1	Application of WRF/Chem over North America under the AQMEII Phase 2: Part II.
2	Evaluation of 2010 Application and Responses of Air Quality and Meteorology-Chemistry
3	Interactions to Changes in Emissions and Meteorology from 2006 to 2010
4	Khairunnisa Yahya, Kai Wang, and Yang Zhang*
5	Department of Marine, Earth, and Atmospheric Sciences, NCSU, Raleigh, NC 27695
6	Tadeusz E. Kleindienst
7	National Exposure Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711
8	
9	Abstract
10	The Weather Research and Forecasting model with Chemistry (WRF/Chem) simulation
11	with the 2005 Carbon Bond (CB05) gas-phase mechanism coupled to the Modal for Aerosol
12	Dynamics for Europe (MADE) and the Volatility Basis Set (VBS) approach for secondary
13	organic aerosol (SOA) (MADE/VBS) are conducted over a domain in North America for 2006
14	and 2010 as part of the Air Quality Model Evaluation International Initiative (AQMEII) Phase 2
15	project. This Part II paper focuses on comparison of model performance in 2006 and 2010 as
16	well as analysis of the responses of air quality and meteorology-chemistry interactions to
17	changes in emissions and meteorology from 2006 to 2010. In general, emissions for gaseous and
18	aerosol species decrease from 2006 to 2010, leading to a reduction in gaseous and aerosol
19	concentrations and associated changes in radiation and cloud variables due to various feedback
20	mechanisms. Compared to 2006, the performance for most meteorological variables in 2010
21	gives lower normalized mean biases (NMBs) but higher normalized mean errors (NMEs) and
22	lower correlation coefficients (Corr). This indicates some compensation in over- and
23	underpredictions against observations. The worse meteorological performance in 2010 is likely [*] Corresponding author. Mailing address: Campus Box 8208, Room 1125, Jordan Hall, 2800 Faucette Drive Raleigh, NC 27695-8208, USA. Tel: 1-991-515-9688. Fax: 1-919-515-7802. E-mail address: <u>yang_zhang@ncsu.edu</u>

24 due to inaccurate chemistry feedbacks resulted from less accurate emissions in 2010 as the 25 values of Corr are higher and NMEs are lower for the 2010 WRF only simulation than those for 26 the 2010 WRF/Chem simulation. The model also shows worse performance for most chemical 27 variables in 2010. This could be attributed to underestimations in emissions of some species 28 such as primary organic aerosol in some areas of the U.S. in 2010, inaccurate meteorological predictions, as well as the use of a coarse grid resolution. The effects of the decrease in 29 30 emissions and changes in meteorology between 2006 and 2010 result in complex changes in 31 model predictions in 2010 due to chemistry-meteorology feedbacks. The inclusion of chemical 32 feedbacks to meteorology, clouds, and radiation reduces model biases in meteorological 33 predictions in 2010; however, it increases model errors and weakens correlations. Sensitivity 34 simulations comparing WRF and WRF/Chem simulations for 2006 and 2010 show that for 2006, 35 the performance of meteorological variables is comparable between both but for 2010, WRF/Chem performs slightly worse than WRF. These results indicate a need to further improve 36 37 the accuracy of the model representations of SOA, meteorology for extreme events, and 38 chemistry-meteorology feedbacks in the online-coupled models.

39

40 Keywords: AQMEII, Emission variation, WRF/Chem, Meteorology-chemistry Interactions,
41 SOA, model responses to changes in emissions and meteorology from 2006 to 2010

42

43 **1. Introduction**

Changes in meteorology, climate, and emissions affect air quality (e.g., Hogrefe et al.,
2004; Leung and Gustafson, 2005; Zhang et al., 2008; Dawson et al., 2009; Gao et al., 2013;
Penrod et al., 2014). As federal, state, and local environmental protection agencies enforce the

47 anthropogenic emission control programs, ambient air quality is expected to be continuously 48 improved. However, such an improvement may be compensated by adverse changes in climatic or meteorological conditions (e.g., increases in near surface temperature, solar radiation, and 49 50 atmospheric stability, or reductions in precipitation) that are directly conducive to the formation 51 and accumulation of air pollutants and that may result in higher biogenic emissions. It is 52 therefore important to examine changes in both meteorology/climate and emissions as well as 53 their combined impacts on air quality. The Air Quality Model Evaluation International Initiative 54 (AQMEII) Phase 2 was launched in 2011 to intercompare online-coupled air quality models 55 (AQMs) in their capabilities in reproducing atmospheric observations and simulating air quality 56 and climate interactions in North America (NA) and Europe (EU) (Alapaty et al., 2012). The 57 simulations over NA and EU with multi-models by a number of participants have been 58 performed for two years (2006 and 2010) that have distinct meteorological conditions. 59 Compared with 2006, 2010 is characterized by warmer summer conditions in eastern U.S. and 60 less precipitation over NA (Stoeckenius et al., 2014; Pouliot et al., 2014). In addition, the 61 emissions of key pollutants are reduced in 2010 relative to 2006, e.g., emissions of NO_x and SO_2 62 are reduced by 10-30% and 40-80% for many regions in NA (Pouliot et al., 2014). Comparison 63 of 2010 and 2006 simulations will thus provide an opportunity to examine the success of the 64 emission control programs and the impacts of meteorological/climatic variables on air quality. Compared to model intercomparison during AQMEII Phase 1 (Rao et al., 2012) in which offline-65 66 coupled models were used, the use of online-coupled AQMs models during AQMEII Phase 2 67 allows for study of the interactions between meteorology and chemistry through various direct 68 and indirect feedbacks among aerosols, radiation, clouds, and chemistry (Zhang, 2008; Baklanov 69 et al., 2014). The two year simulations further enable an examination of the responses of air quality and meteorology-chemistry interactions to changes in emissions and meteorology from
2006 to 2010 that was not possible with offline-coupled models.

72 Similar to offline AQMs, large uncertainties exist in online-coupled AQMs, which will 73 affect the model predictions and implications. Such uncertainties lie in the meteorological and 74 chemical inputs such as emissions, initial and boundary conditions (ICONs and BCONs), model 75 representations of atmospheric processes, and model configurations for applications such as 76 horizontal/vertical grid resolutions and nesting techniques. Several studies examined the 77 uncertainties in emissions (e.g., Reid et al., 2005; Zhang et al., 2014) and BCONs (e.g., Hogrefe 78 et al., 2004; Schere et al., 2012). There are also uncertainties in the various chemical mechanisms 79 and physical parameterizations used in AQMs such as gas-phase mechanisms (Zhang et al., 80 2012), aerosol chemistry and microphysical treatments (Pun et al., 2003; Zhang et al., 2010), 81 microphysical parameterizations (van Lier-Walqui et al., 2014), convective parameterizations 82 (Yang et al., 2013), boundary layer schemes (Edwards et al., 2006), and land surface models (Jin 83 et al., 2010). Due to the complex relationships in online-coupled AQMs among the emissions, 84 ICONs and BCONs, and model processes that may be subject to inherent limitations, it is 85 difficult to isolate the contributions of model inputs or the representations of atmospheric 86 processes to the model biases. In mechanistic evaluation (also referred to as dynamic 87 evaluation), sensitivity simulations are performed by changing one or a few model inputs or 88 process treatments, while holding others constant. This approach can help diagnose the likely 89 sources of biases in the model predictions.

The Weather Research and Forecasting model with Chemistry (WRF/Chem) version 3.4.1 with the 2005 Carbon Bond (CB05) gas-phase mechanism coupled with the Modal for Aerosol Dynamics for Europe (MADE) and the Volatility Basis Set (VBS) approach for

93 secondary organic aerosol (SOA) (hereafter WRF/Chem-CB05-MADE/VBS) has been recently 94 developed by Wang et al. (2014). The applications of WRF/Chem-CB05-MADE/VBS to 2006 95 and 2010 in the Part I paper (Yahya et al., 2014) and this work use the same model physical and 96 chemical parameterizations but different emissions, meteorological ICONs and BCONs, and 97 chemical ICONs and BCONs. The mechanistic evaluation by comparing WRF/Chem-CB05-98 MADE/VBS predictions for the two years would help understand the sensitivity of the model 99 predictions and performance to different model inputs, and that by comparing WRF/Chem-100 CB05-MADE/VBS and WRF only predictions would quantify the impacts of chemistry-101 meteorology feedbacks on the meteorological predictions. A comprehensive evaluation of the 102 2006 simulation has been presented in Part I paper. In this Part II paper, the differences in 103 emissions, meteorological and chemical ICONs/BCONs, and meteorology between 2010 and 104 2006 are first examined. The model performance in 2010 is then evaluated and compared with 105 that in 2006. Finally, the responses of air quality and meteorology-chemistry interactions to 106 changes in emissions and meteorology from 2006 to 2010 are analyzed. The main objectives of 107 this Part II paper are to examine whether the model has the ability to consistently reproduce 108 observations for two separate years, as well as to examine whether the trends in air quality and 109 meteorology-chemistry interactions are consistent for both years. Stoeckenius et al. (2014) 110 carried out an extensive analysis of the trends in emissions and observations of meteorological 111 variables, O₃, SO₂ and PM_{2.5} concentrations between 2006 and 2010. This Part II paper 112 complements the work of Stoeckenius et al. (2014) by examining the changes in WRF/Chem 113 predictions and chemistry-meteorology feedbacks in 2010 relative to 2006. Similar evaluations 114 of 2010 and 2006 are performed for the coupled WRF-CMAQ system (Hogrefe et al., 2014).

115	Unlike the coupled WRF-CMAQ system used in AQMEII Phase 2 that only simulates aerosol
116	direct effects, WRF/Chem used in this work simulates both aerosol direct and indirect effects.

117

118 2. Differences in Emissions and ICONs/BCONs between 2006 and 2010

119 2.1 Emission Trends

120 The emission variation trends are examined for major precursors for ozone (O_3) and 121 secondary particulate matters (PM) (i.e., sulfur dioxide (SO_2) , oxides of nitrogen (NO_x) , 122 ammonia (NH₃), volatile organic compounds (VOCs) including both anthropogenic and biogenic 123 VOCs) and primary PM species (elemental carbon (EC) and primary organic aerosol or carbon 124 (POA or POC)). Comparing to annual mean emissions in 2006, the annual emissions of SO₂ and 125 NO_x decrease significantly in 2010, especially at the point sources (Figure A1), with similar 126 variation patterns in all seasons (Figure not shown). The annual emissions of NH_3 decrease over 127 most areas but increase in some areas in California (CA) and Midwest. Unlike the changes in the 128 emissions of SO_2 and NO_x , NH_3 and VOCs emissions exhibit strong seasonal variations in the 129 emission trends, as shown in Figure 1. In JFD, NH₃ emissions decrease over southeastern and 130 Midwest U.S., while NH_3 emissions increase significantly over northeastern U.S. and in parts of 131 CA due to increased livestock emissions (EPA, 2004). For the other seasons, NH_3 emissions 132 generally decrease over the whole of continental U.S. (CONUS). VOC emissions largely 133 decrease in March, April, May (MAM) and January, February, and December (JFD), and 134 increase in June, July, August (JJA) and September, October, and November (SON), especially 135 in southeastern U.S. Although anthropogenic VOC emissions decrease over CONUS for all 136 seasons (Figure not shown), the VOC emissions increase in the southeast, which is dominated by 137 enhanced biogenic emissions from vegetation as a response to temperature increases

(Stoeckenius et al., 2014). The total annual emissions of EC and POA also decrease but to a smaller extent over most areas of the continental U.S. The changes in annual and seasonal emissions of those species between 2010 and 2006 will affect simulated air quality and meteorology-chemistry interactions.

142

143 2.2 Differences in Chemical and Meteorological ICONs/BCONs

144 Large differences exist in the chemical and meteorological ICONs/BCONs used in 2006 145 and 2010 simulations. For example, Stoeckenius et al. (2014) reported large differences between 146 2006 and 2010 in chemical BCONs extracted from a global model simulations, e.g., the mid-147 tropospheric seasonal mean O₃ mixing ratios are generally lower by several ppbs in 2010 as 148 compared to 2006, especially during spring and summer. Figure 2 shows the differences for JFD 149 and JJA 2010 – 2006 in averaged meteorological ICONs and BCONs of skin temperature and 150 soil moisture fraction 100 to 200 cm below ground extracted from the National Center of 151 Environmental Prediction's (NCEP). The JFD skin temperatures show a significant decrease of 152 up to -8 °C over eastern and central U.S. and a moderate increase over western U.S. The JJA skin 153 temperatures show a moderate overall increase over eastern and southern U.S. and a moderate 154 decrease in western and northwestern U.S. The soil moistures show more variability from 2010 155 to 2006. General trends include an increase in soil moisture over southeastern and central U.S. 156 and a decrease over the northeastern and northwestern U.S. for JFD. For JJA, soil moisture 157 mainly decreases over eastern U.S. except for parts of Georgia, Alabama, and Mississippi. Large 158 increases in soil moisture are found over northern U.S. and parts of Canada and Mexico. Soil 159 moisture and temperature are important variables in regulating the sensible and latent heat fluxes 160 from the ground to the atmosphere, affecting wind speeds and planetary boundary layer height (PBLH). The accuracy of soil moisture initialization is important as latent heat fluxes are very
sensitive to variations of soil moisture. Latent heat fluxes tend to be overestimated when soil
moisture is high (Hong et al., 2009).

164

165 **3. Model Performance in 2010 and Its Comparison with 2006**

Model predictions in 2010 respond to changes in emissions, BCONs, and meteorology. The model performance for both meteorological and chemical predictions in 2010 is evaluated and compared with that in 2006. Major differences in model performance between the two years and their associations with changes in emissions, BCONs, and meteorology are discussed below.

170

171 **3.1 Differences in Meteorological Predictions for 2006 and 2010**

172 Table 1 shows the annual mean observed and simulated values as well as correlation 173 coefficients (Corr) between the observed and simulated meteorological variables from the 2010 174 WRF/Chem and WRF simulations. Similar statistics from the 2006 WRF/Chem and WRF 175 simulations can be found in Table 1 in Yahya et al. (2014). The trends in simulated variables are 176 generally consistent with the trends in observations from 2006 to 2010 except for WS10. Both 177 observed and simulated temperatures at 2-m (T2) at the CASTNET sites increase by ~4 °C from 178 2006 to 2010. While observed T2 at the SEARCH sites increases by 0.25 °C from 2006 to 2010, 179 the simulated T2 only increases by 0.02 °C. For downward shortwave radiation (SWDOWN), 180 both observed and simulated values at the CASTNET and SEARCH sites decrease from 2006 to 181 2010. The observed wind speed at 10-m (WS10) remains similar at both CASTNET and 182 SEARCH sites in both years. While simulated WS10 at the CASTNET sites are similar between the two years, the simulated WS10 at the SEARCH sites decreases by 0.37 m s⁻¹ from 2006 to 183

2010. Observed and simulated precipitation (Precip) from GPCC both increase slightly from
2006 to 2010. Observed Precip from NADP shows a larger increase from 2006 to 2010 than
GPCC, but simulated Precip at the NADP site decreases, which is the opposite to the observed
Precip trend.

188 To examine changes in meteorology between 2010 and 2006 predicted by WRF only 189 simulations without considering chemistry feedbacks, Figure 3 compares the seasonal changes in 190 several meteorological variables that affect air pollution including SWDOWN, T2, WS10, 191 PBLH, and Precip. Large changes occur in those variables between the two years, e.g., 10-50 W 192 m⁻² increases in SWDOWN in western and Midwest in JJA, generally warmer in JJA and SON 193 over most areas but cooler by 3-10 °C in eastern U.S. in JFD, and reduced Precip in eastern or 194 southeastern U.S. in JJA and SON but increased Precip in northwestern U.S. in MAM and JJA 195 and in western U.S. in JFD. ICONs and BCONs for skin temperatures shown in Figure 2 greatly 196 influence T2 shown in Figure 3 for JFD and JJA. Differences in the changes in meteorological 197 variables for WRF/Chem between 2006 and 2010 that accounts for meteorology-chemistry 198 feedbacks will be presented in Section 4.3.

199 Figure 4 shows normalized mean bias (NMB) vs. normalized mean error (NME) plots for 200 several meteorological variables by seasons against several observational networks for 2006 and 201 2010. In general, the correlation coefficients (Corr) for 2006 are better than those of 2010, as the 202 correlations between mean observed and simulated values for all meteorological variables are 203 higher for 2006 compared to 2010. However, the biases are smaller for T2 (against CASTNET), 204 SWDOWN, WS10, Precip (against NADP), CF, and CDNC for 2010 compared to 2006. T2 in 205 general increases from 2006 to 2010 for both mean observed and simulated values at the 206 CASTNET sites and increases slightly at the SEARCH sites. T2 is underpredicted against

207 CASTNET and SEARCH for both 2006 and 2010. The seasonal mean NMBs for both 2006 and 208 2010 (except for JFD 2006) are < 15%, with annual mean NMBs of -7.7% and -4.9%, 209 respectively. With the exception of JFD 2006 against CASTNET, T2 predictions in the other 210 seasons in 2006 for both CASTNET and SEARCH have lower NMEs (< 25%) for 2006. All the 211 seasons in 2010 have an NME of > 25% for T2 predictions. For SWDOWN, for both 2006 and 212 2010, seasonal NMBs range from -10% to 20% with annual mean NMBs of 21.3% and 7.4%, 213 respectively, against CASTNET and 3.0% and 12.4%, respectively, against SEARCH; however 214 the seasonal and annual mean NMEs in 2006 are < 40% while those in 2010 range from 40% to 215 65%. The CASTNET and SEARCH sites also show an average annual increase for SWDOWN 216 from 2006 to 2010, which is reproduced by WRF/Chem. Although SWDOWN is overpredicted 217 on an annual basis, T2 is underpredicted in all seasons in 2006 and all seasons except for JJA in 218 2010, as T2 is diagnosed from the skin temperature, which depends on not only SWDOWN but 219 also other variables such as soil properties. The Noah land surface model used in this case 220 calculates the heat fluxes and skin temperatures based on SWDOWN, the land-use type, and soil 221 properties including soil texture, soil moisture, soil conductivity and thermal diffusivity which 222 vary for different soil types (Chen, 2007). Annual mean WS10 is overpredicted for both 2006 223 and 2010. Seasonal WS10 is overpredicted for 2006 but underpredicted for 2010 with better 224 performance in 2010 (i.e., smaller NMBs in 2010 and comparable NMEs between the two years). 225 While the mean observed and simulated WS10 are closer in 2010 compared to 2006, the values 226 of Corr are higher in 2006 compared to 2010. In this study, the Mass and Owens (2010) surface 227 roughness parameterization is used in WRF and WRF/Chem, which helps reduce typical 228 overpredictions in wind speeds overall in both years. However, Mass and Ovens (2010) also 229 noted that by using this parameterization, the high wind speeds are affected and suggested

230 switching off this drag parameterization at higher wind speeds. For Precipitation, the model 231 performs consistently well against GPCC for both years with seasonal NMBs within -11% and -232 12%, and annual NMBs of 0.3% and 1.3%, respectively, for 2006 and 2010. The evaluation 233 against NADP shows larger differences with NMBs of 22.2% and 2.5% and Corr values of 0.43 234 and 0.1 for 2006 and 2010, respectively. CF is the only meteorological variable with a better 235 performance in terms of all three measures including Corr, NMB, and NME in 2010 than in 2006 236 against MODIS. The better performance in CF in 2010 may help reduce annual mean NMBs in 237 CDNC, SWDOWN, and T2 in 2010, although their annual mean NMEs increase and annual 238 mean Corr values decrease.

239 The Part I paper (Yahya et al., 2014) compared and evaluated the full-year WRF and 240 WRF/Chem 2006 simulations with the same physical configurations to analyze the effects of 241 feedbacks from chemistry to meteorology. The results for 2006 show that for the evaluation of 242 SWDOWN, T2 and WS10 against CASTNET and SEARCH, the Corr is almost identical for 243 both WRF/Chem and WRF simulations. For evaluation of precipitation against NADP, WRF has 244 a higher Corr compared to WRF/Chem. Unlike 2006, the 2010 WRF only simulation has higher 245 Corr for all meteorological variables compared to the 2010 WRF/Chem simulation except for 246 Precip against GPCC and CF against MODIS. This means that the emissions and chemistry-247 meteorological feedbacks play an important role in influencing model performance. Another 248 obvious difference is that the NMBs for the meteorological variables for 2010 are smaller 249 compared to 2006 for all the variables except for Precip against GPCC, while the NMEs are 250 larger for 2010 compared to 2006 for all variables except for Precip against GPCC. A smaller 251 overall averaged NMB but a larger NME may indicate compensation of over- and underpredictions leading to a small bias, but the magnitude of the differences are reflected in the NMEvalues.

254 The same model physics and dynamics options are used for both years. In addition to 255 different emissions, there are characteristic climate differences between the two years that lead to 256 lower Corr and larger NMEs for most meteorological fields in 2010 compared to 2006. 2010 is 257 reported to be the warmest year globally since 1895 according the National Climactic Data 258 Center (http://www.ncdc.noaa.gov/cag/). Even though 2010 has high temperatures compared to 259 previous years, a trend analysis of extreme heat events (EHE) from 1930 to 2010 showed that in 260 2010, there were more than 35 extreme minimum heat events (where temperatures are extremely 261 low) over southeastern U.S. compared to about ~ 10 extreme minimum heat events in 2006. In 262 fact, the number of extreme minimum heat events is the highest overall for CONUS in 2010 263 compared to all the other years from 1930 onwards (Oswald and Rood, 2014). The IPCC 264 reported that since 1950, there is evidence that weather events have become more extreme likely 265 due to climate change (IPCC, 2012). Grundstein and Dowd (2011) stated that on average, by 266 2010 there would be 12 more days with extreme apparent temperatures than there were in 1949. 267 The implications of these would be that increased temperatures change the weather in 268 unexpected ways with uncertainties in the state of science (Huber and Gulledge, 2011), including 269 models. These high and low temperatures could contribute to the compensation of over- and 270 under-predictions leading to smaller NMBs in general for 2010. To better simulate model 271 extreme heat events, Meir et al. (2013) suggested using a higher domain spatial resolution with a 272 grid size of 12-km or smaller, better sea surface temperature estimates, and enhanced 273 urbanization parameterization. Gao et al. (2012) reported better results in reproducing extreme 274 weather events with WRF over eastern U.S. with a 4-km \times 4-km resolution. In this study,

although the urban canopy model is used for both WRF and WRF/Chem simulations, a 36-km ×
36-km grid resolution might not be sufficient to reproduce the extreme temperature events (highs
and lows) in 2010.

278 As shown in Figure A2, the spatial distribution of MB values for T2 for JFD 2010 show 279 very large negative MBs over southeastern U.S. compared to JFD 2006. T2 is also generally 280 underpredicted over southeastern U.S. in both years, but with larger negative biases (with the 281 absolute values of NMB > 0.5 °C) in 2010 than those in 2006 (with the absolute values of NMB 282 < 0.2 °C). T2 biases also seem to be more extreme for JFD 2010 compared to JFD 2006, with 283 dark red and dark blue colors for the MB markers, indicating large positive and large negative 284 biases, respectively. This could explain the poor correlation for T2 in 2010 compared to 2006 as 285 shown in Table 1. On the other hand, the performances of T2 for JJA 2010 and 2006 are very 286 similar, with MBs ~ -0.1 to 0.1 in eastern U.S., large negative MBs at the sites in Montana and 287 Colorado, and a large positive MB at the site in Wyoming.

288

289 **3.2 Differences in Chemical Predictions for 2006 and 2010**

290 The lower Corr for 2010 compared to 2006 for meteorological variables has a large 291 influence on the model performance for 2010. As shown in Table 1, all the chemical variables 292 for all networks have lower Corr values in 2010 compared to 2006. As shown in Figures 5-7, O_3 293 concentrations are underpredicted to a larger extent in 2010 compared to 2006. As shown in 294 Figure 5, O₃ concentrations are especially underpredicted for JFD 2010 over southeastern U.S., 295 which is related to the larger MBs in T2 in JFD in 2010 shown in Figure A2. Rasmussen et al. 296 (2012) conducted a statistical study to analyze O_3 concentration biases as a result of temperature 297 biases using the Geophysical Fluid Dynamics Laboratory (GFDL) Atmospheric Model, and 298 concluded that during the summer temperature biases of up to 5 K can result in maximum O_3 299 biases of up to 10 - 15 ppb. In addition, both NO_x and VOC emissions decrease significantly 300 over the entire CONUS from JFD 2006 to 2010 (Figures not shown), which could also contribute 301 to the large underpredictions in O₃ concentrations in JFD 2010 than in JFD 2006. For JJA 2006 302 and 2010, the spatial distribution of NMB markers shows that the temperature biases for both 303 years are relatively similar. Over northeastern U.S., the temperature bias is generally less than -304 0.1 °C for both JJA 2006 and JJA 2010. However, as shown in Figure 6, O₃ concentrations over 305 northeastern U.S. in JJA 2010 have negative biases whereas those over northeastern U.S. in JJA 306 2006 have positive biases. In this case, emissions might play a significant role in the 307 underprediction of O₃ concentrations over northeastern U.S. in JJA 2010. Hourly average surface 308 NO_x emissions decrease significantly over northeastern U.S. in JJA from 2006 to 2010. As 309 shown in Figure 6, in general, for all seasons and against all networks, 2006 model performance 310 for O_3 is generally good for all seasons compared to all networks. For 2010, the model performs 311 better for JJA and worst for JFD with the highest magnitude of negative NMB and NME (~-57% 312 and 58%, respectively). Overall, 2010 simulations seem to underpredict O₃ concentrations to a 313 larger extent compared to 2006.

Figure 7 shows diurnal variations of observed and simulated temperatures and O_3 concentration from CASTNET in 2006 and 2010. The diurnally averaged observed temperatures decrease slightly from 2006 to 2010 with a very similar performance against T2 measurements at the CASTNETs. This seems to be contradictory to the overall trend of T2 as shown in Table 1. This would be possible if there are very high temperatures at certain locations at certain times which would skew and influence the overall average T2 for the whole year. The model meteorology is reinitialized every 2 days starting from around 7 am, which explains the 321 closeness of the observed and simulated temperatures from 7 am to about 12 pm. After 12 pm, 322 the model consistently underpredicts temperatures to up to 2 °C. Underpredictions of 323 temperature, especially in the afternoon where O_3 concentrations are high, would result in 324 underpredictions of O_3 concentrations. The diurnal O_3 plots show that the observed O_3 325 concentrations from CASTNET do not seem to decrease from 2006 to 2010 even though the 326 temperatures decrease in general. In fact the magnitudes of diurnally averaged observed O_3 327 concentrations for 2006 and 2010 are almost the same or slightly higher than 2006. The model 328 temperature and O_3 diurnal patterns seem to be more correlated, i.e., a decrease in temperature 329 over the CASTNET sites for 2010 leads to a decrease in O_3 concentrations. However, due to the 330 higher observed O₃ concentrations over the CASTNET sites and lower simulated temperatures 331 and precursor emissions, and lower MACC BCONs of O_3 in 2010, the underprediction in surface 332 O₃ is larger in 2010 compared to 2006. Im et al. (2014) showed that WRF/Chem-CB05-333 MADE/VBS gives relatively large O₃ dry deposition comparing to other models, which may 334 have contributed to the underpredictions of O₃. They also showed that MACC underpredicts O₃ 335 mixing ratios, particularly in winter and spring during both day and night and in summer and fall 336 during nighttime. As indicated by Wang et al. (2014) and Makar et al. (2014), the inclusion of 337 aerosol indirect effects also tends to reduce O_3 mixing ratios, comparing to the models that 338 simulate aerosol direct effect only or do not simulate aerosol direct and indirect effects (i.e., 339 offline-coupled models).

Figure 8 shows spatial distribution plots of NMBs for $PM_{2.5}$ concentrations for JFD and JJA 2006 and 2010 against IMPROVE, STN, and SEARCH. Overall, JJA 2006 and JJA 2010 have similar spatial distribution patterns of NMBs for all sites over CONUS except for several sites in northwestern U.S. where $PM_{2.5}$ concentrations are underpredicted for JJA 2010 but 344 overpredicted for JJA 2006. However, many sites have positive NMBs over eastern and central 345 U.S. for JFD 2006, whereas more sites have negative NMBs over eastern and central U.S. for 346 JFD 2010. Statistics from Yahya et al. (2014) and Table 1 show that in general, the simulated 347 concentrations of PM_{2.5} and all PM_{2.5} species decrease from 2006 to 2010, however, the Corr 348 values for PM_{2.5} and PM_{2.5} species become worse in 2010 compared to 2006. As shown in Figure 349 9, PM_{2.5} concentrations for 2006 can be overpredicted or underpredicted, depending on seasons 350 and networks, with an equal distribution of positive and negative NMBs. However for 2010, 351 PM_{2.5} concentrations tend to be underpredicted for all seasons and for all networks except for 352 JFD against SEARCH. As shown in Figure 10, NMBs for PM_{2.5} species for 2006 at individual 353 monitoring sites range from -40% to 60%, while those for 2010 range from -80% to 80%. The 354 markers are more spread out covering a wider range of NMBs and NMEs for 2010 with more 355 extremes as compared to the markers for 2006 clustered around the zero NMB line. NMEs for 356 PM_{2.5} species in 2006 remain below 100%. NO₃⁻ concentrations are slightly underpredicted in 357 2006 against all networks; however, NO₃⁻ concentrations in 2010 are largely underpredicted, 358 likely due to the large decrease in NO_x emissions from 2006 to 2010 and the increase in the 359 surface temperatures. The NMBs for IMPROVE and SEARCH OC remain low from 2006 to 360 2010, however, the NMEs increase significantly. For TC against IMPROVE, the NMB and NME in 2010 are larger in magnitudes in 2010 than those in 2006. SO_4^{2-} has lower NMBs but higher 361 362 NMEs for all networks in 2010 compared to 2006. EC concentrations are generally overpredicted 363 in 2006 for all networks but underpredicted against SEARCH and largely overpredicted against 364 IMPROVE in 2010. NH_4^+ also has higher NMEs in 2010 compared to 2006. Overall, the 365 evaluation in 2010 shows large NMEs and poor correlations for all PM_{2.5} species compared to 2006. Figure 11 shows the time series plots for $PM_{2.5}$, SO_4^{2-} and NO_3^{-} concentrations against 366

367 STN for 2006 and 2010. The observed data are collected more frequently in 2006 compared to 368 2010. In 2006, the PM data were collected on a daily basis in 2006 but every 3 days in 2010. 369 From the time series plots, the model is able to predict most of the peaks and troughs for 2006 370 even though the magnitudes of observed and simulated concentrations are significantly different 371 for several days. For 2010, the model does not show large spikes and can reproduce the 372 magnitudes well, although it does not predict the peaks and troughs as well as 2006 for some 373 months (e.g., Jan-March and July-Sept. for PM_{2.5}). This could be attributed in part to the poor 374 correlations of meteorological variables in 2010 compared to 2006. For example, poor 375 predictions of WS10 can influence the transport and dry deposition of aerosols. Poor predictions 376 of precipitation can impact the wet deposition of aerosols. In fact, the poor performance for EC 377 for 2010 can be attributed to poor predictions of WS10 and precipitation as EC is a primary 378 pollutant. Poor predictions of T2 can influence PBLH and both can also affect the distribution of 379 aerosol concentrations. NO₃⁻ concentrations for the winter months are moderately underpredicted 380 in 2006 but largely underpredicted in 2010, likely due to underpredictions in NO₂ concentrations 381 (Yahya et al., 2014).

- 382
- 383 **3.3 SOA Evaluation for 2006 and 2010**

The VBS framework in WRF/Chem of Ahmadov et al. (2012) provides a more realistic treatment of SOA compared to previous SOA treatments such as the 2-product model by Odum et al. (1996) used in the Secondary Organic Aerosol Model (SORGAM) of Schell et al. (2001). This is because the VBS approach is able to simulate gas-phase partitioning and multiple generations of gas-phase oxidation of organic vapors (Donahue et al., 2006) and it also addresses the shortcomings of the traditional SOA modeling approach as it can cover the complete

390 volatility range of OA compounds (Murphy et al., 2009). The SOA from the VBS approach 391 contains both anthropogenic and biogenic SOA. Wang et al. (2014) evaluated SOA and OC 392 concentrations simulated from WRF/Chem-CB05-MADE/VBS and WRF/Chem-CB05-393 MADE/SORGAM over NA for July 2006 against field campaign data from Offenberg et al. 394 (2011) at the Research Triangle Park (RTP), NC for July 2006. They showed significant 395 improvement in simulating SOA and total organic aerosol (TOA) by VBS than by SORGAM. 396 In this study, SOA and OC predictions in 2006 and 2010 are evaluated against available field 397 campaign data at RTP, NC from Offenberg et al. (2011), and Pasadena, CA and Bakersfield, CA 398 from Klendienst et al. (2012) and Lewandowski et al. (2013). The RTP site is located in a semi-399 rural area. Pasadena, CA is located about 11 miles from downtown Los Angeles (LA), and 400 Bakersfield, CA is located about ~100 miles from downtown LA. Both sites are classified as 401 urban/industrial sites. Organic carbon concentrations were measured using an automated, 402 semicontinuous elemental carbon-organic carbon (EC-OC) instrument. The observed SOA 403 masses were determined using laboratory-derived values for the organic mass (OM)-organic 404 carbon (OM/OC) ratio. As shown in Figure 12, the model can better simulate SOA and OC 405 concentrations in 2006 compared to 2010. The model overpredicts SOA but underpredicts OC in 406 2006. As indicated in Wang et al. (2014), the overpredictions in SOA in 2006 (with an NMB of 407 76.3%) are likely because the SOA observations from RTP did not include those generated by 408 alkanes and alkenes, which are simulated by the VBS module in WRF/Chem. The VBS 409 underpredicts SOA in 2010 with NMBs of -55.3% and -75.3% at Bakersfield and Pasadena, 410 respectively. The underpredictions in SOA at the two sites in 2010 are mainly due to the 411 omission of SOA formation from POA in the current VBS-SOA module in this version of 412 WRF/Chem, although POA may be evaporated to produce semi-volatile organic compounds that

413	may be oxidized further in the atmosphere to produce SOA (Jimenez et al., 2009). The model
414	performs better for SOA compared to OC in 2010. However, the model underpredicts OC at RTP
415	in 2006 and significantly underpredicts OC at the two sites in CA in 2010 as shown in Figure 13.
416	The differences in OC performance in both years are caused by different ratios of POC to OC at
417	RTP in 2006 and at the two sites in CA in 2010. SOA to OC ratios at RTP are in the range of
418	50-80%, whereas they are $< 20\%$ at Bakersfield, CA and $< 40\%$ Pasadena, CA. OC
419	performance thus largely depends on SOA performance at RTP but on POA performance at the
420	two sites in CA. This is why the OC performance remains poor despite a relatively good
421	performance in SOA at the two sites in CA. Simulated OC concentration is calculated by
422	summing up SOA and POA, and dividing the total OA by 1.4 (Aitken et al., 2008). Figure 14
423	shows the spatial distributions of the average OC concentrations for the months during which the
424	field data were collected during the periods specified in Figure 12 in 2006 and 2010. 2006 in
425	general has higher OC concentrations compared to 2010. Southeastern U.S., also in general has
426	higher OC concentrations compared to western U.S for both 2006 and 2010. The model severely
427	underestimates OC concentrations over western U.S., with a maximum mean in downtown LA
428	area of $1.5 - 1.8 \ \mu g \ m^{-3}$, when the observed OC concentrations for Pasadena and Bakersfield
429	range from 1 to 8 μ g m ⁻³ . Figure 13 also shows that the simulated OC concentrations do not
430	change much daily with the variations in the observed OC concentrations, but remain low
431	throughout the two months. Also, the observed OC concentrations at both sites in CA are much
432	higher than those of SOA, indicating the dominance of POA for 2010 in western U.S. Although
433	simulated SOA gives relatively better performance against observed SOA, OC is significantly
434	underpredicted mainly because of significant underpredictions of POA (due to underestimate in
435	POA emissions) that dominates OC concentrations. The underpredictions in SOA also contribute

436 in part to the OC underpredictions. There would be additional uncertainties in using 1.4 as the 437 factor for deriving OA concentrations from OC; however, and such uncertainties cannot explain 438 the large discrepancies between the simulated and observed OC concentrations in 2010. In 439 addition, stronger wind speeds from the model in JJA 2010 as shown in Figure 3 can help 440 disperse OC over western U.S. toward further inland compared to the weaker winds over western 441 U.S. in JJA 2006, reducing OC concentrations over western U.S in JJA 2010. Figure 14 also 442 shows the spatial distribution of the concentrations of anthropogenic SOA (ASOA) and total 443 SOA (TSOA) (=ASOA + BSOA) and the ratio of SOA/OA. The ratios for April to December 444 2006 range from 0 to 0.8 with higher ratios in southern U.S. from Nevada in the west to Virginia 445 in the east, while the ratios for May to June 2010 range from 0 to 0.9 with higher ratios in eastern 446 U.S. Table 1 also shows that the 2010 simulation has negative NMBs of -30% and -12% for OC 447 at the IMPROVE and STN sites, respectively. The statistics for CONUS are consistent with the 448 underpredictions of OC at the above sites.

449

450

3.4 Differences in Aerosol-Cloud Predictions for 2006 and 2010

451 Figure 15 shows NMBs vs. NMEs of several aerosol and cloud variables for JFD and JJA 452 in 2006 and 2010 against satellite data. Table 1 lists the annual statistics of the aerosol and cloud 453 variables against MODIS for 2010. The trends of NMBs and NMEs are quite similar for both 454 seasons in both years. For JJA 2006 and 2010, all cloud variables are underpredicted. For JJA, 455 the model performs better for 2010 for CF, AOD, and COT in terms of seasonal mean spatial 456 distribution. For JFD, the model performs better for CF and CWP in 2010. In terms of annual 457 statistics, 2010 has lower NMBs for CF and COT compared to 2006. Despite the general worse 458 performance of meteorological and chemical variables in 2010 compared to 2006, performance

of cloud variables do not vary significantly. One possible reason is because the evaluation of aerosol-cloud variables is based on monthly values that are averaged out on a seasonal basis. The meteorological and chemical variables shown earlier are evaluated based on site-specific, and hourly, daily, or weekly data. Another reason is that there are still some limitations of the model in simulating the aerosol-cloud feedbacks from meteorology and chemistry. Finally, the responses of aerosol-cloud feedbacks to changes in meteorology and chemistry are on a smaller scale.

466

467 4. Responses of 2010 Predictions to Changes in Emissions and Meteorology

The changes in emissions, boundary conditions, and meteorology between 2010 and 2006 lead to changes in simulated air quality and the chemistry-meteorology feedbacks, which in turn change meteorological and air quality predictions during the next time step, which are described below.

472

473 **4.1 Air Quality Predictions**

474 Simulated air quality responds nonlinearly to the changes in emissions. Figures 16, 17, A3, and A4 show the seasonal changes between 2010 and 2006 in ambient mixing ratios of gases 475 (SO₂, NO₂, NH₃, O₃, and OH) and concentrations of PM species (SO₄²⁻, NO₃⁻, NH₄⁺, OM, EC, 476 477 POA, ASOA, BSOA, and PM_{2.5}). SO₂ and NO₂ concentrations tend to decrease for all seasons at 478 most locations over CONUS due to the decrease in their emissions. The increases in NO₂ 479 concentrations over urban areas in eastern U.S. in MAM in 2010 relative to 2006 could be due to a few reasons including decreased photolytic conversion from NO2 to NO due to a decrease in 480 481 SWDOWN and less NO₂ conversion to nitrate radical (NO₃) due to decreased OH

482 concentrations. The NO₂ hotspots also correlate to the decrease in O_3 concentrations in urban 483 areas. This could indicate an increased titration of O₃ by NO. This is an important result for 484 policy implications, as reducing NO_x emissions may reduce NO₂ concentrations overall for 485 CONUS, but may not reduce NO₂ concentrations in several areas, especially in urban areas due 486 to a combination of titration and complex interplay with local meteorology. NH₃ mixing ratios 487 generally decrease in the U.S., except over eastern U.S. in MAM and SON, where there are 488 increases. NH_3 emissions decrease, however, over eastern U.S. in all seasons. The increase in 489 NH₃ concentrations in MAM and SON could be attributed to a number of reasons including less NH₃ conversion to NH₄⁺ to neutralize SO_4^{2-} and NO_3^{-} and less dispersion of NH₃ concentrations 490 due to decreased wind speeds over eastern and southeastern U.S. in MAM and SON, 491 492 respectively, in 2010 compared to 2006. In JJA and SON, high OM concentrations in Canada 493 are attributed to the enhanced impacts of BCONs by increasingly convergent flow in this region. 494 OM is made up of both POA and SOA. An increase in VOC emissions in eastern U.S. in MAM 495 and SON leads to increases in OM concentrations. Decreases in VOC emissions in western U.S. 496 for all seasons lead to decreases in OM concentrations. The OM concentrations in some areas do 497 not follow a linear relationship with VOC emissions, however, such as southeastern U.S. in JJA, 498 where VOC emissions increase from 2006 to 2010 but OM concentrations decrease. A decrease 499 in POA concentrations must dominate the overall decrease in OM concentrations, even under 500 increased temperatures and biogenic VOC emissions in this area. PM2.5 concentrations decrease 501 for all seasons and most regions of the CONUS, which is attributed mainly to decreases in 502 precursor gases, especially the inorganic precursors SO₂ and NO_x in eastern U.S. Increased PM_{2.5} 503 concentrations in JFD and MAM in the Midwest are due to surface temperature decreases,

dominating in this region (Stoeckenius et al., 2014). This in turn leads to increased particle
nitrate concentrations (Campbell et al., 2014).

506

507 4.2 Meteorological Predictions

508 Figures 17 and A7 show the seasonal changes between 2010 and 2006 in several 509 meteorological and cloud variables SWDOWN, T2, WS10, Precip, PBLH, AOD, COT, CF, 510 CWP, and CDNC). Figure A8 compares wind vectors superposed with T2 in 2006 and 2010. 511 The relationships between various meteorological variables have been discussed in Yahya et al. 512 (2014). Comparing to the differences in predictions of SWDOWN, T2, WS10, Precip, and PBLH 513 between 2010 and 2006 WRF only simulation (without chemistry-meteorology feedbacks) 514 shown in Figure 3 and those between 2010 and 2006 WRF/Chem simulations (with chemistry-515 meteorology feedbacks) (see SWDOWN in Figure 17 and other variables in Figure A7), the 516 differences in those meteorological variables except for SWDOWN do not vary significantly 517 between 2010 and 2006 WRF simulations and between 2010 and 2006 WRF/Chem simulations. 518 As shown in Figure 17, the decrease in SWDOWN from 2006 to 2010 is larger over north-519 central and north-western U.S. and the increase in SWDOWN is smaller over north-eastern and 520 southwestern U.S. for MAM (WRF/Chem) compared to MAM (WRF). For SON, the increase in 521 SWDOWN from 2006 to 2010 simulated by WRF/Chem is larger over eastern U.S. than that by 522 WRF. The differences between WRF and WRF/Chem are the largest for SWDOWN over 523 northeastern U.S. in JFD with an increase in SWDOWN simulated by WRF but a decrease 524 simulated by WRF/Chem from 2006 to 2010. The differences in SWDOWN are likely due to the 525 differences in CF between the two sets of simulation pairs, as the spatial distribution for CF is 526 consistent with that of SWDOWN.

527 The increase in SWDOWN from 2006 to 2010 does not necessarily translate to an 528 increase in T2. However, in general, increases in SWDOWN lead to increase in T2, as shown in 529 SON in Figure A7, where SWDOWN generally increases over most of the continental U.S., T2 530 also increases over most of CONUS. In general, the largest differences in T2 between 2006 and 531 2010 occur in SON (increase) and JFD (decrease). The decrease in T2 in JFD in north-central 532 U.S. and parts of Canada is significant as it results in a decrease in WS10 and PBLH. For JJA, 533 there is an obvious pattern between SWDOWN and Precip, with an increase in SWDOWN 534 corresponding to a decrease in Precip and vice versa. According to IPCC (2007), in the warm 535 seasons over land, strong negative correlations dominate as increased sunshine results in less 536 evaporative cooling. The largest differences in wind vectors as shown in Figure A8 between 537 2006 and 2010 are in JJA. JJA 2006 has strong northwesterly winds over the coast in the 538 northwestern portion of the domain while for JJA 2010; over the same area the winds are weak 539 and westerly. Over the coast in the eastern portion of the domain, winds are southerly for JJA 540 2006 but westerly for JJA 2010. For SON, off the eastern coast, the westerly winds are stronger 541 for 2010 compared to 2006. Other than these obvious differences, the seasonally averaged wind 542 patterns are similar for 2006 and 2010.

As expected, the spatial pattern of SWDOWN changes is anti-correlated with CF changes for all seasons between 2006 and 2010, however, the changes in the spatial pattern of CF do not correlate with changes in CDNC. CF in each grid cell is set to either 0 (no clouds), or to 1 (cloudy) if total cloud water + ice mixing ratio > 1×10^{-6} kg kg⁻¹ (Wu and Zhang, 2005). In this study, the monthly CF is then normalized over the total number of time steps and vertical layers, giving a value of CF between 0 and 1 in each grid cell. In contrast, the calculations of CDNC in the model depend on the supersaturation, aerosol concentrations, aerosol hygroscopicity and 550 updraft velocity (Abdul-Razzak and Ghan, 2004). The changes in CF are controlled by large 551 scale state variables including temperature and relative humidity, while CDNC depends on more 552 complex changes in microphysical variables. The dominant CDNC decrease in MAM, JJA, and 553 SON, is due to lower PM_{2.5} concentrations, which in turn lower the effective number of cloud 554 condensation nuclei. However, exception occurs in southeast U.S. where PM_{2.5} decreases but 555 CDNC increases. This is because CDNC also depends on other variables including the amount of 556 liquid water in the atmosphere. The cloud liquid water path over southeastern U.S. increases, 557 which may explain the increase in CDNC. The spatial pattern for precipitation correlates to that 558 of CF. The spatial pattern of CWP also corresponds to a certain extent with CF. PBLH increases 559 when the ground warms up during the day and decreases when the ground cools so PBLH might 560 be intuitively related to SWDOWN and T2. However, we do not see this consistent trend in the 561 plots. This is because the growth of the PBL in the model also depends on the surface sensible 562 latent and heat fluxes and the entrainment of warmer air from the free troposphere (Chen, 2007). 563

505

564 **4.3 Meteorology-Chemistry Feedback Predictions**

As shown in Table 1, similar to 2006, comparison of the performance of most 565 566 meteorological variables between WRF/Chem and WRF for 2010 is improved in terms of NMBs 567 when chemistry-meteorology feedbacks are included. This indicates the importance and benefits 568 of inclusion of such feedbacks in online-coupled models. However, unlike 2006 for which both 569 WRF only and WRF/Chem simulations show similar values of Corrs and NMEs, the 2010 WRF 570 simulations give higher Corr and lower NMEs than the 2010 WRF/Chem simulations. This 571 indicates the impact of worse chemical predictions on chemistry-meteorology feedbacks that can 572 in turn affect meteorological predictions. These results indicate the needs of further improvement 573 of the online-coupled models in their representations of chemistry-meteorology feedbacks. 574 Yahya et al. (2014) analyzed differences in meteorological performance between WRF/Chem 575 and WRF for 2006. Figure A8 shows absolute differences between the meteorological 576 predictions from WRF/Chem and WRF for 2010. The differences between WRF/Chem and 577 WRF are consistent for both 2006 and 2010. SWDOWN in general is higher for WRF/Chem 578 compared to WRF for all seasons, with larger differences over the eastern portion of the domain 579 compared to the western portion. Other obvious similarities between 2006 and 2010 include the 580 increase in T2 over the northern portion of the domain for MAM, SON and JFD; increase in 581 PBLH over the ocean in the eastern part of the domain for all seasons; and increases over the 582 ocean for CF for all seasons. The reasons for the differences between WRF/Chem and WRF in 583 terms of meteorological variables have been discussed in Yahya et al. (2014).

584

585 **5. Summary and Conclusions**

586 This study compares model performance in 2010 and 2006 and examines the changes in 587 emissions, boundary conditions, and meteorology, as well as the responses of meteorology, air 588 quality and chemistry-meteorology feedbacks to those changes between 2010 and 2006. Two 589 representative years are simulated using WRF/Chem-CB05-MADE/VBS with the same model 590 configurations but different emissions and meteorological and chemical ICONs and BCONs. In 591 general, the emissions of most gaseous and aerosol species over CONUS decrease from 2006 to 592 2010 with the exception of NH₃ emissions over several areas in JFD and biogenic VOCs mainly 593 over eastern U.S. in JJA and SON. The increases in biogenic VOCs are caused by increases in 594 temperatures in 2010 in eastern U.S. during these seasons. The simulated meteorological 595 variables are shown to be significantly influenced by initial conditions. Overall, T2 increases

596 from 2006 to 2010, however the spatial distribution of the increase/decrease of T2 and other 597 meteorological variables including SWDOWN, WS10, PBLH, and Precip vary over CONUS. 598 The differences between WRF/Chem and WRF for both years are the largest for SWDOWN. 599 The reduced emissions and changed meteorological conditions result in decreased concentrations 600 in general for gaseous and aerosol species except for species influenced by high BCONs, e.g., for 601 OM concentrations over Canada in MAM and JJA. Due to increases in biogenic emissions, OM 602 concentrations increase over eastern U.S. CDNC generally decreases over the U.S. due to the 603 decreases in $PM_{2.5}$ concentrations and CCN from 2006 to 2010. The spatial distributions of other 604 meteorological and cloud variables are consistent with known processes, e.g., SWDOWN is high 605 and precipitation is low where CF is low. There is no clear spatial correlation between CF and 606 CDNC due to the differences in the inherent prognostic treatments of CF and CDNC. COT 607 corresponds relatively well to AOD, especially for JJA in both years. CWP also corresponds well 608 to COT. In general, the model performs well in terms of Corr and NMEs for almost all 609 meteorological and chemical variables in 2006 but not as well in 2010 despite lower NMBs for 610 most variables in 2010, due likely to uncertainties in emission estimates and inaccuracies in the 611 simulated meteorology in 2010.

OC concentrations are significantly underpredicted against field data for 2010 in Bakersfield and Pasadena, CA, due mainly to underestimations in emissions of POA that contributes to most OC and also in part to underestimations in emissions of gaseous precursors of SOA. Another possible reason would be the inaccuracies in the WRF predictions in 2010. The lower correlation and higher errors in most meteorological predictions in 2010 indicate the model's limitation in accurately capturing extreme events. It is important for the model to reproduce meteorological fields correctly as the chemical fields are dependent on the state of the 619 atmosphere. Comparing to OC performance, SOA concentrations are predicted relatively well in 620 2006 and 2010, despite overpredictions in 2006 and underpredictions in 2010. The improvements 621 in predictions of SOA can be attributed to the use of the VBS module which simulates successive 622 oxidation of organic vapors, resulting in higher SOA concentrations compared to traditional 623 SOA models. Similar to 2006, the inclusion of chemistry-meteorology feedbacks reduces NMBs 624 for most meteorological variables in 2010. However, unlike 2006, the 2010 WRF simulations 625 give higher Corr and lower NMEs than the 2010 WRF/Chem simulations. These results indicate 626 a need to further improve the accuracy of the model representations of organic aerosols and 627 chemistry-meteorology feedbacks in the online-coupled models.

628

629 Acknowledgements

630 This study is funded by the National Science Foundation EaSM program (AGS-1049200) 631 at NCSU. The following agencies have prepared the datasets used in this study: the U.S. EPA 632 (North American emissions processing), Environment Canada, Mexican Secretariat of the 633 Environment and Natural Resources (Secretaría del Medio Ambiente y Recursos Naturales, 634 SEMARNAT) and National Institute of Ecology (Instituto Nacional de EcologíINE) (North 635 American national emissions inventories), the European Center for Medium Range Weather 636 Forecasting Global and Regional Earth-system (Atmosphere) Monitoring using Satellite and in-637 situ data (ECMWF/GEMS) project and Meteo France/Centre national de recherches 638 météorologiques (CNRM-GAME) for the Monitoring Atmospheric Composition and Climate 639 (MACC) IC/BCs. Meteorological IC/BCs are provided by the National Center for Environmental 640 Protection. Ambient North American concentration measurements are provided by several U.S. 641 networks (AQS, CASTNET, IMPROVE, SEARCH, and STN). North American precipitation-

chemistry measurements are provided by several U.S. networks (CASTNET, and NADP). GPCC 642 643 Precipitation data is provided by the National Oceanic and Atmospheric Administration's Earth 644 System Research Laboratory in the Physical Sciences Division (NOAA/OAR/ESRL PSD), 645 Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/. 2006 and 2010 646 SOA/OC data at RTP, NC, Bakersfield, CA and Pasadena, CA were provided by John Offenberg, 647 U.S. EPA. Cloud variables were provided by MODIS. We thank Georg Grell, NOAA, Christian 648 Hogrefe, U.S. EPA, Paul Makar, Environment Canada, Christoph Knote, NCAR, and Patrick 649 Campbell, NCSU, for helpful discussions on inputs and outputs of AQMEII model 650 intercomparison. We would also like to acknowledge high-performance computing support from 651 Yellowstone by NCAR's Computational and Information Systems Laboratory, sponsored by the 652 National Science Foundation. This work also used the Stampede Extreme Science and 653 Engineering Discovery Environment (XSEDE) high-performance computing support which is 654 supported by the National Science Foundation grant number ACI-1053575.

The US Environmental Protection Agency through its Office of Research and

656 Development collaborated in the research described here. The manuscript has been subjected to

657 external peer review and has not been cleared for publication. Mention of trade names or

658 commercial products does not constitute endorsement or recommendation for use.

659

660 **References**

Abdul-Razzak, H., Ghan, S.J., 2000. A parameterization of aerosol activation, 2. Multiple
aerosol types, J. Geophys. Res., 105(5), 6837-6844.

663	Ahmadov,	R., et	al., 1	2012. A	volatility	basis	set	model	for	summerti	ne sec	condary	organic
664	aerosols	s over	the	eastern	United	States	in	2006,	J.	Geophys.	Res.,	117,	D06301,
665	doi:10.1	029/20	011JI	016831									

- Aitken et al., 2008. O/C and OM/OC ratios of primary, secondary and ambient organic aerosols
- with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42,

4478-4485. 668

- Alapaty et al., 2012. New Directions: Understanding interactions of air quality and climate
 change at regional scales, Atmos. Environ., 49(3), doi:10.1016/j.atmos.env.2011.12.016.
- 671 Baklanov et al., 2014. Online Coupled Regional Meteorology-Chemistry Models in Europe:
- 672 Current Status and Prospects, *Atmospheric Chemistry and Physics*, 14, 317-398,
 673 doi:10.5194/acp-14-317-2014.
- Byun, D., Schere, K.L., 2006. Review of the governing equations, computational algorithms, and
 other components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling
 system, Appl. Mech. Rev., 59, 51-77.
- Campbell, P., Y. Zhang, K. Yahya, K. Wang, C. Hogrefe, G. Pouliot, C. Knote, A. Hodzic, R.
 San Jose and J. L. Perez, P. J. Guerrero, R. Baro, and P. Makar, 2014, A Multi-Model
 Assessment for the 2006 and 2010 Simulations under the Air Quality Model Evaluation
 International Initiative (AQMEII) Phase 2 over North America, Part I. Indicators of the
 Sensitivity of O₃ and PM_{2.5} Formation to Precursor Gases, *Atmospheric Environment*, in
 review.
- 683 Chen, F., 2007. The Noah Land Surface Model in WRF, A short tutorial, NCAR LSM group
 684 meeting, 17 Apr, Boulder, CO.

685	Donahue, N.M., Robin	son, A.L., Stanier, G	C.O., Pandis, S.N., 200	06. Coupled partitioni	ng, dilution
686	and chemical aging	g of semivolatile org	ganics, Environ. Sci. T	ech., 40, 2635-2643.	
687	Dawson, J. P., Racherl	a, P. N., Lynn, B. H	I., Adams, P. J., Pandis	s, S. N., 2009. Impacts	s of climate
688	change on regiona	l and urban air qua	lity in the eastern Uni	ted States: Role of m	eteorology.
689	Journal of Geophy	sical Research 114(D05308), doi:10.1029/	/2008JD009849.	
690	Edwards, J.M., Beare,	R.J., Lapworth, A.	J., 2006. Simulation of	f the observed evenin	g transition
691	and nocturnal bour	dary layers: single	column modeling, Q.J.	R. Meteorol. Soc., 13	2, 61 – 80.
692	EPA, 2004. National	Emission Invento	ory – Ammonia emi	ssions from animal	husbandry
693	operations,	Draft	Report,	January	30,
694	(<u>http://www.epa.go</u>	ov/ttnchie1/ap42/ch0	09/related/nh3inventor	<u>ydraft_jan2004.pdf</u>)	
	~				_

- Gao, Y., Fu, J.S., Drake, J.B., Liu, Y., Lamarque, J.-F., 2012. Projected changes of extreme
 weather events in the eastern United States based on a high resolution climate modeling
 system, Environ. Res. Lett., 7, 044025.
- Gao, Y., Fu, J. S., Drake, J. B., Lamarque, J. F., Liu, Y., 2013. The impact of emission
- and climate change on ozone in the United States under representative concentration
- pathways (RCPs). Atmospheric Chemistry and Physics 13, 9607–9621, doi:10.5194/acp-139607-2013.
- 702 Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., Eder, B.,
- 2005. Fully coupled "online" chemistry within the WRF model, Atmos. Environ., 39, 6957 –
 6975.
- 705 Grundstein, A., Dowd, J., 2011. Trends in extreme apparent temperatures over the United States,
- 706 1949 2010. J. Appl. Meteor. Climatol., 50, 1650 1653.

- 707 Guenther, A., Kart, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., 2006. Emissions of
- global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
 Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210.
- 710 Hogrefe, C., Lynn, B., Civerolo, K., Ku, J.-Y., Rosenthal, J., Rosenzweig, C., Goldberg, R.,
- 711 Gaffin, S., Knowlton, K., Kinney, P.L., 2004. Simulating changes in regional air pollution
- over the eastern United States due to changes in global and regional climate and emissions, J.
- 713 Geophys. Res., 109, doi: 10.1029/2004JD004690.
- Hogrefe, C., Isukapalli, S.S., Tang, X., Georgopoulos, P.S., He, S., Zalewsky, E.E., Hao, W., Ku,
- 715 J.-Y., Key, T., Sistla, G., 2012. Impact of biogenic emission uncertainties on the simulated
- response of ozone and fine particulate matter to anthropogenic emission reductions, J. Air.
- 717 Waste. Manag. Assoc., 61(1), 92-108.
- 718 Hogrefe, C., Pouliot, G., Wong, D., Torian, A., Roselle, S., Pleim, J., Mathur, R., 2014. Annual
- 719application and evaluation of the online coupled WRF-CMAQ system over North America
- vinder AQMEII Phase 2, Atmos. Environ., in review.
- Hong, S., Lakshmi, V., Small, E.E., Chen, F., Tewari, M., Manning, K.W., 2009. Effects of
- vegetation and soil moisture on the simulated land surface processes from the coupled
- 723 WRF/Noah model. J. Geophys. Res., 114, D18118, doi:10.1029/2008JD011249.
- Huber, G.D., Gulledge, J., 2011. Extreme weather and climate change: understanding the link,
- managing the risk., Pew Centre on Global Climate Change.
- 726 IPCC, 2007. Climate change 2007: the physical science basis. In: Solomon, S., Qin, D.,
- 727 Manning, M. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of
- the Intergovernmental Panel on Climate Change.

- 729 IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change
- adaptation. A special report of Working Groups I and II of the Intergovernmental on Climate
- 731 Chang [Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea,
- 732 M.J., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., Migley, P.M. (Eds.)], Cambridge
- 733 University Press, Cambridge, UK, and New York, NY, USA, pp 582.
- The tal., 2014. Evaluation of operational online-coupled regional air quality models over Europe
- and North America in the context of AQMEII phase 2. Part I: Ozone. Atmospheric
- 736 Environment, in review.
- 737 Jimenez, P., Parra, R., Baldasano, J.M., 2007. Influence of initial and boundary conditions for
- ozone modeling in very complex terrains: A case study in the northeastern Iberian Peninsula,
 Environ. Modell. Softw., 22(9), 1294 1306.
- Jimenez et al., 2009. Evolution of organic aerosols in the atmosphere, *Science.*, *326*, 1525-1529,
 doi:10.1126/science.1180353.
- Jin, J., Miller, N.M., Schlegel, N., 2010. Sensitivity study of four land surface schemes in the
 WRF model, Adv. Met., 2010, doi: 10.1155/2010/167436.
- 744 Kleindienst, T.E., Jaoui, M., Lewandowski, M., Offenberg, J.H., Docherty, K.S., 2012. The
- formation of SOA and chemical tracer compounds from the photooxidation of naphthalene
- and its methyl analogs in the presence and absence of nitrogen oxides, Atmos. Chem. Phys.,
- 747 12, 8711 8726.
- Lee, L.A., Pringle, K.J., Reddington, C.L., Mann, G.W., Stier, P., Spracklen, D.V., Pierce, J.R.,
- 749 Carslaw, K.S., 2013. The magnitude and causes of uncertainty in global model simulations of
- cloud condensation nuclei, Atmos. Chem. Phys., 13, 8879 8914.

751	Leung, L., Gustafson, W., 2005. Potential regional climate change and implications to US air
752	quality. Geophysical Research Letters 32(16), L16711, doi:10.1029/2005GL022911.
753	Lewandowski, M., Piletic, I.R., Kleindienst, T.E., Offenberg, J.H., Beaver, M.R., Jaoui, M.,
754	Docherty, K.S., Edney, E.O., 2013. Secondary organic aerosol characterization at field sites
755	across the United States during the spring-summer period, Intern. J. Environ. Anal. Chem.,
756	2013.
757	Makar et al., 2014, Feedbacks between Air Pollution and Weather, Part 1: Effects on Chemistry,
758	Atmospheric Environment, in review.
759	Mass, C., Owens, D., 2010. WRF Model Physics: Progress, problems and perhaps some
760	solutions, Presented at the 11 th WRF Users' Workshop, June 21 – 25, Boulder, CO.
761	Meir, T., Orton, P.M., Pullen, J., Holt, T., Thompson, W.T., Arend, M.F., 2013. Forecasting the
762	New York City Urban Heat Island and Sea Breeze during Extreme Heat Events, Wea.
763	Forecasting, 28, 1460 – 1477.
764	Murphy, B.N., Pandis, S.N., 2009. Simulating the Formation of Semivolatile Primary and
765	Secondary Organic Aerosol in a Regional Chemical Transport Model., Environ. Sci. Tech.,
766	43, 4722-4728.
767	Odum, J.R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R.C., Seinfeld, J.H., 1996.
768	Gas/Particle partitioning and secondary organic aerosol yields, Environ. Sci. Tech., 30, 2580-
769	2585.
770	Offenberg, J.H., Lewandowski, M., Jaoui, M., Kleindienst, T.E., 2011. Contributions of biogenic
771	and anthropogenic hydrocarbons to secondary organic aerosol during 2006 in Research
772	Triangle Park, NC, Aero. Air Qual. Res., 11, 99 - 108.

773	Oswald, E.M., Rood, R.B., 2014. A trend analysis of the 1930 – 2010 extreme heat events in the
774	continental United States, J. Appl. Meteor. Climatol., 53, 565 – 582.
775	Penrod, A., Y. Zhang, K. Wang, SY. Wu, and R. L. Leung, 2014. Impacts of Future
776	Climate and Emission Changes on U.S. Air Quality, Atmospheric Environment, 89, 533-
777	547.
778	Pouliot, G., Hugo Denier can der Gon, J. Kuenen, P. Makar, J. Zhang, M. Moran (2014),
779	Analysis of the Emission Inventories and Model-Ready Emission Datasets of Europe and
780	North America for Phase 2 of the AQMEII Project, Atmospheric Environment, in review.
781	Pun B.K., Wu, SY., Seigneur, C., Seinfeld, J.H., Griffin, R.J., Pandis, S.N., 2003. Uncertainties
782	in Modeling Secondary Organic Aerosols: Three-Dimensional Modeling Studies in
783	Nashville/Western Tennessee, Environ. Sci. Technol., 37, 3647-3661.
784	Rao, S., S. Galmarini, and D. G. Steyn (2012a), AQMEII: An International Initiative for the
785	Evaluation of Regional-Scale Air Quality Models-Phase 1, Atmospheric Environment,
786	Special Issue, 53, 1 – 224.
787	Rasmussen, D.J., Fiore, A.M., Naik, V., Horowitz, L.W., McGinnis, S.J., Schultz, M.G., 2012.
788	Surface ozone-temperature relationships in the eastern US: A monthly climatology for
789	evaluating chemistry-climate models, Atmos. Environ., 47, 142 – 153.
790	Reid, J.S., Koppmann, R., Eck, T.F., Eleuterio, D.P., 2005. A review of biomass burning
791	emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem.
792	Phys., 5, 799 – 825.
793	Samaali, M., Moran, M.D., Bouchet, V.S., Pavlovic, R., Cousineau, S., Sassi, M., 2009. On the
794	influence of chemical initial and boundary conditions on annual regional air quality model

simulations for North America, Atmos. Environ., 43(32), 4873 – 4885.

- 796 Sarwar, G., Fahey, K., Napelenok, S., Roselle, S., Mathur, R., 2011. Examining the impact of
- 797 CMAQ model updates on aerosol sulfate predictions, the 10th Annual CMAS Models-3
 798 User's Conference, October, Chapel Hill, NC.
- Schell, B., Ackermann, I.J., Hass, H., Binkowski, F.S., Ebel, A., 2001. Modeling the formation
- 800 of secondary organic aerosol within a comprehensive air quality model system, J. Geophys.
- 801 Res., 106, 28275 28293.
- Schere, K. et al., 2012. Trace gas/aerosol boundary concentrations and their impacts on
 continental-scale AQMEII modeling domains, Atmos. Environ., 53, 38-50.
- 804 Stoeckenius, T., Chemel, C., Zagunis, J., Sakulyanontvittaya, T., 2014. A Comparison between
- 805 2010 and 2006 Air Quality and Meteorological Conditions, and Emissions and Boundary
- 806 Conditions for the AQMEII-2 North American Domain, Atmos. Environ., in review.
- 807 Van Lier-Walqui, M., Vukicevic, T., Posselt, D.J., 2014. Linearization of microphysical
- 808 parameterization uncertainty using multiplicative process perturbation parameters, Mon.
- 809 Wea. Rev., 142, 401 413.
- 810 Wang, K., K. Yahya, Y. Zhang, S.-Y. Wu, and G. Grell, 2014. Implementation and Initial
- 811 Application of A New Chemistry-Aerosol Option in WRF/Chem for Simulation of
- 812 Secondary Organic Aerosols and Aerosol Indirect Effects, Atmos. Environ., in review.
- 813 Wu, J., Zhang, M., 2005. Simulations of clouds and sensitivity study by Weather Research and
- 814 Forecast Model for Atmospheric Radiation Measurement case 4, Fifteenth Arm Science
- 815 Team Meeting Proceedings, Mar 14 18, Daytona Beach, FL.
- 816 Yahya, K., Wang, K., Gudoshava, M., Glotfelty, T., Zhang, Y., 2014. Application of WRF/Chem
- 817 over the continental U.S. under the AQMEII Phase II: Comprehensive Evaluation of 2006
- 818 Simulation, Atmos. Environ, in review.

- 819 Yang, B., Qian, Y., Lin, G., Leung, L.R., Rasch, P.J., Zhang, G.J., McFarlane, S.A., Zhao, C.,
- 820 Zhang, Y., Wang, H., Wang, M., Liu, X., 2013. Uncertainty quantification and parameter
- running in the CAM5 Zhang-McFarlane convection scheme and impact of improved
- 822 convection on the global circulation and climate, J. Geophys. Res., 118, 395 415.
- Yarwood, G., Rao., S., Yocke, M., Whitten, G.Z., 2005. Updates to the Carbon Bond
 Mechanism: CB05, Report to the U.S. Environmental Protection Agency, RT-04-00675.
- Zhang, Y., 2008. Online-coupled meteorology and chemistry models: history, current status, and
 outlook, Atmos. Chem. Phys., 8, 2895-2932.
- 827 Zhang, Y., Hu, X., Leung, L. R., W. I. Gustafson Jr., 2008. Impacts of regional climate change
- 828 on biogenic emissions and air quality. Journal of Geophysical Research 113(D18), D18310,
 829 doi:10.1029/2008JD009965.
- Zhang, Y., Chen, Y.-C., Sarwar, G., Schere, K., 2012. Impact of Gas-Phase Mechanisms on
 Weather Research Forecasting Model with Chemistry (WRF/Chem) Predictions:
 Mechanism Implementation and Comparative Evaluation, J. Geophys. Res., 117, D1,
 doi:10.1029/2011JD015775.
- Zhang, Y., Wang, W., Wu, S.-Y., Wang, K., Minoura, H., Wang, Z.-F., 2014. Impacts of
 Updated Emission Inventories on Source Apportionment of Fine Particle and Ozone over
 the Southeastern U.S., Atmos. Environ., 588, 133-154.
- 837

838

Table 1. Annual performance statistics for Predictions of WRF/Chem and WRF only sensitivity simulation for 2010

		WRF				WRF/Chem					
Network	Variable	Mean	Mean	Corr	NMB	NME	Mean	Mean	Corr	NMB	NME
or Site name		Obs	Sim		(%)	(%)	Obs	Sim		(%)	(%)
CASTNET	T2	15.9	15.0	0.93	-5.0	15.8	15.9	15.1	0.64	-4.9	32.9
SEARCH	T2	19.4	18.4	0.94	-4.3	12.3	19.4	18.4	0.65	-5.1	27.6
CASTNET	SWDOWN	176.1	214.7	0.91	21.8	36.2	176.1	189.2	0.80	7.4	50.4
SEARCH	SWDOWN	217.7	245.0	0.91	11.5	31.6	217.7	211.0	0.78	-3.0	47.2
CASTNET	WS10	2.3	3.0	0.44	28.1	66.4	2.3	2.4	0.14	3.5	84.3
SEARCH	WS10	2.2	2.4	0.47	9.6	50.9	2.2	2.4	0.23	8.0	62.3
NADP	Precip	18.9	20.7	0.54	10.2	71.2	18.9	19.4	0.10	2.5	112.7
GPCC	Precip	2.2	2.3	0.83	1.1	22.6	2.2	2.2	0.83	-1.3	22.0
MODIS	CF	57.6	60.4	0.82	6.2	12.7	57.6	57.8	0.87	0.3	8.9
MODIS	AOD	-	-	-	-	-	0.10	0.05	-0.09	-46.6	54.4
MODIS	СОТ	-	-	-	-	-	17.2	6.3	0.45	-63.5	63.6
MODIS	CWP	-	-	-	-	-	160.1	97.3	0.54	-39.2	54.9
MODIS	QVAPOR	-	-	-	-	-	1.04	1.13	0.96	9.0	27.7
MODIS	CCN	-	-	-	-	-	0.33	0.09	0.60	-73.2	73.2
TERRA	CDNC	-	-	-	-	-	155.0	123.5	0.10	-20.0	59.2
CASTNET	Max 1-h O ₃	-	-	-	-	-	47.4	33.2	0.40	-30.0	34.8
CASTNET	Max 8-h O ₃	-	-	-	-	-	43.8	32.7	0.40	-25.3	32.0
AQS	Max 1-h O ₃	-	-	-	-	-	48.4	40.7	0.34	-15.8	28.0
AQS	Max 8-h O ₃	-	-	-	-	-	42.3	35.3	0.20	-17.0	29.2
STN	24-h PM _{2.5}	-	-	-	-	-	11.0	9.7	0.17	-11.5	54.6
IMPROVE	24-h PM _{2.5}	-	-	-	-	-	4.5	4.0	0.44	-11.5	56.0
STN	24-h SO ₄	-	-	-	-	-	11.0	9.7	0.17	19.0	68.5
IMPROVE	24-h SO ₄	-	-	-	-	-	1.0	1.3	0.50	21.1	72.3
STN	24-h NO ₃	-	-	-	-	-	1.4	0.7	0.10	-45.6	89.1
IMPROVE	24-h NO ₃	-	-	-	-	-	0.4	0.2	0.30	-43.3	95.5
STN	24-h NH ₄	-	-	-	-	-	1.0	1.0	0.21	1.5	72.5
STN	24-h EC	-	-	-	-	-	0.4	1.0	0.14	147.1	179.5
IMPROVE	24-h EC	-	-	-	-	-	0.2	0.3	0.29	78.5	123.8
STN	24-h TC	-	-	-	-	-	2.8	2.5	0.10	-11.9	62.0
IMPROVE	24-h OC	-	-	-	-	-	0.9	0.6	0.18	-29.6	74.2
IMPROVE	24-h TC	-	-	-	-	-	1.0	0.9	0.21	-11.8	72.8
Pasadena,	SOA	-	-	-	-	-	0.63	0.16	0.1	-75.3	78.3
CA ² Bakersfield, CA ²	SOA	-	-	-	-	-	0.51	0.23	0.3	-55.3	65.9

¹ Units are as follows: SWDOWN (W m⁻²), GLW (W m⁻²), OLR (W m⁻²), T2 (°C), RH2 (%), WS10 (m s⁻¹), WD10 (deg), Precip (mm), CWP (g m⁻²), QVAPOR (cm), CCN (10⁹ cm⁻²), CDNC (cm⁻²), O₃ (ppb), PM and PM species (µg m⁻³). CASTNET - the Clean Air Status and Trends Network; AQS – the Aerometric Information Retrieval System Air Quality System; SEARCH - the Southeastern Aerosol Research and Characterization; GPCC - the Global Precipitation Climatology Centre; MODIS - the Moderate Resolution Imaging Spectroradiometer; IMPROVE – the Interagency Monitoring for Protected Visual Environmental; STN – the Speciated Trends Network. Note that IMPROVE did not contain NH4+ data for 2010. "-" indicates that the results of those variables not available from the WRF only simulation.

² The observed SOA data are taken from Klendienst et al. (2012) and Lewandowski et al. (2013).

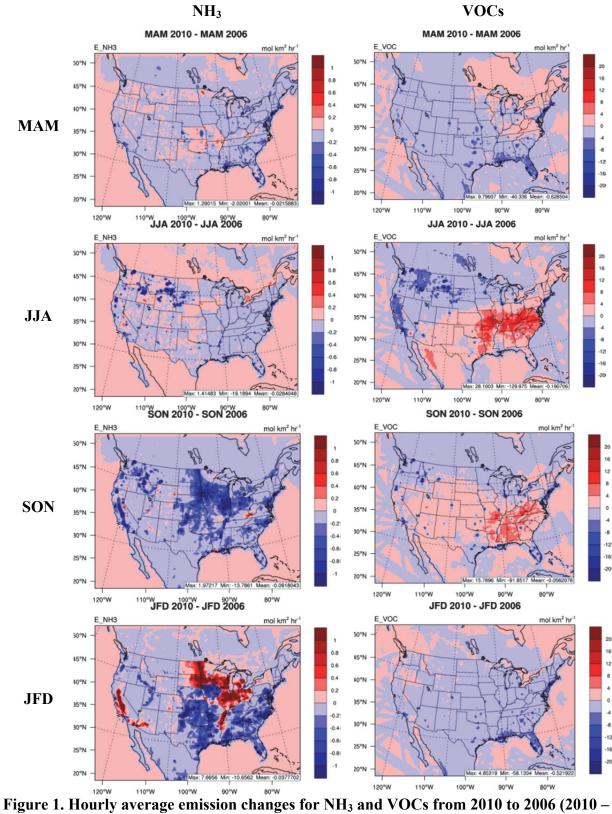


Figure 1. Hourly average emission changes for NH₃ and VOCs from 2010 to 2006 (2010 – 2006).

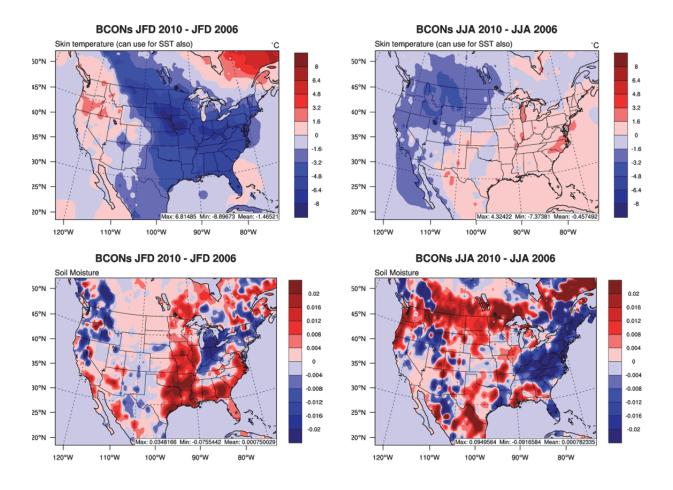
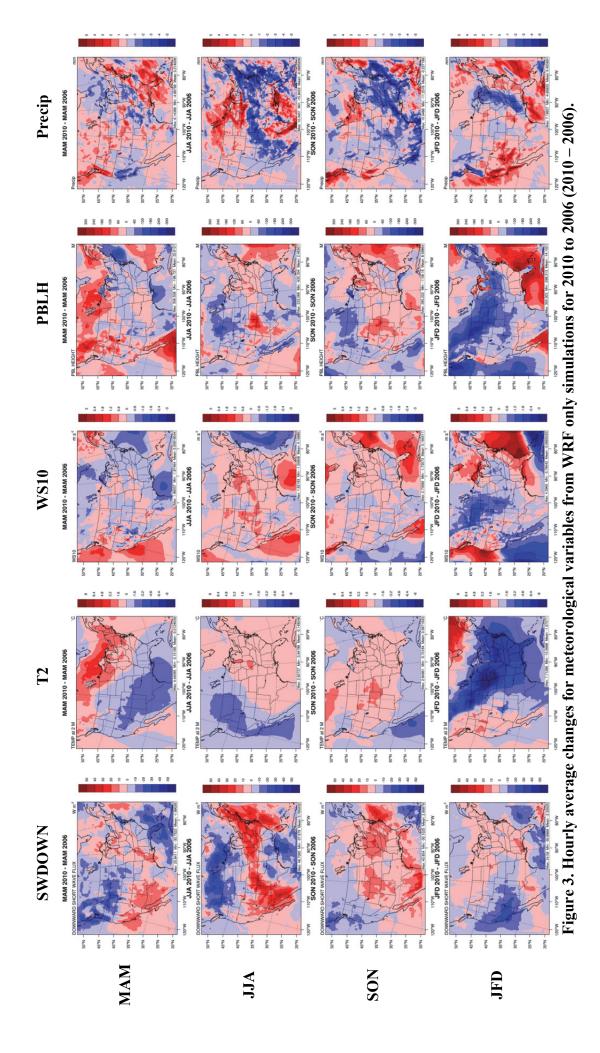



Figure 2. Skin temperature and soil moisture in winter (JFD) and summer (JJA) between 2010 and 2006 extracted from NCEP as boundary conditions for WRF and WRF/Chem simulations.

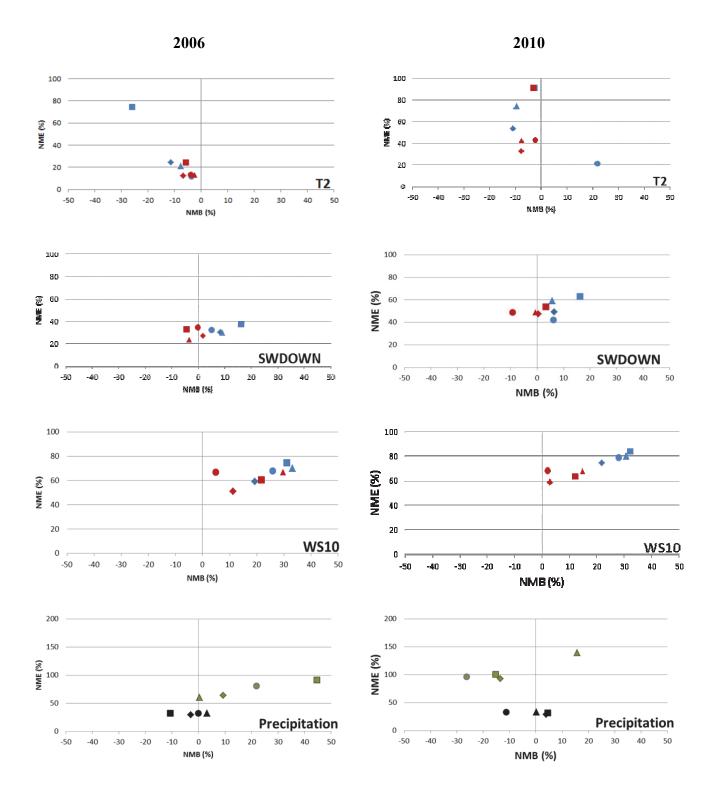
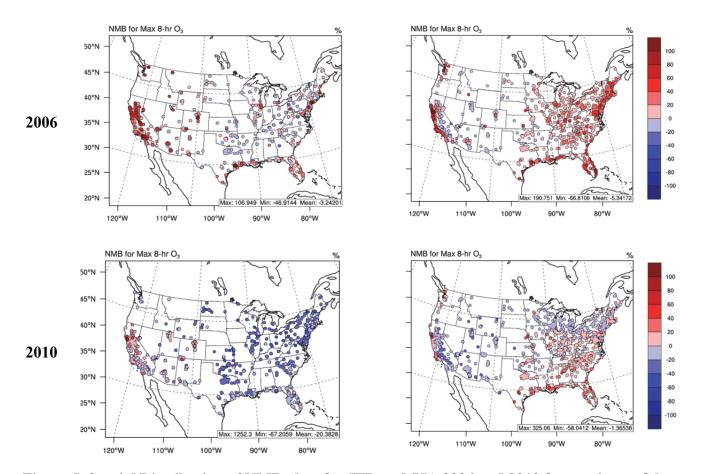



Figure 4. Comparison of seasonal plots of NMB vs NME of various meteorological variables for 2006 (left column) and 2010 (right column) – T2 (temperature at 2m), SWDOWN (downward shortwave radiation), WS10 (wind speed at 10m) and Precipitation where the shapes represent different seasons (diamond – MAM, circle – JJA, triangle – SON and square – JFD) and the different colors represent different observational data (red – SEARCH, blue – CASTNET, green – NADP, black – GPCC).

JJA

Figure 5. Spatial Distribution of NMB plots for JFD and JJA 2006 and 2010 for maximum 8-hr O₃ concentrations based on evaluation against CASTNET, AQS and SEARCH.

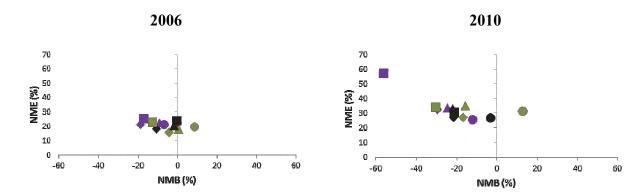


Figure 6. Comparison of seasonal plots of NMB vs NME for maximum 8-hr O₃ concentrations where the different shapes represent different seasons (diamond – MAM, circle – JJA, triangle – SON and square – JFD) and the different colors represent different observational data (purple – CASTNET, black – AQS and green - SEARCH).

JFD

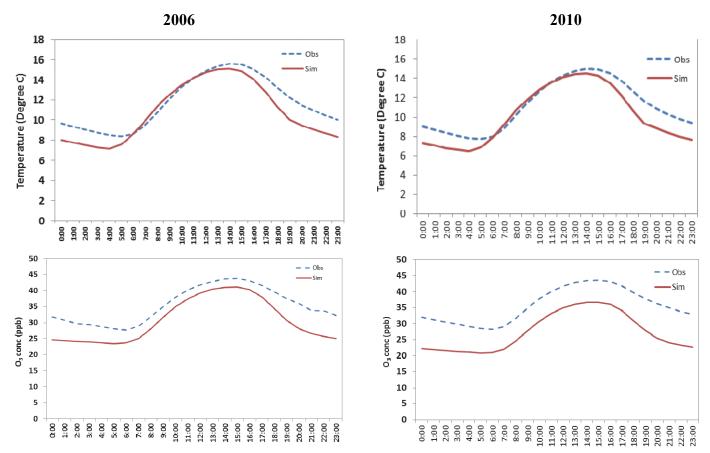


Figure 7. Diurnal variation of T2 (top row) and hourly O₃ concentrations (bottom row) against CASTNET for 2006 and 2010.

JFD

JJA

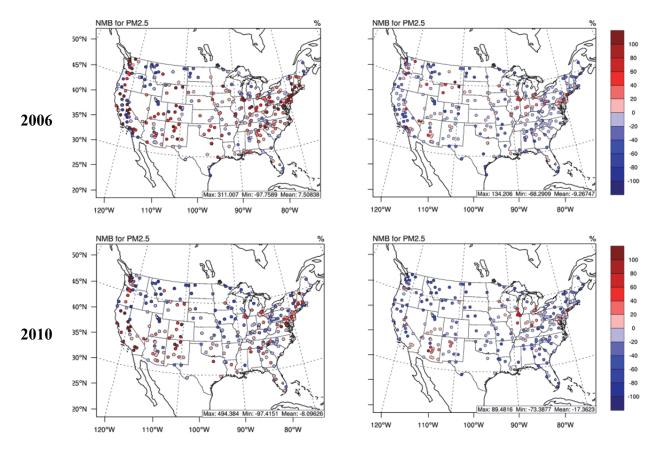


Figure 8. Spatial Distribution of NMB plots for JFD and JJA 2006 and 2010 for average 24-hr PM_{2.5} concentrations based on evaluation against the IMPROVE, STN and SEARCH sites.

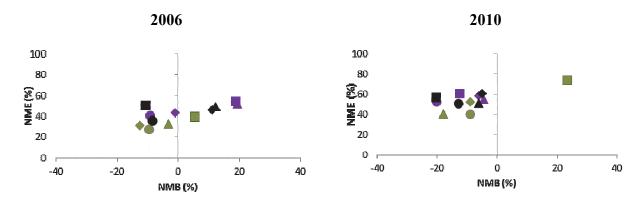


Figure 9. Comparison of seasonal plots of NMB vs NME for average 24-hr PM_{2.5} concentrations where the different shapes represent different seasons (diamond – MAM, circle – JJA, triangle – SON and square – JFD) and the different colors represent different observational data (purple – IMPROVE, black – STN and green - SEARCH).

2010

Figure 10. Plots of annual statistics (NMB vs NME) for average 24-hr PM_{2.5} concentrations and PM_{2.5} species against different observational networks.

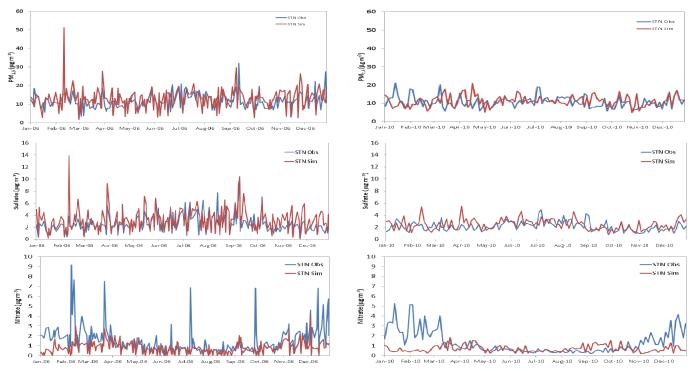


Figure 11. Time series of Obs vs. Sim PM_{2.5}, SO₄ and NO₃ concentrations against STN for 2006 and 2010.

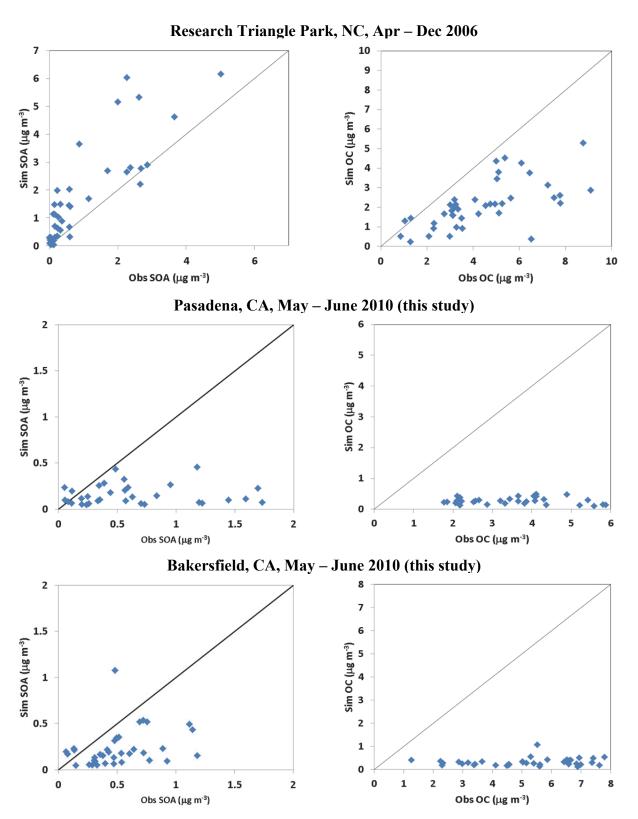
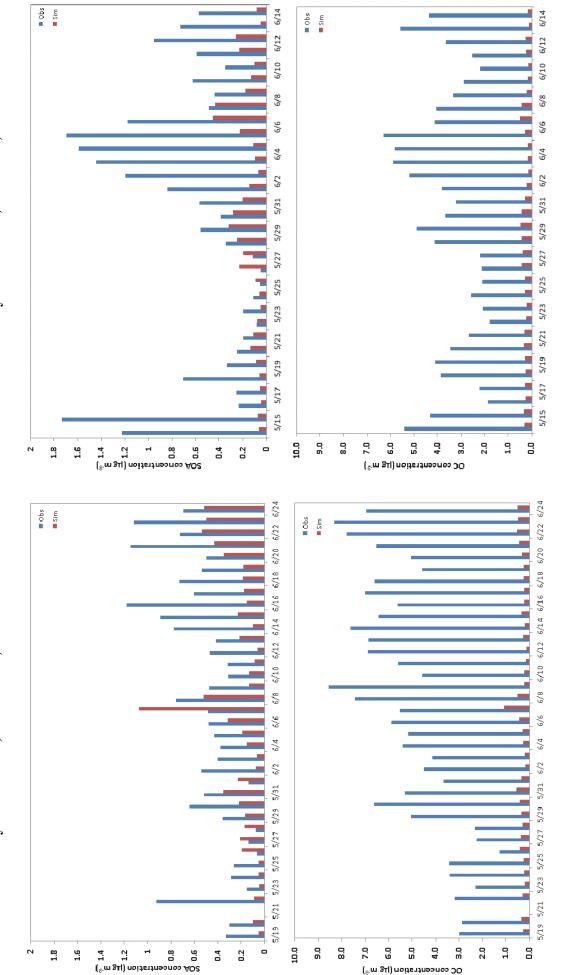



Figure 12. Scatter plots of SOA (left column) and OC (right column) concentrations at various sites.

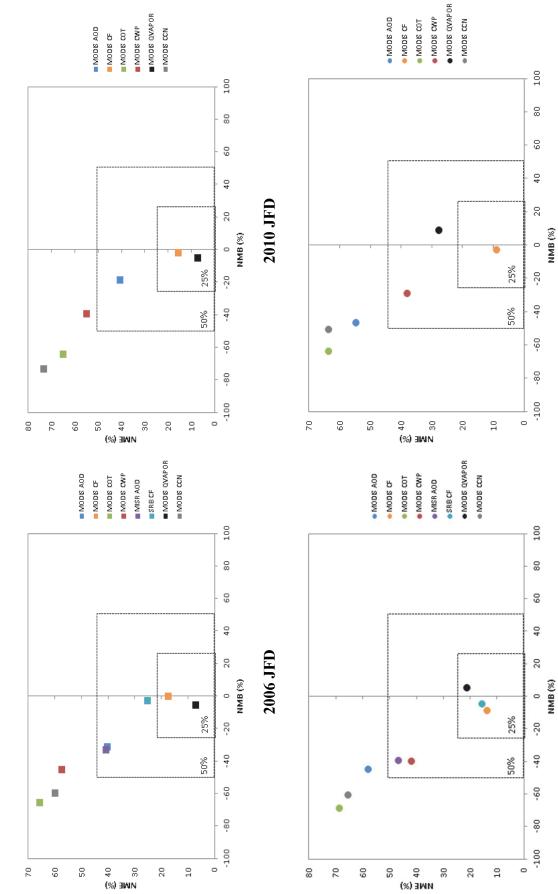

(^{e.}m 34) noitentneonco OO

Figure 13. Column Plots of SOA and OC concentrations at Bakersfield, CA and Pasadena, CA from May – June 2010.

May – June 2010, Pasadena, CA

May – June 2010, Bakersfield, CA

2010 JJA

2006 JJA

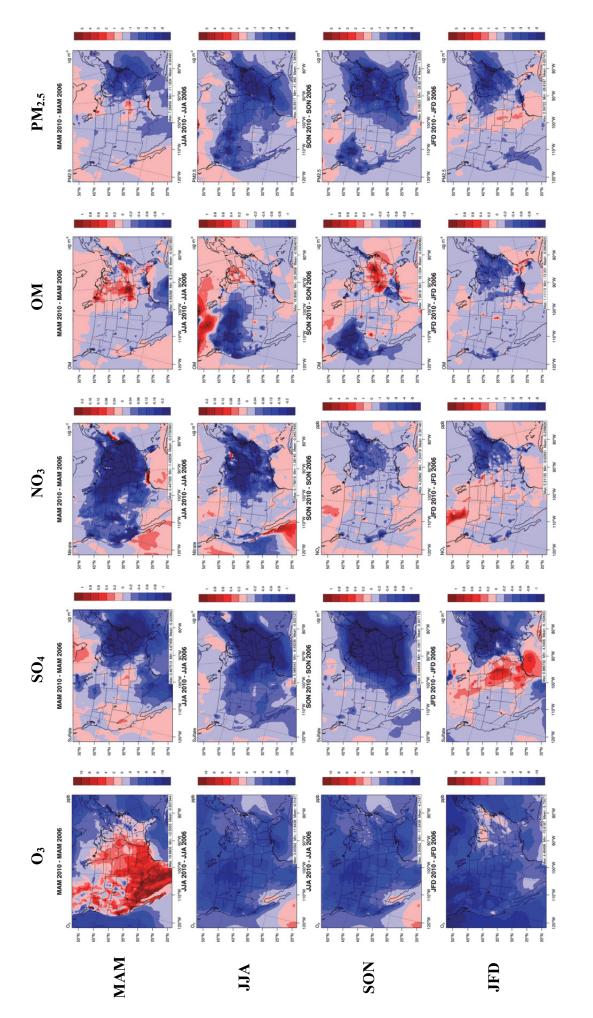
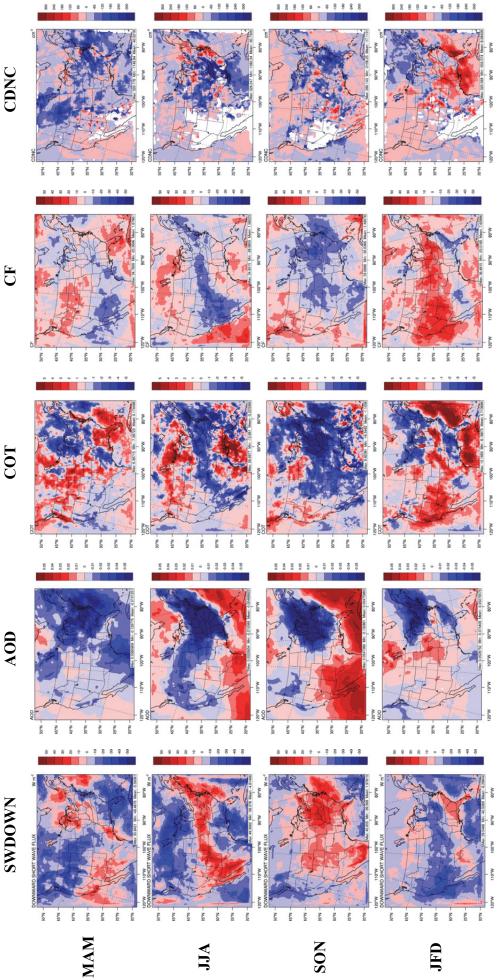



Figure 16. Chanegs in hourly average surface concentrations of O₃ and PM species from 2010 to 2006 (2010 – 2006).

Supplementary Material

Application of WRF/Chem over the Continental U.S. under the AQMEII Phase II: Part 2.

Evaluation of 2010 Application and Responses of Air Quality and Meteorology-Chemistry

Interactions to Changes in Emissions and Meteorology from 2006 to 2010

Khairunnisa Yahya, Kai Wang, and Yang Zhang*

Department of Marine, Earth, and Atmospheric Sciences, NCSU, Raleigh, NC 27695

Tadeusz E. Kleindienst

National Exposure Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711

1. Emission Trends

Figure A1 shows annual mean hourly average emission changes for SO_2 , NO_x , VOCs, NH_3 , EC, and POA from 2010 to 2006.

2. Model Evaluation

Figure A2 shows the spatial Distribution of NMB plots for JFD and JJA 2006 and 2010 for T2 based on evaluation against CASTNET and SEARCH.

3. Changes in the concentrations of gas and PM species, the wind vector, and T2 from 2010 to 2006

As shown in Figure A3, SO_2 concentrations tend to decrease for all seasons at most locations (except for several locations in western U.S. in JJA, SON and JFD) over CONUS due to the decrease in SO_2 emissions. The slight increase in SO_2 concentrations over northwestern U.S. in

JFD could be due to lower T2, reduced WS10 for dispersion, and decreased PBLH as shown in ^{*}Corresponding author. Mailing address: Campus Box 8208, Room 1125, Jordan Hall, 2800 Faucette Drive Raleigh, NC 27695-8208, USA. Tel: 1-991-515-9688. Fax: 1-919-515-7802. E-mail address: <u>yang_zhang@ncsu.edu</u>

Figure 3. The slight increase in SO_2 concentrations over several locations in SON corresponds to the spatial pattern of reduced precipitation as shown in Figure 3. NO_2 concentrations in general decrease over most parts of CONUS except in parts of Canada in SON and JFD, and in largely populated areas in eastern U.S. in MAM. The large increases in NO₂ concentrations over Canada are a result of increases in NO₂ concentrations from the MACC BCONs, and not likely due to MACC ICONs. Jimenez et al. (2006) reported that a 48-hr spin-up time is sufficient to reduce the impact of ICONs to $\leq 10\%$ for O₃, but the impact of BCONs is more significant and persistent near domain boundaries, consistent with findings from Samaali et al. (2009) and Schere et al. (2012). The 2010 - 2006 increase in NO₂ concentrations over urban areas in eastern U.S. in MAM could be due to a few reasons. Figure A1 shows a decrease in NO_x emissions; however, the decrease in NO_2 emissions over eastern U.S. is very small compared to the decrease in nitrogen oxide (NO) emissions (figure not shown), which had a maximum decrease of $\sim 15 \text{ mol km}^2 \text{ hr}^{-1}$ over eastern U.S. In addition to the decrease in NO emissions, it could also signify decreased photolytic conversion from NO₂ to NO due to a decrease in SWDOWN. Less NO₂ could also have been converted into nitrate radical (NO₃) due to decreased OH concentrations, as Table 1 also shows an overall decrease in NO_3 concentrations. The NO₂ hotspots also correlate to the decrease in O₃ concentrations in urban areas. This could indicate an increased titration of O_3 by NO. This is an important result for policy implications, as reducing NO_x emissions may reduce NO_2 concentrations overall for CONUS, but may not reduce NO_2 concentrations in several areas, especially in urban areas due to a combination of titration and complex interplay with local meteorology. NH₃ mixing ratios generally decrease in the U.S., except over the eastern U.S. in MAM and SON, where there are increases. NH₃ emissions decrease however, over eastern U.S. for all seasons. The increase in

NH₃ concentrations in MAM and SON could be attributed to a number of reasons.

Concentrations of NH₄⁺ decrease for all seasons over eastern U.S. with the largest decreases in MAM and JJA. This could mean that less NH_3 is converted to NH_4^+ especially for MAM and SON over eastern U.S. due to increases in T2 (as shown in Figure 3), which shifts the partitioning towards the gas-phase rather than the particulate phase. Second, as shown in Figures 16 and A4, SO₄²⁻ concentrations decrease the most over eastern U.S. in SON, which means that less NH_4^+ is needed to neutralize SO_4^{2-} . As shown in Figures A5 and A6, nitric acid (HNO₃) concentrations decrease over eastern U.S. in MAM and SON. The decrease in HNO₃ concentrations results in decreases in NO₃⁻ concentrations over eastern U.S., which means that less NH_4^+ is used up in neutralizing NO_3^- . Less NH_4^+ required for neutralization would mean that more NH₃ remained in the gas phase. Third, as shown in Figure A7, wind speeds decrease over eastern and southeastern U.S. for MAM and SON, respectively, in 2010 compared to 2006, which could result in less dispersion of NH_3 concentrations over eastern U.S. In JJA and SON, high OM concentrations in Canada are attributed to the enhanced impacts of BCONs in JJA by increasingly convergent flow in this region. OM is made up of both POA and SOA. An increase in VOC emissions in eastern U.S. in MAM and SON leads to increases in OM concentrations. Decreases in VOC emissions in western U.S. for all seasons lead to decreases in OM concentrations. The OM concentrations in some areas do not follow a linear relationship with VOC emissions, however, such as southeastern U.S. in JJA, where VOC emissions increase from 2006 to 2010 but OM concentrations decrease. A decrease in POA concentrations must dominate the overall decrease in OM concentrations, even under increased temperatures and biogenic VOC emissions in this area. PM2.5 concentrations decrease for all seasons and most regions of the CONUS, which is attributed mainly to decreases in precursor

gases, especially the inorganic precursors SO_2 and NO_x in eastern U.S. Increased $PM_{2.5}$ concentrations in JFD and MAM in the Midwest are due to surface temperature decreases, dominating in this region (Stoeckenius et al., 2014). This in turn leads to increased particle nitrate concentrations (Campbell et al., 2014).

4. Differences between predictions of meteorological variables by WRF/Chem and WRF

Figure A8 shows absolute Differences between predictions of meteorological variables by WRF/Chem and WRF (WRF/Chem – WRF) simulations for 2010.

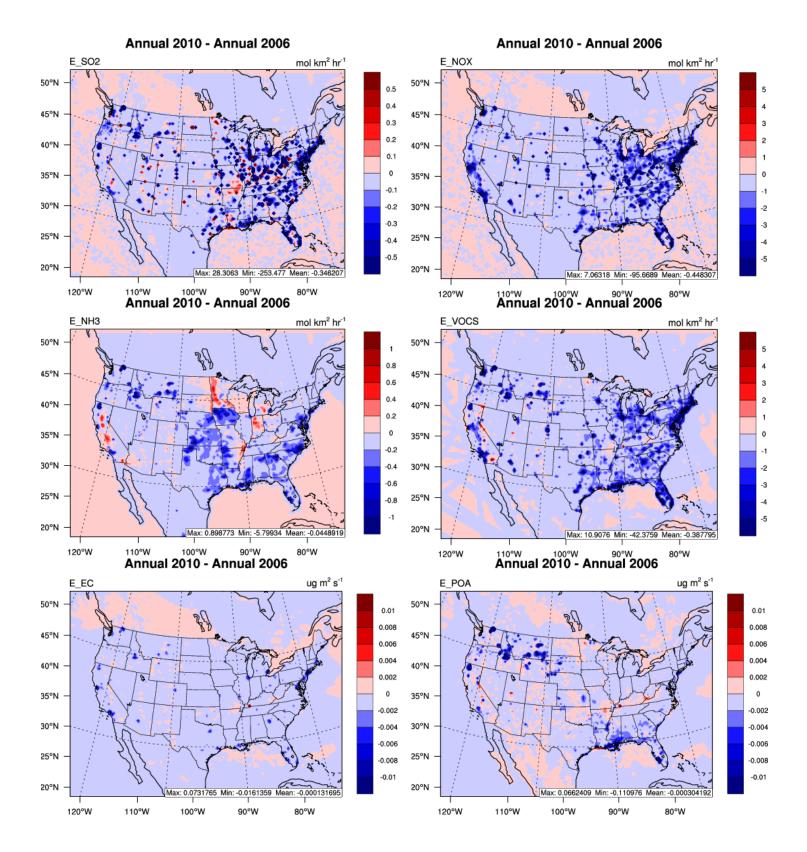


Figure A1. Annual mean changes in the hourly average emission for SO₂, NO_x, VOCs, NH3, EC, and POA from 2010 to 2006 (2010 – 2006).

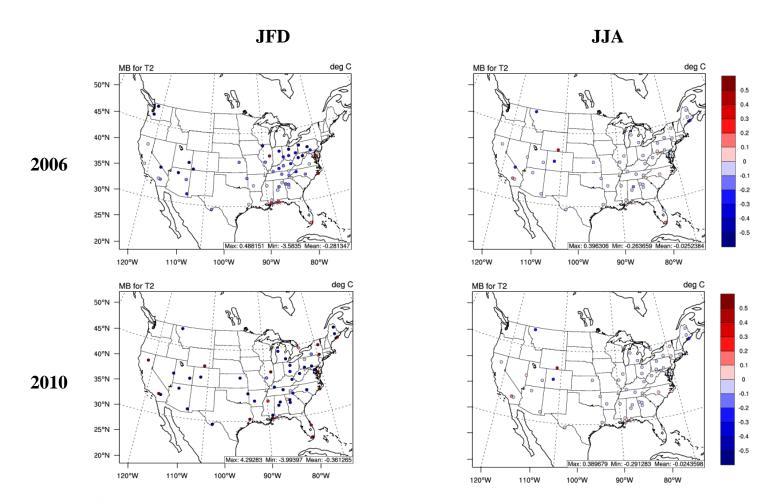


Figure A2. Spatial Distribution of NMB plots for JFD and JJA 2006 and 2010 for T2 based on evaluation against CASTNET and SEARCH.

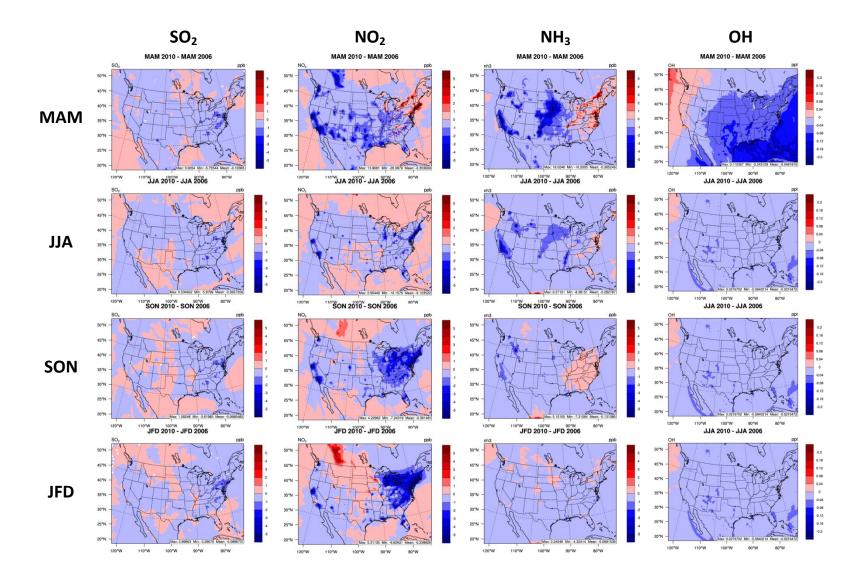


Figure A3. Changes in hourly average surface concentrations of selected gaseous species from 2010 to 2006 (2010 – 2006).

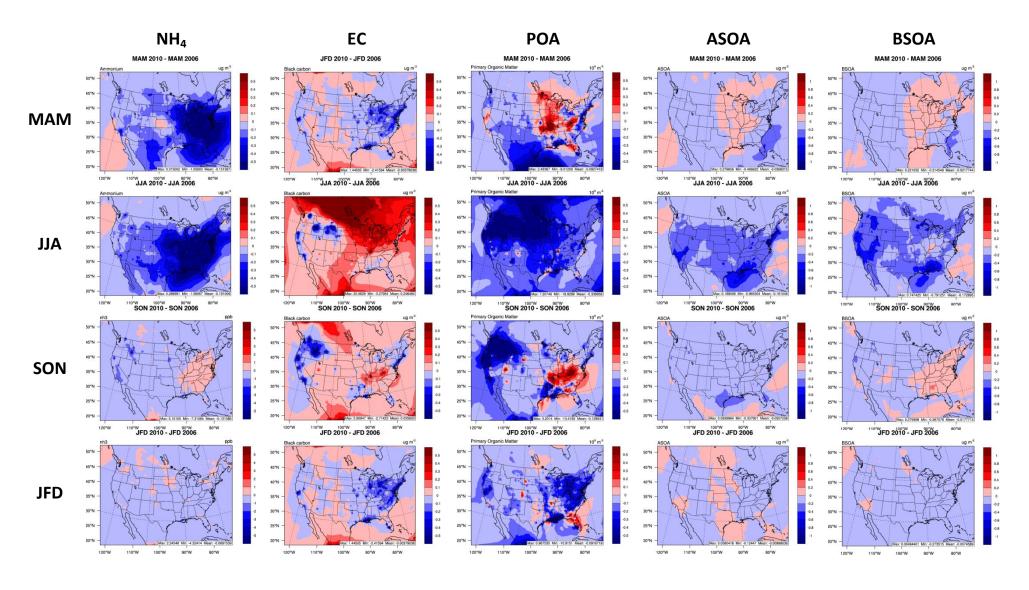
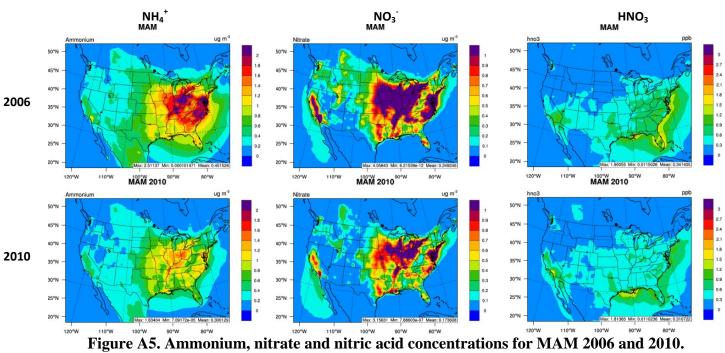
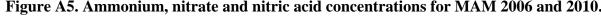




Figure A4. Changes in the hourly average surface concentration of selected PM species from 2010 to 2006 (2010 – 2006).

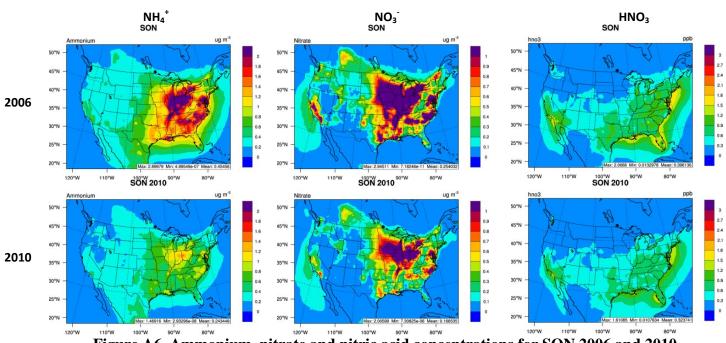


Figure A6. Ammonium, nitrate and nitric acid concentrations for SON 2006 and 2010.

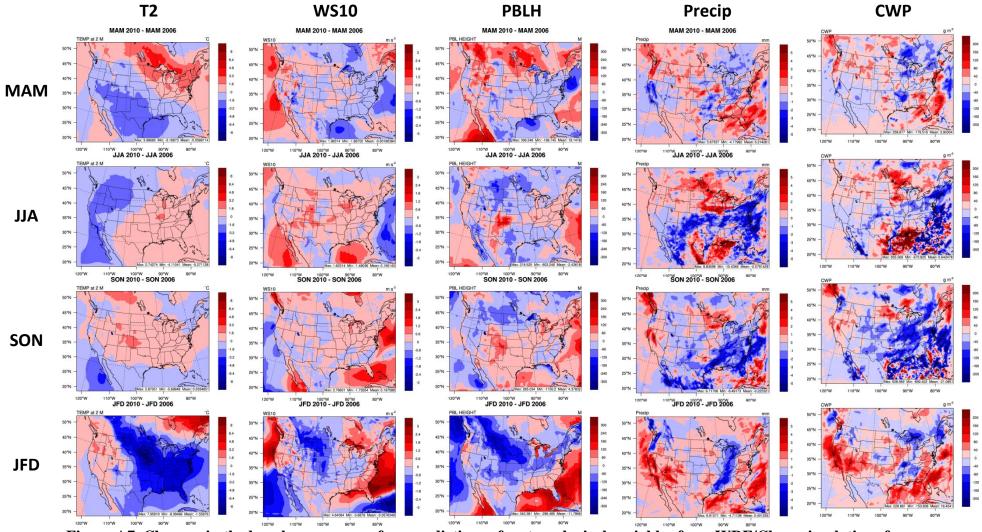


Figure A7. Changes in the hourly average surface predictions of meteorological variables from WRF/Chem simulations from 2010 to 2006 (2010 – 2006).

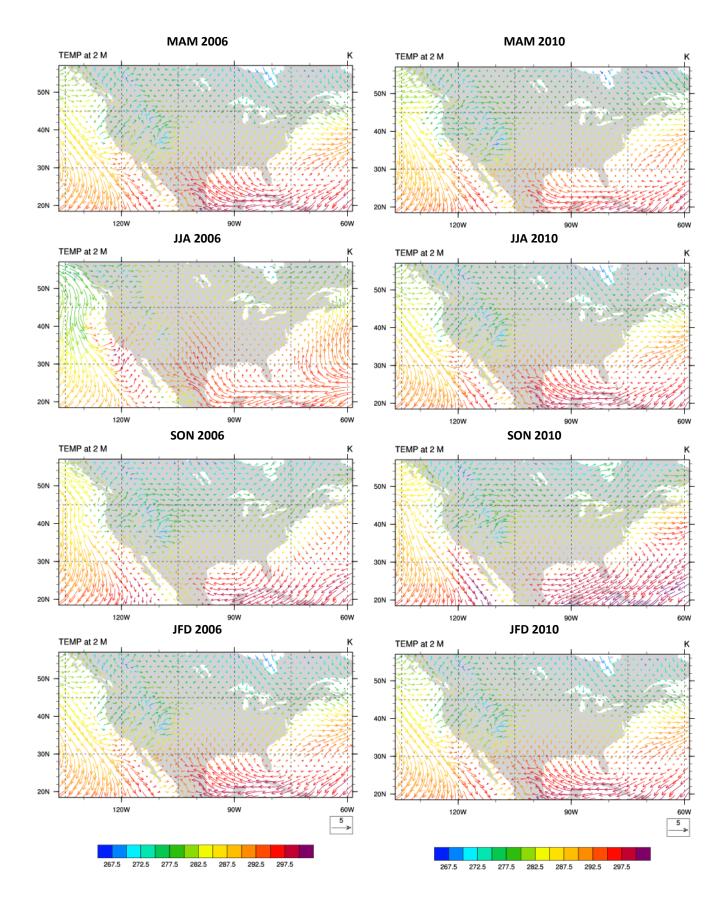


Figure A8. Wind vectors at 10-m and T2 by for all seasons for 2006 and 2010.

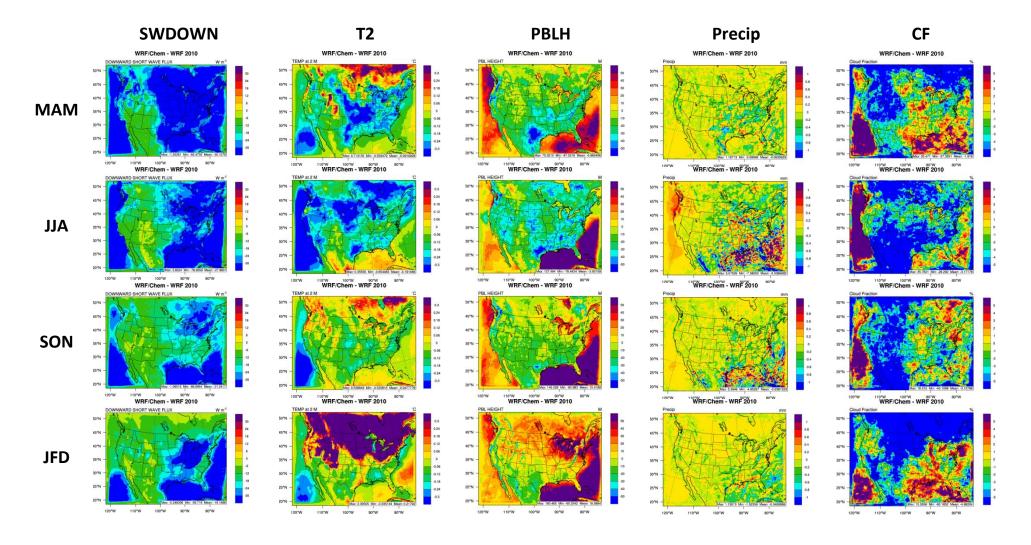


Figure A8. Absolute Differences between predictions of meteorological variables by WRF/Chem and WRF (WRF/Chem – WRF) simulations for 2010.