This presentation is part of an accepted Society of Toxicologic Pathology 2014 Annual Meeting Symposium entitled:

"Toxicologic pathology in informing regulatory decisions and guiding the interpretation and application of data from new technologies and tools"

The symposium organizers are:

Shashi Amur, Ph.D. Biomarker Qualification Scientific Coordinator Office of Translational Sciences Center for Drug Evaluation and Research U.S. Food and Drug Administration 10903 New Hampshire Avenue, Building 21, Room 4524 Silver Spring, MD 20993 Phone: 301-796-1631 email:shashi.amur@fda.hhs.gov

and

Douglas C. Wolf, D.V.M., Ph.D., FIATP, ATS Toxicology & Health Sciences, North America Syngenta Crop Protection, LLC PO Box 18300 | 410 S. Swing Road | Greensboro, NC 27419-8300

Presentation title: "EPA perspective - exposure and effects prediction and monitoring"

Author:

Jon R. Sobus, Ph.D. U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Exposure Measurements and Analysis Branch Research Triangle Park, NC 27711 Mail Code: E205-04 Office: (919) 541-2232 Fax: (919) 541-0905

Risk-based decisions for environmental chemicals often rely on estimates of human exposure and biological response. Biomarkers have proven a useful empirical tool for evaluating exposure and hazard predictions. In the United States, the Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey represents the largest publically available source of biomonitoring data. These data reflect human exposures to hundreds of environmental chemicals, as well as biological responses that may be linked to adverse health outcomes. While NHANES biomonitoring data are intended to track national trends and set research priorities, they are increasingly used to evaluate exposure and effects predictions in support of risk-based decisions. This represents a repurposing of the NHANES biomarker data, and highlights a need for rigorous and standardized computational protocols. In response to this need, a team of EPA scientists under the Chemical Safety for Sustainability Research Program performed a series of computational case studies with the goal of clearly delineating best-practices for examining publically-available biomonitoring data. This presentation will highlight the novel methodologies used for the case-studies, key findings, and possible implications for decision making.