative methods (e.g. MCMC), as well as the 553 

impact of uncertainty in specific model parameters in exposure reconstruction methods.  This study 554 

has demonstrated the importance of including measurements for urine flow rate (or volume of void, 555 

and time between voids) and elapsed time between last dose and urine sampling as part of the 556 

biomarker sampling collection.  Including these measurements in biomonitoring studies will 557 

facilitate more accurate exposure reconstruction, allowing for interpreting biomarker data in a risk 558 

context.  Without these measurements, the uncertainty surrounding exposure estimates may 559 

dramatically limit the interpretation of biomarker results.  If critical data gaps can be resolved, 560 

especially for unidentifiable model parameters, exposure reconstruction methods (e.g. MCMC) can 561 

be utilized to better predict population-level intake doses from large biomonitoring studies. 562 

 563 
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 Table 1. Descriptions of simulations presented in this article. 709 

 710 
Simulation Description Exposure Scenarios Model Outputs 

Sensitivity 
Analysis 

Determine the most 
sensitive PBPK model 
parameters. 

One dose per day at 
2:42pm.  3 doses tested 
corresponding to 5th, 50th, 
and 95th percentile of 

Normalized sensitivity 
coefficients for the 
PBPK model 
parameters. 

http://www.epa.gov/pesticides/cumulative/common_mech_groups.htm#triazine
http://www.epa.gov/pesticides/cumulative/carbamate_background.htm
http://www.ars.usda.gov/Services/docs.htm?docid=14514
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CARES daily doses.  3 
elapsed times between daily 
dose and urine sampling 
were tested 1, 4, and 12 
hours.  All other parameters 
were set to their means. 

Computation 
of biomarker 
concentration 
from model 
output  

Two different methods 
for calculating 
biomarker concentration 
were compared 
(volume, and flow rate 
calculations) 

Random week of intermittent 
exposures from food and 
water as specified in the 
CARES model for 500 virtual 
individuals.  All other 
parameters were set to the 
synthetic individual values. 

Single spot urinary 1-
N concentrations 
based on both volume 
and flow rate 
calculations (500 
each). 

Synthetic 
intakes and 
biomarkers 
(paired data) 

Model-generated 
corresponding dose-
biomarker dataset for 
exposure 
reconstruction.  

One dose per day for 5 days, 
dose is the mean of 365 
daily doses, given at the 
median time when the 
maximum dose occurred 
over 365 days. Flow rate 
calculation was used.  
Parameters were set to 
synthetic individual values. 

Paired daily intakes 
and corresponding 
spot urinary 1-N 
concentrations 
(biomarker) for 500 
synthetic individuals. 

Simulation 
for the ECF 
method 

The dose-biomarker 
relationship for 
converting biomarker 
concentrations to doses 
in the ECF method. 

1 ng/kg/day for 5 days given 
at the median time when the 
max dose occurred over 365 
days.  All other parameters 
were the same as the 
synthetic individuals (n=500). 

500 single spot 
urinary 1-N 
concentrations based 
on the flow rate 
calculation compared 
to synthetic 
biomarkers, to 
estimate the intake 
distribution. 

Simulation 
for the DBA 
method 

The dose-biomarker 
relationship for 
converting biomarker 
concentrations to doses 
in the DBA method. 

Intake doses ranged from 
10-2 to 106 ng/kg/day, 
incrementing on a log10-
scale by 100.08(N=101), each 
dose was repeated for 5 
days. All other parameters 
were the same as the 
synthetic individuals (n=500). 

500 single spot 
urinary 1-N 
concentrations based 
on the flow rate 
calculation (for each 
of the 101 intakes), 
which were compared 
to synthetic 
biomarkers, to 
estimate the intake 
distribution. 

MCMC for 
Method 
Comparison, 
all 
parameters 
known. 

In a single MCMC 
iteration: For each 
updated prior of 
exposures, biomarkers 
are predicted for the 
population and 
compared to the 
synthetic biomarkers. 

One dose per day for 5 days, 
given at the median time 
when the max dose occurred 
over 365 days.  The 
distribution of exposure dose 
is updated at each step of 
the MCMC. All other 
parameters were the same 

Single spot urinary 1-
N concentrations 
(based on the flow 
rate calculation, 
n=500 per MCMC 
iteration), compared 
to synthetic 
biomarkers to 
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as the synthetic individuals 
(n=500) 

estimate posterior 
distribution of intakes. 

MCMC, for 
testing 
different 
parameters 
of interest:  
Case 1, 
All 
parameters 
set at their 
mean. 

For each updated prior 
of exposures, 
biomarkers are 
predicted for the 
population and 
compared to the 
synthetic biomarkers.   

One dose per day for 5 days, 
given at the median time 
when the max dose occurred 
over 365 days.  The 
distribution of exposure dose 
is updated at each step of 
the MCMC.  All parameters, 
including the time of 
sampling, were set to their 
respective means. 

500 single spot 
urinary 1-N 
concentrations (based 
on the flow rate 
calculation), per 
MCMC iteration.  
These biomarker 
concentrations were 
compared to the 
synthetic biomarkers 
to estimate posterior 
intake distribution. 

MCMC, for 
testing 
different 
parameters 
of interest: 
Case 2 
(Default) 

Same as above. Same as above, except that 
the parameter of interest 
was set to known individual 
values, and all other 
parameters were set to their 
mean. 

Same as above. 

MCMC, for 
testing 
different 
parameters 
of interest: 
Case 3 
(Random) 

Same as above. Same as above, except that 
the parameter of interest 
was set to randomly selected 
individual values from a 
distribution, and all other 
parameters were set to their 
mean. 

Same as above. 

 711 

  712 
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TABLE 2. Comparing the geometric means and geometric standard deviations for carbaryl intake 713 

dose estimated from CARES against those reconstructed using the Exposure Conversion Factor 714 

(ECF), the Discretized Bayesian Approach (DBA) using the both the uniform prior and the biased 715 

prior, and Markov Chain Monte Carlo (MCMC) methods.   716 

   
Geo. Mean 
(ng/kg/day) Geo. Std. Dev.  

  CARES-synthetic daily intake 70 4.1 
 ECF-reconstructed daily intake 97 787 
 DBA-reconstructed daily intake (uniform) 100 795 
 DBA-reconstructed daily intake (biased) 251 663 
 MCMC-reconstructed daily intake  92 4.5 

 717 

  718 
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Table 3. Comparing the geometric means and geometric standard deviations for carbaryl intake 719 

dose estimated from CARES against those reconstructed from Markov Chain Monte Carlo 720 

(MCMC) methods assuming either all parameters were known (from method comparison analysis) 721 

or set to their respective means (Case 1).  Six additional MCMC trials were also included for 722 

comparison: setting elapsed time between the last dose and urine sampling (Elapsed Time), urine 723 

flow rate, or urinary elimination rate to either the values used to generate the 1-naphthol (1-N) 724 

concentrations in urine (Case 2, default), or to values generated from random sampling from a 725 

distribution (Case 3, random).      726 

 727 

   
Geo. Mean 
(ng/kg/day) Geo. Std. Dev.  

  CARES-synthetic daily intake 70 4.1 
 MCMC – all parameters known 92* 4.5 
 MCMC – all parameters set at their means 47 0.8 
Elapsed Time  
 MCMC – default 393* 59 
 MCMC – random 690* 116 
Urine Flow Rate   
 MCMC – default 352* 67 
 MCMC – random 45,968* 30,055 
Urinary Elimination Rate  
 MCMC – default 508* 93 
 MCMC – random 507* 83 

* indicates that the mean is significantly different than the mean of the CARES-synthetic 728 

distribution, using a Welch t-test with a 0.05 significance level.  729 

  730 
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Figure Legend 731 

 732 

Figure 1.  Probability density of carbaryl intake (ng/kg/day) for 500 simulated individuals.  The x-733 

axis has been log10 transformed.  The black boxes show the histogram of the carbaryl intake doses 734 

generated using the CARES model that served as the input data for the PBPK simulation.  The 735 

blue dashed-dotted line shows the lognormal distribution that was fitted to the carbaryl intake data.   736 

Figure 2. Effect of the prior distribution on the results of Discretized Bayesian Analysis (DBA) for 737 

reconstructing intakes of carbaryl (ng/kg/day). (A) Uniform DBA prior (red dashed line); the 738 

corresponding estimate from DBA (solid black line); simulation input (from Figure 1, dashed-dotted 739 

blue line) shown for comparison.  (B) Biased DBA prior: lognormal distribution (geometric mean: 740 

103 ng/kg/day; geometric standard deviation: √10) truncated at 10-2 (lower bound) and 106 (upper 741 

bound) (red dashed line); the corresponding estimate from DBA (solid black line); simulation input 742 

(from Figure 1, dashed-dotted blue line) shown for comparison. 743 

 744 

  745 
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 746 

Figure 1 747 

 748 

 749 
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Figure 2 751 

 752 

 753 


