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 12 

Summary. We propose a 2D seismic time-lapse inversion approach to image the evolution of 13 

seismic velocities over time and space. The forward modeling is based on solving the eikonal 14 

equation using a second-order fast marching method. The wave-paths are represented by Fresnel 15 

volumes rather than by conventional rays. This approach accounts for complex velocity models and 16 

has the advantage of considering the effects of the wave frequency on the velocity resolution. The 17 

aim of time-lapse inversion is to find changes in velocities of each cell in the model as a function of 18 

time. Each model along the time axis is called a reference space model. This approach can be 19 

simplified into an inverse problem that seeks the optimum of several reference space models taken 20 

together using the approximation that the change in the seismic velocity varies linearly in time 21 

between two subsequent reference models. We demonstrate on a synthetic example that includes the 22 

regularization in time in the cost function and reduces inversion artifacts associated with noise in the 23 

data by comparison with independent inversions at each time.  24 
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1. INTRODUCTION 25 

Time-lapse seismic tomography is an important geophysical approach used to monitor the 26 

depletion of oil and gas reservoirs during their production (Vesnaver et al., 2003; Ayeni and Biondi, 27 

2010), to monitor the sequestration of CO2 (e.g., Lazaratos and Marion, 1997; Ajo-Franklin et al., 28 

2007a), to monitor geothermal fields, active volcanoes, or the remediation of contaminant plumes 29 

(e.g., McKenna et al., 2001). Several different time-lapse seismic tomography algorithms have been 30 

proposed in the literature, most of them based on travel time tomography rather than based on full 31 

waveform inversion (e.g., Ayeni and Biondi, 2010). Classical methods comprise sequential inversion 32 

with model-based regularization similar to the DC resistivity problem (Oldenburg et al., 1993 and 33 

Miller et al., 2008), travel time differences (Spetzler et al., 2007; Ajo-Franklin et al., 2007b), 34 

differential-wave-equation velocity analysis (Albertin et al., 2006), and the use of various 35 

regularization tools like compactness in the inverse problem (Ajo-Franklin et al., 2007b). Other 36 

approaches rely on time-lapse migration based on adjoint methods (Zhu et al., 2009).  37 

All the previous approaches do not account for regularization over time in the inverse 38 

problem. We propose a new seismic time-lapse inversion approach based on an active time domain 39 

constraint. This approach extends recently published works in time-lapse resistivity tomography 40 

(Kim et al., 2009;) and induced-polarization  (Karaoulis et al., 2011a, b) to the seismic problem and 41 

draws on the idea of using Tikhonov regularization in time, as used in the medical imaging realm 42 

(Brooks, 1999).  In this work, we apply the inversion algorithm to a crosswell seismic refraction 43 

(first arrivals) tomography, where we monitor the evolution of velocities. The same principle can be 44 

also applied to surface data or surface to crosswell setups. 45 
 46 

2. METHOD 47 

The elastic material to image is discretized using a grid of nodes. A value of the slowness 48 

(inverse of the velocity) is assigned to each node. The eikonal equation corresponds to a Hamilton-49 
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Jacobi equation. In this equation, the gradient of the travel time T is proportional to the slowness s at 50 

any point in space, 51 

( , ) ( , )T x z s x z∇ = .          (1) 52 

To calculate the travel times of seismic waves from source to receivers, we use the fast marching 53 

method as proposed by Sethian and Popovici (1999), Hassouna and Farag (2007), Kroon (2011), and 54 

Guo et al. (2011). In Eq. (1), the term ( , , )T x y z∇  is approximated by a second-order finite-55 

difference scheme (Sethian and Popovici, 2002) to increase accuracy. Equation (1) is written as,  56 

2 2 2max( , ,0) max( , ,0)x x z z
ij ij ij ij ijD T D T D T D T S− + − ++ = ,      (2) 57 

where, ,x z
ijD
−  and ,x z

ijD
+  are the standard backward and forward finite difference operators, 58 

respectively, at location (i, j) on the grid. The second-order backward and forward finite difference 59 

approximations of a 2D lattice are given by, 60 
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respectively, along the x-axis. Similar equations can be written along the z-axis.  By substituting Eqs. 63 

(3) and (4) into Eq. (2), we get, 64 
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where, Δ1=Δx and Δ2=Δy. Equations 1 through 7 can be easily generalized to the 3D case.  68 

We describe now the Fresnel ray-path approach based on the numerical scheme of Watanabe 69 

et al. (1999). Between source S and receiver R, we add the travel times from S to all nodes P on the 70 

grid (tSP) and the travel times from R to all nodes P on the grid (tRP). For each node on the grid, we 71 

subtract the travel time from source S to receiver R, tSR, yields a residual δt. The Fresnel zone ray-72 

path is defined as the isosurface with all residuals δt less than half a period f. In other words, 73 

1/ (2 )SP RP SRt t t t fδ = + − < , where f is the main frequency of the source signal (taken as the peak 74 

frequency of the Fourier transform of the signals recorded at each receiver). By accounting for the 75 

time the wave propagation is affected by heterogeneities proximal to the ray-path, the sparseness of 76 

the ray distribution is reduced. Watanabe et al. (1999) proposed a numerical definition of Fresnel 77 

volumes, characterized by a weighting function, w, that depends linearly on the delay of the seismic 78 

waves expressed as, 79 
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The frequency of the source can be determined by taking the mean central frequency, after 81 

Fourier analysis on the waveforms for all source–receiver pairs. Lower frequencies expand the area 82 

that affect the ray, while in high frequencies the area that affects the ray, is close to the ray path. The 83 

dependence on frequency and the weighting factor can be found in Watanabe et al., (1999). 84 

The calculation of the Jacobian matrix J, containing the derivatives of travel times with 85 

respect to the slowness values of the grid, is, 86 
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where n denotes the number of grid nodes and m the number of different sources (in our numerical 88 

experiment, each receiver is collocated with a source). Therefore each element of /ij i jJ T S= ∂ ∂ , 89 

shows the difference in travel time iT∂  when slowness in node j is changed by jS∂ . These partial 90 

derivatives are given by  91 
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where, wj represents the weight of the parameters, 
iP

L , which  represents the total length of the ray 94 

Pi, and α denotes the total weight for all parameters when the ray Pi is calculated (normalization 95 

factor). Figure 1a shows an example of the computation of the Fresnel volume raypath approach, 96 

when a layered velocity model is considered (layer with Vp= 1 km/s and thickness 10 m, and an 97 

underlying layer of Vp=3 Km/s) and the source is considered at (x,z)=(0,0) (m) while the receiver is 98 

considered at (x,z)=(52,0) m.  Figure 1d displays the Fresnel ray-path. 99 

Equation (10) requires the calculation of the ray-path, which is based on the Dijkstra 100 

algorithm (Dijkstra, 1959). Finally, the travel time and path from each source-receiver pair is 101 

improved by using the bending theory. In this approach, starting from the coordinates of the source 102 

and receiver and the travel times in the medium as calculated from the fast marching toolbox, ray-103 

paths are re-discretized using beta splines (Newman and Sproull, 1981). This way, the rays are 104 
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allowed to bend, rather than just travel from node to node, therefore, representing more realistic field 105 

conditions. 106 

We present now the space-time ATC algorithm, which has been originally applied to DC 107 

resistivity data (Karaoulis et al., 2011a, b). Under the space-time ATC approach, the subsurface is 108 

defined as a space-time model encompassing all space models during the entire monitoring period. 109 

In the same manner, the entire monitoring data are defined using space-time coordinates (Kim et al., 110 

2009). Therefore the space-time subsurface model !X  is sampled sparsely at some pre-selected times 111 

and is expressed as !X = [X1,!,X t ]
T  where Xi is the reference space model for the ith time step and t 112 

is the number of monitoring times. The data misfit vector is also defined in the space-time domain 113 

by,  114 

e = D̂−G( !X k+1) = D̂−G( !X k + d !X ) ." " " " "   (12) 115 

In Eq. (12)," D̂   is the data vector defined in the space-time coordinate system by 1
ˆ [ , , ]TtLD= d d , 116 

where di is the data from time step i, " G( !X k )  is the forward modeling response, and 117 

d !X = [dX1,!,dX t ]
T  is the model perturbation vector, i.e. d !X = !X k+1 − !X k , and the superscript k 118 

denotes the iteration number.  119 

Having defined both the data and the model using space-time coordinates, the ATC algorithm 120 

is able to adopt two regularizations in the time and space domains to stabilize the inversion. 121 

Consequently, the objective function G will be minimized by the inversion process and can be 122 

expressed as follows (Zhang et al., 2005; Kim et al., 2009), 123 

2TG λ α+ Ψ + Γ= e e ,          (13) 124 

where Ψ and Γ are the two regularizers. The function Ψ is used for smoothness regularization in 125 

space and is expressed as a second-order differential operator applied to the model perturbation 126 

vector. The function Γ is used for smoothness regularization in time and is expressed as a first-order 127 
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differential operator to the model. The two parameters λ and α are the Lagrangian multipliers for 128 

controlling these two regularizations terms. In our approach, the space-domain Lagrangian is 129 

expressed as a diagonal matrix Λ̂  (Yi et al., 2003), and the time-domain Lagrangian is expressed as 130 

a diagonal matrix Α̂  (Karaoulis et al., 2011a, b). The inversion algorithm favors updated models 131 

that fulfill two criteria; a) to be smooth in the space domain, and b) to be smooth in the time domain. 132 

In other words, the inversion seeks to find a space-time smooth model. The final objective function 133 

G to minimize is therefore given by: 134 

{ }2 2 2ˆ ˆ ˆ( ) ( ) ( ) ( )
TT T k kG d d d d+ ∂ ∂ + + += e e X X M X X AM X XΛ .    (14) 135 

Minimizing this objective function with respect to the model perturbation vector yields the 136 

following normal equations (Kim et al., 2009): 137 

!X k+1 = !X k + d !X ,         (15) 138 

d !X = ĵT ĵ + ĈT Λ̂Ĉ +M TAM( )
−1
ĵT G( !X k )− D̂( )−M TAM !X k"
#

$
% ,   (16) 139 

where, ĵ  denotes the sensitivity matrix. This matrix is expressed as a block diagonal matrix. It is 140 

calculated for every time step separately (Karaoulis et al., 2011a). The matrix Ĉ  denotes the 141 

differential operator in the space and M is the differential operator matrix in time.  142 

The distribution of values of the space Lagrangian values, can be found after an SVD analysis 143 

of the matrix ˆ ˆTj j  using a linear space between the singular values and excluding the smaller ones. 144 

This distribution of values is based on the resolution matrix and it is described by Kim el al. (2009). 145 

The distribution of the time related Lagrangian values is based on a preliminary analysis on each 146 

data set (Karaoulis et al., 2011a). The best approach is to independently invert each data set, so a pre-147 

estimation of which areas show changes is estimated. Based on that pattern, we assign the time-148 

related values. In cases or extremely noisy data, it is suggested that the regularization function, Γ, be 149 
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of second order. In this case, areas that show changes between two sequential time-steps, but no 150 

consistent change in time, are smoothed. Suggested values for the seismic values are of range 0.01 to 151 

0.1. 152 

3. TESTS 153 

Figure 1 shows a test of our algorithm for a two layer model (Figure 1a). Figure 1b shows the 154 

isosurfaces from the addition of travel times tSR (travel time from source to receiver) and tRS (travel 155 

time from receiver to source). The isosurface with the smaller travel times denotes the shortest 156 

raypath. We compared the results from the fast marching technique with the code discussed in 157 

Sethian & Popovici (1999), which is also based on the fast marching method. The Center for Wave 158 

Phenomena (CWP) at the Colorado School of Mines is using this approach.  Figure 1c, which shows 159 

the residuals from the 2 codes, and demonstrates that our code successfully compared to their code. 160 

The largest values are of order ±0.5 ms, while the travel times from source to receiver and its 161 

reciprocal are on the order of 70 ms. Figure 1d shows an example of the calculation of the Fresnel 162 

zone. The accuracy of the fast marching technique is improved when using a denser mesh, but this 163 

has a computational cost. In this approach, we interpolate 4 points in the x-direction and 4 points in 164 

the z-direction, between each point of the initial mesh. The initial mesh for the synthetic example is 165 

shown in Figure 1a and has a discretization of 1 m.  166 

We test our time-lapse algorithm using the time-lapse synthetic model shown in Figure 2. Our 167 

synthetic model has little in common to any practical applications, but it is useful to test the 168 

advantages of the 2D seismic ATC inversion algorithm. We consider two wells with a depth of 112 169 

m and separated by a distance of 50 m (Figure 2). In Well #1, we consider 28 seismic sources (4 m 170 

apart). In Well #2, we consider 28 receivers with a separation distance of 4 m. The background 171 

material between the wells is homogeneous (P-wave velocity of 1.0 km s-1) with a heterogeneity 172 

characterized by a higher P-wave velocity of 2 km s-1. This anomaly is migrating from the left to the 173 
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right side (Figure 2) and three snaphots of the velocity distribution are considered. A 5% random 174 

Gaussian noise was added to the travel times. The frequency considered in the calculation of the 175 

sensitivity is 60 Hz.  176 

Figure 3 shows the difference images produced from (i) a set of independent inversions for 177 

each time and (ii) the space-time ATC algorithm described above for which all the data are inverted 178 

together. We can observe that by using the space-time ATC, inversion artifacts are strongly reduced. 179 

The source of the observed artifacts in the tomograms is related to both the errors on the synthetic 180 

measurement (5% random Gaussian noise) and modeling errors. Inverting the time-lapse travel times 181 

data using independent inversion yields modeling artifacts that are not supported by the expected 182 

model. This may lead, in turn, to misleading interpretations of the monitoring tomograms (e.g., in 183 

CO2 saturation for instance for CO2 injection and monitoring). With our time-lapse algorithm, we 184 

seek a model that is smooth in both space and time. The idea behind the active time regularization is 185 

to suppress changes in subdomains that are obviously artifacts because they are occurring randomly 186 

in the sequence of tomograms. At the same time, our algorithm allows relatively abrupt velocity 187 

changes over time in subdomains where there are significant indications that changes are occurring 188 

over time. Despite the use of time-based regularizations, artifacts in the tomograms cannot always be 189 

avoided (see ATC inversion in Figure 3b) but, as we show, they are significantly reduced.  190 

Figure 4, shows the model RMS error for the final inverted time-lapse models using the 191 

independent and ATC algorithms. The model RMS error shows how well the recovered model, 192 

matches the simulated one. We observed that for all three time-lapse models, the ATC algorithm has 193 

smaller % error, indicating that the recovered models are closed to the simulated one. 194 

  195 

4. CONCLUSION 196 
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We have implemented a new 2D time-lapse seismic tomography to image time-image seismic 197 

velocity fluctuations. The approach is based on a time domain active constraint. A test of this 198 

algorithm was performed with a synthetic model showing the size reduction and displacement of a 199 

seismic velocity anomaly between two wells. A comparison between independent inversion and the 200 

ATC inversion shows the ATC tomographic approach produces fewer artifacts in the reconstruction 201 

of the seismic velocity changes. This is true as long as the noise existing in the data is not correlated 202 

in time. This approach could be used with a more sophisticated seismic tomographic algorithm like 203 

those based on full waveform inversion. Also it could be applied to the time-lapse joint inversion of 204 

cross-well DC resistivity (or induced polarization) and seismic data (taking advantage of the very 205 

different sensitivity matrix for cross-hole resistivity and seismic tomography) and to time-lapse 206 

seismic noise tomography (Bussat and Kugler, 2011, Ridder and Dellinger, 2011). Although we 207 

tested this approach in 2D, it can easily be generalized to 3D. 208 
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 279 

Figure 1. Test of the model. a. Two layer model with distinct velocities. b. Addition of travel times 280 

of the P-wave (first arrival) when the seismic source is located at x = 0, z = 0 and its reciprocity. c. 281 

Benchmarking of the forward model against the Center for Wave Phenomena (CWP) code (the 282 

maximum travel time difference is on the order of 0.5 ms). d. Calculation of the Fresnel zone when 283 

the source is located at x = 0, z = 0 and the receiver at x=52 m, z = 0. The plot shows areas that have 284 

been used on the sensitivity calculation when the seismic wave is 200 Hz according to Eq. (8). The 285 

blue line corresponds to the shortest path calculated with the Dijkstra algorithm. 286 

 287 

Figure 2. Synthetic model geometry that was used in this work. Sources every 4 m are placed on the 288 

left borehole. Receivers every 4 m are placed on the right borehole. Time step synthetic model used 289 

in this work: An anomalous velocity anomaly (characterized by a P-wave velocity of 2.0 km s-1) is 290 

moving from the left side to the right side between the two wells. It also changes its shape over time. 291 

The background seismic wave velocity is constant (1.0 km s-1).  292 

 293 

Figure 3. Time-lapse images showing the change in the seismic velocity with respect to the 294 

reference model (5% random Gaussian noise). a. True synthetic changes of the velocity. b. Results 295 

of the inversion. The first row of figures shows the result of independent inversions while the second 296 

row of figures shows the results of the ATC inversion.  297 

 298 

Figure 4. Model root-mean-square (RMS) misfit (in %) for the independent inversion and for the 299 

ATC inversion algorithms for the three snapshots. Note that the ATC mode has a smaller model 300 

RMS error, which means that it converges to a better model by comparison with the independent 301 

inversions.  302 
 303 
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