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Abstract 27 

Fully-coupled air-quality models running in “feedback” and “no-feedback” configurations were compared 28 

against each other and observation network data as part of Phase 2 of the Air Quality Model Evaluation 29 

International Initiative.  In the “no-feedback” mode, interactions between meteorology and chemistry 30 

through the aerosol direct and indirect effects were disabled, with the models reverting to climatologies of 31 

aerosol properties, or a no-aerosol weather simulation, while in the “feedback” mode, the model-32 

generated aerosols were allowed to modify the models’ radiative transfer and/or cloud formation 33 

processes.  Annual simulations with and without feedbacks were conducted for domains in North 34 

America for the years 2006 and 2010, and for Europe for the year 2010.  Comparisons against 35 

observations via annual statistics show model-to-model variation in performance is greater than the 36 

within-model variation associated with feedbacks.  However, during the summer and during intense 37 
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emission events such as the Russian forest fires of 2010, feedbacks have a significant impact on the 38 

chemical predictions of the models.   39 

The aerosol indirect effect was usually found to dominate feedbacks compared to the direct effect.    The 40 

impacts of direct and indirect effects were often shown to be in competition, for predictions of ozone, 41 

particulate matter and other species.  Feedbacks were shown to result in local and regional shifts of 42 

ozone-forming chemical regime, between NOx- and VOC-limited environments.  Feedbacks were shown 43 

to have a substantial influence on biogenic hydrocarbon emissions and concentrations:  North American 44 

simulations incorporating both feedbacks resulted in summer average isoprene concentration decreases of 45 

up to 10%, while European direct effect simulations during the Russian forest fire period resulted in grid 46 

average isoprene changes of -5 to +12.5%.  The atmospheric transport and chemistry of large emitting 47 

sources such as plumes from forest fires and large cities were shown to be strongly impacted by the 48 

presence or absence of feedback mechanisms in the model simulations.  Summertime model performance 49 

for ozone and other gases was improved through the inclusion of indirect effect feedbacks, while 50 

performance for particulate matter was degraded, suggesting that current parameterizations for in- and 51 

below cloud processes, once the cloud locations become more directly influenced by aerosols, may over- 52 

or under-predict the strength of these processes.  Process parameterization-level comparisons of fully 53 

coupled feedback models are therefore recommended for future work, as well as further studies using 54 

these models for the simulations of large scale urban/industrial and/or forest fire plumes.     55 

Introduction 56 

In the first phase of the Air-Quality Model Evaluation International Initiative (AQMEII, Galmarini et al, 57 

2012a), the simulations from a large suite of air-quality models were compared against each other and 58 

observations from monitoring networks in both North America (NA) and Europe (EU).  Twenty-one 59 

research groups participated in this study, which was designed to evaluate the models and ensembles of 60 

the models through the use of a common simulation period, boundary conditions and emissions data for 61 
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both NA and EU, for the year 2006.  A particular focus of the intercomparison was the investigation of 62 

how to generate ensemble forecasts from the models with the minimum possible error relative to 63 

observations, for O3 (Solazzo et al, 2012a), and for PM2.5 (Solazzo et al, 2012b).  Clustering analysis was 64 

shown to provide an improved ensemble O3 forecast relative to the more typical averaging through 65 

investigating the predictions of 15 ensemble members (Solazzo et al, 2012a).  All models in a ten-66 

member ensemble had negative-biased PM2.5 simulations, and large variations between the models’ 67 

predictions of model PM2.5, speciated PM2.5 and its precursors were noted.    68 

Most of the models participating in the first phase of AQMEII were “off-line” models, that is, models in 69 

which the meteorology is generated a priori by a weather forecast model.  In contrast “on-line” models 70 

incorporate both chemical and meteorological components into a single system.  While off-line models 71 

have certain advantages (e.g. the potential to use different meteorological driving models), on-line models 72 

have other advantages such as a reduction in potential interpolation errors between meteorological and 73 

chemical model grids, and the elimination of the potentially large amount of processing time required for 74 

the input of meteorological model files, c.f. Grell et al. (2005), Zhang (2008), Moran et al, 2010; and a 75 

review of models in Baklanov et al (2014).  On-line models may be partially coupled (while both 76 

chemistry and meteorology are contained within the same model, only the meteorological variables are 77 

allowed to modify the chemistry, not vice-versa,  c.f. Moran et al, 2010), or fully coupled (where, in 78 

addition, chemical species are also allowed  to modify the meteorology).  The aerosols generated by a 79 

fully coupled model’s chemistry and/or emissions may thus participate in radiative transfer calculations 80 

(aerosol direct effect), and in the formation of clouds as cloud condensation nuclei, which in turn may 81 

change the radiative and other properties of the simulated clouds (aerosol indirect effect).  Both of these 82 

processes have long been recognized to be of importance in the realm of global and regional climate 83 

modelling (c.f. Forster et al, 2007; Giorgi et al, 2003).  However, the climate models typically lack the 84 

more detailed chemistry and aerosol microphysics found in regional air-quality models, due to additional 85 

computational burden associated with transporting the necessary suite of chemical species, including size-86 
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resolved particulate matter, and the additional processing time associated with more detailed gas and 87 

aerosol chemistry as well as aerosol microphysics. 88 

The second phase of AQMEII (AQMEII-2) compares the annual simulations of fully coupled models, 89 

which include the aerosol direct and/or indirect effects, making use of the datasets and ENSEMBLE 90 

evaluation system generated under AQMEII phase 1 (Galmarini et al, 2004a,b, Galmarini et al, 2012b)), 91 

as well as new datasets collected for the year 2010 in both NA and the EU.  The performance of these 92 

fully coupled models is evaluated elsewhere in this special issue (cf. Im et al, 2014 (a,b), Yahya et al., 93 

2014a, b; Campbell et al., 2014; Wang et al., 2014a, Brunner et al, 2014, Hogrefe et al., 2014, this issue).  94 

Here, we focus on the feedback processes themselves, and attempt to address the following questions:   95 

(1) Does the incorporation of feedbacks in on-line models result in systematic changes to 96 

their predicted chemistry and meteorology? 97 

(2) Do the changes vary in time and space? 98 

(3) To what extent does the incorporation of feedbacks improve or worsen model results, 99 

compared to observations?  100 

The final question is of importance in the context of meteorological and air-quality forecasts.  101 

The models presented here may be used in forecast mode, and the incorporation of a realistic 102 

representation of feedbacks might be expected to improve forecast accuracy in forecasts of both 103 

meteorology and air-quality.  The work which follows thus provides an assessment of model 104 

accuracy from the standpoint of forecasting.  In the current work (Part 2), we examine the effects of 105 

feedbacks on the model’s chemical predictions.  In Part 1, we examined the effects of feedbacks on the 106 

models’ meteorological predictions.   107 

  108 
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Methodology 109 

Ideally, the study of the impacts of feedbacks on coupled model simulations would make use of two 110 

versions of each air-quality model, one in which the feedback mechanisms have been disabled, and 111 

another in which the feedback mechanisms have been enabled.  However, not all of the participating 112 

modelling groups in AQMEII-2 had the computational resources to carry out both non-feedback and 113 

feedback simulations.  For the North American AQMEII simulations, only the group contributing the 114 

GEM-MACH model (Moran et al, 2010), modified for both aerosol direct and indirect effects, was able to 115 

simulate both of the years 2006 and 2010.  The WRF-CMAQ model was used to generate direct-effect 116 

only feedback simulations for 2006 and 2010, but no-feedback simulations were only generated for 117 

summer periods of each year.  The WRF-CHEM model with a configuration for both direct and indirect 118 

effects was used for feedback simulations of both years, but no-feedback simulations were not available 119 

for this model on this domain (simulations for the month of July, 2006, estimated the relative 120 

contributions of aerosol direct and indirect effects to chemistry and meteorology, for that model; Wang et 121 

al., 2014b, this issue).  However, simulations of weather using the WRF model, alone, in the absence of 122 

feedbacks, were used to generate meteorological simulations which could then be used for comparison to 123 

the meteorological output of the WRF-CHEM feedback simulations (see Makar et al, 2014a, this issue).  124 

For the EU AQMEII simulations, three WRF-CHEM simulations were compared for the year 2010:   a 125 

version 3.4.1  no-feedback simulation in which all aerosol interactions with meteorology were disabled, a 126 

version 3.4.1 direct effect simulation, and a version 3.4.0 simulation incorporating both direct and indirect 127 

effects.   128 

An important difference in the “no-feedback” simulations of the models needs to be noted at the outset, in 129 

that while feedbacks are disabled, the underlying meteorological models may have parameterizations to 130 

represent aerosol effects, and these parameterizations differ between the models.  The no-feedback 131 

versions of the  WRF-CMAQ and WRF-CHEM models have no parameterized aerosol impacts on 132 

meteorology.   The RRTMG parameterization as used here (Clough et al, 2005) does not include aerosol 133 
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parameterizations for radiative transfer; the aerosols are effectively set to zero concentration, unlike later 134 

versions of the WRF weather forecast portion of these models.  Similarly, the aerosol indirect effect is not 135 

parameterized in the no-feedback version of these models’ two-moment cloud microphysics scheme 136 

(Morrison et al, (2009)) as implemented here; instead, a constant cloud droplet number of 250 cm-3 is 137 

used (Forkel et al, 2012).  Thus, the “no-feedback” configuration of these models has no representation of 138 

the aerosol direct effect, and a climatological or “typical conditions” cloud droplet number density in 139 

place of the aerosol indirect effect.  Within GEM-MACH’s radiative transfer module (Li and Barker, 140 

2005), the no-feedback configuration makes use of specified functions, representing continental or marine 141 

air mass typical conditions, for aerosol optical depth, single-scattering albedo, and asymmetry factor 142 

(Toon and Pollack, 1976).  GEM-MACH’s default no-feedback indirect effect parameterization similarly 143 

makes use of a simple function linking cloud condensation nuclei numbers to supersaturation, for marine 144 

and continental air masses (Cohard et al., 1998) within the cloud microphysics scheme of Milbrandt and 145 

Yao (2005).  Thus, the no-feedback configuration for all of the models used here does not imply no 146 

aerosol effects whatsoever, but may imply the use of parameterizations or simplifying assumptions.  For 147 

the WRF-based models, the no-feedback simulations used no direct effect parameterizations and a 148 

prescribed cloud droplet number, and for the GEM-MACH model, a parameterization is used for both 149 

aerosol direct and indirect effects.    Differences between the models’ response to feedbacks are thus also 150 

with respect to these pre-existing parameterizations or simplifications, and differences between these 151 

approaches may influence the variation in response between the models to feedbacks.   152 

The models, their main features with regards to feedbacks, and the details on the periods simulated are 153 

presented in Table 1. The model predictions were not free-running: GEM-MACH and WRF-CHEM 154 

followed the AQMEII-2 protocol of performing simulations for successive 48 hour periods starting from 155 

either meteorological analysis or making use of nudging, with a 12 to 24 hour meteorology-only spin up 156 

period leading to each 48-hour simulation period.  In this protocol, the chemical state of the atmosphere is 157 

preserved between the 48 hour simulations, but the meteorology is constrained by observations at each re-158 
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initialization rather than free-running.   The WRF-CMAQ simulations deviated from this protocol by 159 

performing continuous simulations and applying nudging of upper layer temperature, winds, and water 160 

vapor as well as soil moisture and temperature throughout the simulation as described in Hogrefe et al. 161 

(2014). A comparison of the two approaches for July 2006 showed a small reduction in the WRF-CMAQ 162 

simulated direct feedback effect due to the use of continuous nudging but also showed improved model 163 

performance for 2m temperature (Hogrefe et al., 2014).  The simulated feedback effects in all three 164 

modelling systems are therefore also constrained, and may be less than would be the case for free-running 165 

models.  The models are fully coupled, but the technical details of the coupling differ:  in the case of 166 

WRF-CHEM and GEM-MACH, the chemistry subroutines are incorporated into the same model code, 167 

whereas for WRF-CMAQ, the chemistry and meteorology codes share memory and pass information at 168 

every time step – these differences are not likely to impact the outcome of the simulation.   Further 169 

description of the models may be found in Campbell et al., 2014, Im et al, 2014a,b, and Makar et al. 170 

2014.  Note that all models and/or their post-processing systems were modified to include the output of 171 

additional chemical and/or meteorological variables for AQMEII-2.  Some of the models included other 172 

modifications in addition to their original code.  GEM-MACH’s operational configuration is 2-bin; this 173 

was converted to 12-bin for greater accuracy in the direct and indirect effect calculations, the sea-salt flux 174 

treatment was improved, as was its particle settling velocity and algorithms making use of those 175 

velocities.  GEM-MACH’s emissions preprocessing program was modified in order to allow hourly 176 

changes in the location and number of large “point” sources (a requirement for the forest fire emissions 177 

inputs of the AQMEII-2 emissions (Pouliot et al, 2014)).     178 

The emissions used for AQMEII-2 are described in detail in Pouliot et al, 2014, and came from three 179 

sources.  Inconsistencies in reporting and inventory construction between political jurisdictions meant that 180 

the emissions year could not always correspond directly to the year of the simulation.  For Europe, the 181 

nearest year for which emissions data were available was 2009, with 2010 wildfire emissions provided by 182 

the Finnish Meteorological Institute.  For the United States, emissions for the year 2008 were projected to 183 
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the years 2006 and 2010.  In Canada, the most recent inventory available at the time of the study was for 184 

2006; this was used to represent both years, while a 2008 Mexican inventory was used to represent the 185 

years 2006 and 2010.  The mismatches between simulated year and emissions inventory year may impact 186 

the accuracy of the simulations carried out here. 187 

The model simulations occurred on the “native” grid projection for each model, but were compared on  188 

common AQMEII latitude-longitude grids with a resolution of 0.25 degrees for the NA or EU domains, 189 

respectively.  For the NA simulations, the native model grids overlapped this target grid to different 190 

degrees, so a common “mask” incorporating the union of all model projections on the common grid was 191 

employed for comparison purposes.  For the EU simulations, the different versions of WRF-CHEM were 192 

operated on the same native grid, but comparisons were done using the AQMEII European grid.     193 

Feedback and non-feedback simulations were compared to each other in three ways.  First, at every hour 194 

of simulation, the feedback and non-feedback model predictions on the AQMEII grid were compared 195 

using the statistical measures described in Table 2.  This comparison allowed the identification of 196 

seasonal trends in the impact of feedbacks, as well as particular time periods when these impacts were the 197 

strongest.    Second, the model predictions for the years 2006 (NA) and 2010 (NA and EU)  were 198 

compared to observations of air pollutants via the ENSEMBLE system (Galmarini et al., 2012b).  These 199 

comparisons used hourly data which were subsequently time-averaged to mean daily values at each 200 

station prior to comparison for the given years, and also as hourly or daily values for shorter summer time 201 

periods described in more detail below.  Third, the model predictions at each gridpoint were compared 202 

across time (for the entire simulated year and for shorter time periods), allowing the creation of spatial 203 

maps of the impact of feedbacks on the common simulation variables.  These maps help identify the 204 

regions where feedbacks have the largest effect on the simulation outcome.  205 

  206 
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 207 

1. Comparison of Model Simulations by Time Series 208 

The comparison between no-feedback and feedback simulations for Europe was limited to the direct 209 

effect simulations; insufficient computational resources were available for the direct+indirect feedback 210 

simulations within the timeframe of the AQMEII-2 project.  In that respect, the EU chemical comparison 211 

can be compared in a generic sense with the WRF-CMAQ NA simulations, also made use of only the 212 

direct effect. 213 

1.1 Ozone 214 

Both WRF-CMAQ and GEM-MACH showed a slight decrease in mean O3 in the summer associated with 215 

feedbacks, on the order of -0.2 to -0.4 ppb (Figure 1, (a),(b)).  The change in the grid standard deviation in 216 

O3 is negative for GEM-MACH (i.e. less variability in O3), while WRF-CMAQ has both and negative 217 

changes in standard deviations, with most of the changes being positive (Figure 1, (e),(f)).  One of the 218 

main effects of the aerosol indirect effect in GEM-MACH is an increase in cloud liquid water path – this 219 

additional cloud cover may have resulted in the reduced variability noted here.  Low correlation 220 

coefficients on May 20th for both models, and for the period August 1st to August 15th, suggest that these 221 

times have disproportionately larger feedback impacts.  Seasonally, the lowest correlation coefficients 222 

occur in the summer – feedbacks having the biggest impact during the summer photochemical production 223 

time (Figure 1(c,d)).  Non-feedback standard deviations and change in standard deviation (Figure 1 (e,f)) 224 

show that the variability of ozone has decreased in the summer in the GEM-MACH simulation –in the 225 

WRF-CMAQ simulation standard deviations increase with occasional decreases at a lower magnitude, 226 

with direct effect feedbacks -  also suggesting that aerosol indirect effects are the main cause of the 227 

changes in ozone.   228 

Grid-averaged time series of EU mean O3 concentration, the difference between direct effect feedback 229 

and no-feedback O3 concentrations, and the correlation coefficient between the two simulations, are 230 
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shown in Figure 2(a,b).  The simulation shows the Russian fires standing out as a major event in which 231 

the feedbacks caused the grid-average O3 to drop by up to 2.5 ppbv on a grid-average no-feedback 232 

concentration of 70 to 85 ppbv (Fig. 2(a), compare red and blue lines).  The Russian fires in the no-233 

feedback simulation have increased ozone by about 10 ppbv relative to times before and after the fire 234 

period.  The feedback-induced reduction in O3 levels due to fires is largely limited to the period 235 

encompassing the fires.  The implication is that the aerosol direct effect is capable of reducing O3 levels, 236 

possibly through reductions in downward shortwave radiation reaching the surface due to high particulate 237 

concentrations in the atmospheric column, with consequent surface temperature reductions (see Part 1), 238 

all of which may reduce ozone formation rates.   239 

1.2 PM2.5 240 

 Feedbacks increased fine particulate matter for both GEM-MACH and WRF-CMAQ.  For GEM-MACH, 241 

the increase to the grid-average PM2.5 was on the order of +0.5 g m-3, while for WRF-CMAQ the 242 

increase was about an order of magnitude smaller (note change in vertical scale on Figure 3 (a) versus 243 

(b)).  For GEM-MACH, most of the increase in PM2.5 was comprised of particulate sulphate, as was 244 

approximately half of the WRF-CMAQ increase.  Correlation coefficient plots for both models (Fig. 3 245 

(d),(e)) show a significant difference between feedback and non-feedback models on May 20th and 246 

August 25th.  Correlation coefficient drops for both primary and secondary organic carbon, hydrogen 247 

peroxide, and carbon monoxide occur at the same time.  As will be shown below, these events correspond 248 

to an event wherein feedback effects alter the model predictions from a very large source of emissions, a 249 

forest fire. 250 

Aerosol direct effects modify the typical EU grid-average PM2.5 concentration of about 10 g m-3 by +/- 251 

0.5 g m-3 (Figure 3 (c)).  Both increases and decreases in the grid-mean concentration relative to the no-252 

feedback simulation occur during the Russian fires period and low correlations between the simulations 253 

occur in that region (Figure 3(f)); this form of paired increases and decreases for PM2.5 and other emitted 254 

species was also noted in NA simulations.  The cause appears to be a change in wind direction, 255 
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speed,atmospheric stability and/or surface temperatures resulting from the feedbacks – these changes 256 

change the height to which the plume of emitted species may rise, the direction and speed of downwind 257 

dispersal, and the production rate of secondary particulate matter.  Given this sensitivity, the accuracy of 258 

forest fire plume forecasting may in part be influenced by the aerosol direct and indirect effects 259 

incorporated in the forecasting model.  260 

1.3 NO2 261 

The lowest correlations between feedback and non-feedback predictions for NO2 occur in the summer, 262 

though these correlation decreases are larger for GEM-MACH (0.69) than for WRF-CMAQ (0.91), 263 

Figure 4(d,e).  Feedbacks decreased NO2 in the winter in GEM-MACH, while summer differences in 264 

mean NO2 varied between positive and negative, with a maximum positive change of 0.05 ppbv.  265 

Feedbacks in WRF-CMAQ resulted in a positive shift in mean difference of 0.03 ppbv (Figure 4(b)).  266 

Feedbacks increased the variability of NO2 for WRF-CMAQ in the summer, while GEM-MACH’s 267 

variability varied between positive and negative in the summer, becoming negative (lower standard 268 

deviations; lower variability) in the winter (not shown). 269 

For Europe, the aerosol direct effect generally resulted in increases in WRF-CHEM’s NO2 concentrations, 270 

particularly in the summer (Figure 4(c)), similar to the NA direct effect simulations with WRF-CMAQ  271 

(Fig. 4(b)). These increases in concentration probably stem from the reductions in temperature and 272 

surface-level shortwave radiation noted above, with subsequent increases in atmospheric stability.  The 273 

Russian fires period has the paired +/- mean difference signature found for the NO2 (Fig. 4(c)), indicating 274 

that the dispersion of NOx emissions has also been affected by the feedbacks.  The fires also correspond 275 

to the greatest difference in correlation coefficient (Fig. 4(f)).  A second, smaller level increase in NO2 276 

occurs during the month of April.   277 

  278 
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1.4 Isoprene 279 

Feedbacks resulted in a very different isoprene concentration response in the two models, with GEM-280 

MACH showing a decrease in midsummer isoprene of up to -0.25 ppbv on concentrations ranging 281 

between 0.05 and 2.5 ppbv  (i.e. >10%) decrease in midsummer grid-average isoprene, and WRF-CMAQ 282 

showing both positive and negative changes (between -0.02 and + 0.08 ppbv; about +0.4 and -1.3% of the 283 

maximum no feedback concentrations), and no overall seasonal trend (Figure5(a,b)).  GEM-MACH 284 

showed summertime decreases in both temperature and downward shortwave radiation (see Part 1) 285 

associated with increased cloud liquid water paths.  These in turn reduce isoprene biogenic emission rates 286 

(which are a function of temperature and photosynthetically active radiation).  These effects are much less 287 

pronounced in WRF-CMAQ, due to the absence of the aerosol indirect effect in this implementation.  The 288 

changes in GEM-MACH’s isoprene drive similar reductions in grid average formaldehyde, the latter 289 

being a product of isoprene oxidation.  Isoprene correlation coefficients in both models drop significantly 290 

between June 15th and June 26th, and from August 12th to 18th, indicating feedback-related events having a 291 

large impact during those weeks (Figure5 (d,e)).  292 

The aerosol direct effect is shown to have a substantial impact on isoprene concentrations over the EU 293 

domain in Figure 5(c,f)), with grid-average concentration perturbations of -0.10 to +0.25 ppbv during the 294 

mid-summer upon no-feedback concentrations of up to 2.0 ppbv (-5 to +12.5%).  The perturbations are 295 

the largest during the Russian fire period, and are both positive and negative.  The bi-modal nature of the 296 

isoprene perturbations is of interest, given that the incoming shortwave and surface temperatures 297 

discussed earlier are both reduced by the fires, implying an overall reduction in isoprene emissions might 298 

be expected.  However, the paired changes in NO2 and PM2.5 discussed above suggest that at least part of 299 

the changes in isoprene concentration may be ascribed to a change in the direction of the forest fire 300 

plumes due to the direct effect feedback.  If the plume direction change takes the plume (and its reduction 301 

in shortwave radiation and surface temperatures) over an isoprene-emitting region, then the feedbacks 302 

will reduce isoprene concentrations.  On the other hand, if the feedbacks cause the plume to move its 303 
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shadow from an isoprene-emitting region to a region with relatively low biogenic emissions, the 304 

feedbacks will increase grid-total isoprene concentrations.  These results suggest that feedbacks are 305 

capable of perturbing isoprene concentrations, potentially increasing or decreasing them over continent-306 

sized areas by up to 10%.  Local changes in concentration will likely be much larger, given the spatial 307 

averaging used in these time series. 308 

 1.5 Formaldehyde 309 

The mean differences for NA formaldehyde were negative and closely matched to the equivalent isoprene 310 

time series for GEM-MACH, while the mean HCHO levels increased during the summer for WRF-311 

CMAQ (Figure6 ( a,b)).  HCHO correlation coefficient magnitudes for both models minimized in the 3rd 312 

week of May, and on April 1st (the latter corresponding to a forest fire event in the GEM-MACH 313 

simulation; Figure 6(d,e)). 314 

Changes of EU formaldehyde associated with direct effect feedbacks are shown in Figure 6(c,f).  As was 315 

the case for NA, the HCHO concentration is closely tied to the isoprene concentration (note similarity in 316 

annual time series, Fig. 5(a) versus Fig. 6(a), and Fig. 5(c) versus Fig. 6(c), blue lines).  As was found for 317 

the NA direct effect feedback simulation, (Fig. 6(b)), EU formaldehyde levels increase with the aerosol 318 

direct effect.  In the EU case, the negative perturbations of the isoprene concentration (Fig.5(c)) do not 319 

result in significant decreases in the predicted HCHO levels, instead, they increase (Fig. 6(e)) by 320 

approximately 10%.  One possible explanation for this difference might be an increase in HCHO 321 

generated from other hydrocarbons, when the isoprene levels are reduced.  The implications of this latter 322 

possibility are intriguing, in that feedback-induced changes in biogenic emissions may thus influence the 323 

rate of oxidation of non-biogenic hydrocarbon species, with possible similar shifts in the sources of 324 

secondary organic aerosol.     325 

  326 
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 1.6 Nitric Acid and Particulate Nitrate 327 

Feedbacks in GEM-MACH resulted in a shift of nitrate partitioning from the particle to the gas-phase in 328 

the winter, directly as a result of the feedback-derived increases in surface temperature (described in 329 

detail in the first part of this two part paper).  Gaseous nitric acid increased in the winter months (Figure 330 

7(a)), while particulate nitrate decreased (Figure 7(d)).  The partitioning equilibrium of nitrate is highly 331 

temperature-sensitive, with lower temperatures favouring particulate nitrate formation, and higher 332 

temperatures favouring gaseous nitric acid.  The increases in temperature in the winter in GEM-MACH 333 

have thus resulted in a shift of total nitrate from particulate towards gaseous nitrate.  WRF-CMAQ’s 334 

HNO3 and particulate nitrate  (Figure 16(b,e)) both increase in the summer, reflecting higher NOx levels 335 

in this model when feedbacks are incorporated.    336 

Given the temperature reductions associated with the Russian fires in the direct effect feedback EU 337 

simulations (see Part 1), a shift in the particulate nitrate versus HNO3 equilibrium might be expected.  338 

Figure 7(c, f)  show that this is indeed the case; the cooler temperatures result in lower HNO3 339 

concentrations (Fig. 7(c)), and higher particulate nitrate concentrations (Fig. 7(f)) during that period.   340 

Mid-January in the EU is another period with low correlations between EU no-feedback and feedback 341 

models for HNO3 (not shown), though this is not echoed for particulate nitrate:  presumably the 342 

particulate sulphate levels during the winter period are too high to allow particulate nitrate formation, 343 

regardless of the changes in HNO3. 344 

 1.7 SO2, particulate sulphate, NH3 and particulate ammonium 345 

Feedbacks resulted in decreases in winter mean SO2 concentrations in GEM-MACH (Figure 8(a)) – this is 346 

associated with increased winter particulate sulphate formation (Figure 8(c)); more SO2 is being oxidized 347 

to sulphuric acid and hence particulate sulphate with the incorporation of feedbacks.  Precipitation 348 

changes showed no strong seasonality for this model (though feedbacks increased overall precipitation 349 

levels), and there was no change in wet deposition of sulphate in winter.  This suggests that the winter 350 
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SO2 oxidation increase is in the gas-phase or in non-precipitating clouds, and may in part be due to the 351 

winter temperature increase described in Part 1.  This presents an alternative reason for the changes in 352 

nitrate partitioning noted above:  increased sulphuric acid content in the aerosols would result in more of 353 

the available ammonia partitioning with sulphate, and nitric acid off-gassing.  GEM-MACH NH3 354 

decreases with the feedbacks (Fig. 8 (e)) throughout the year, while PM2.5 NH4 increases (Fig. 8 (g)) 355 

despite the decreases in particle NO3 noted earlier.  The increases in SO2 oxidation to sulphate are thus at 356 

least partially responsible for the shift from particulate nitrate to nitric acid noted above.    Increases in 357 

summer particulate sulphate levels in GEM-MACH appear to be due to increased wet processing; the 358 

increases in cloud liquid water noted above result in more particulate sulphate formation and summer wet 359 

deposition of sulphate (Figure 8(c)).  In WRF-CMAQ, summer increases in particulate sulphate (Figure 360 

8(d)) were  much lower than those from GEM-MACH (WRF-CMAQ values ranged from -0.01 to 0.03 g 361 

m-3, while GEM-MACH changes ranged from 0.0 to 1.6 g m-3).  The magnitude of the differences 362 

suggests that the indirect effect processes may dominate summer formation of sulphate via feedbacks, 363 

though confirmation of this would require further model runs isolating direct and indirect effects in each 364 

model.   WRF-CMAQ’s NH3 largely increased in the summer, as did its particulate ammonium (Figure 365 

8(h)).   366 

The perturbations caused by the aerosol direct effect on SO2, particulate sulphate, NH3 and particulate 367 

ammonium for the EU are shown in Figure 9.  The incorporation of the direct effect has increased the SO2 368 

levels across the grid (which alternate between increases and decreases during the fires, Fig. 9(a), blue 369 

line versus red line).  The feedbacks during the fires result in a reduction in SO2 oxidation rates, as can be 370 

seen by the corresponding decreases in particulate sulphate concentrations at that time (Fig. 9(c)).  371 

Despite the particulate sulphate decreases, the ammonia levels decrease then increase during course of the 372 

fires (Fig. 9(e)), and particulate ammonium changes follow the ammonia changes (Fig. 9(g)).  Presumably 373 

the sequence of events causing these changes starts with the feedbacks initially increasing SO2 dispersion, 374 

reducing subsequent particulate sulphate formation, potentially freeing available ammonium for particle 375 
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nitrate formation.  Towards the end of the fire period SO2 concentrations have increased relative to the 376 

no-feedback simulation, with less particle sulphate formation, and an increase in NH3 – despite which, 377 

particle ammonium increases. The latter may be the result of  direct-effect feedback induced reductions in 378 

temperature favouring particulate nitrate formation, in addition to the reduction in particle sulphate 379 

leading to these increases in particle ammonium towards the end of the fire period.  As was the case for 380 

winter in North America, feedback effects have been shown to have enough of an impact on temperatures 381 

and sulphate formation to change the particulate nitrate/nitric acid equilibria, over a large part of the 382 

continent. 383 

2.  Comparison with Observational Data from Networks 384 

Monitoring network data were collected from a variety of sources for comparison to model simulations.  385 

North American data for 2010 were obtained from the Canadian National Atmospheric Chemistry 386 

(NAtChem) Database and Analysis Facility operated by Environment Canada 387 

(http://www.ec.gc.ca/natchem/).  The NAtChem Facility obtains air quality and selected meteorological 388 

surface data from North American networks, applies quality assurance to these data, adds metadata and 389 

reformats the data from each network into a common comma-separated-variable format.  The networks 390 

and data archives used for this purpose included the Canadian National Air Pollution Surveillance 391 

Network (http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx), the Canadian Air and Precipitation 392 

Monitoring Network (http://www.ec.gc.ca/natchem/), the U.S. Clean Air Status and Trends Network 393 

(http://java.epa.gov/castnet/clearsession.do), the U.S. Interagency Monitoring of Protected Visual 394 

Environments Network (http://views.cira.colostate.edu/web/DataWizard/), and the U.S. Environmental 395 

Protection Agency’s Air Quality System database for U.S. air quality data 396 

(http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm).   The result was a single format 397 

data set comprising Canadian and US data, making the data much more accessible for model-observation 398 

comparisons. In Europe, the monitoring network data from 2010 were obtained from European 399 

Monitoring and Evaluation Programme, http://www.emep.int/) and AirBase (European AQ database; 400 
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http://acm.eionet.europa.eu/databases/airbase/).   Both 2010 NA and EU datasets were uploaded to the 401 

ENSEMBLE database and model-observations comparison system maintained by the European 402 

Commission’s Joint Research Centre (JRC) in Ispra, Italy ((Galmarini et al., 2004a,b), Galmarini et al., 403 

2012)).  Similar comparison data for North America was obtained for the year 2006 during AQMEII 404 

Phase 1 (Galmarini et al, 2012b).      The ENSEMBLE system greatly reduces the time required by 405 

modellers to generate comparisons to observations.  Model output sent to the central collection site at JRC 406 

in the required format may be compared to the uploaded observation databases via a web browser, 407 

allowing all modelling groups participating in a study to use the same data, intercompare with each 408 

other’s results, conduct independent data analyses, and conduct retrospective data-model comparisons, 409 

such as the current work.  Here, ENSEMBLE was used to generate traditional scatterplots and the 410 

corresponding statistics, the latter tabulated and included in the supplemental information appendix as 411 

well as the main body of the text.  The statistical quantities comparing model values to observations (as 412 

well as cross-comparing models) are given in Table 3. 413 

The comparison to observations took place in two stages.  The first stage examined model performance 414 

on an annual basis.  ENSEMBLE was used to create statistical tables of the mean day averages of the 415 

measured quantities at observation stations for both model and observations, and these were compared for 416 

each simulated year (NA2006, NA2010, and EU2010), with the resulting performance table appearing in 417 

the Supplemental Information (SI) for this paper, Tables S1, S2, and S3.  The second stage examined the 418 

statistics during time intervals over which the above time series analysis suggested significant impacts 419 

due to feedbacks might occur. 420 

2.1 Annual Analysis, North America, 2006 421 

Six models were compared to the same observation data for O3, SO2, NO2, CO, PM2.5, PM2.5 SO4, PM2.5 422 

NH4, PM2.5 NO3, PM2.5 TOM, PM SO4, PM NO3, PM10,.  Two models were taken from the previous 423 

AQMEII-1 comparison (CMAQ and AURAMS), the remainder from the current set of simulations 424 
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(GEM-MACH without and with direct + indirect effect feedbacks, WRF-CMAQ (aerosol direct effect 425 

feedbacks only) and WRF-CHEM (direct and indirect effect feedbacks).  The two previous 426 

intercomparison simulations were included here for reference – the intent being to determine whether the 427 

on-line, coupled models performance is better than the previous generation uncoupled models.  It should 428 

be mentioned however, that both chemical boundary conditions and the emissions for the year 2006 429 

differed from the datasets used in AQMEII-2.  The differences stemming from updates to emission 430 

estimation methodologies (Pouliot et al., 2014) as well as boundary conditions may thus account for part 431 

of the model performance changes between AQMEII-1 and AQMEII-2.  In addition, Hogrefe et al. (2014, 432 

this issue) present WRF-CMAQ sensitivity simulations that show that differences in monthly average 433 

ozone concentrations stemming from the different boundary conditions are 7 ppb or greater over large 434 

portions of the modeling domain in January 2006 while in July 2006 they are 3 ppb or less for most of the 435 

modeling domain though differences as large as10 ppb are simulated over the Northwestern U.S.   436 

The statistical metrics for the NA2006 comparison are tabulated in Table S1 (Supplementary Information 437 

Appendix).  The model with the highest score for each variable and each statistical metric has been 438 

identified with an italic font in the table.  GEM-MACH was the only model submitting both no-feedback 439 

and feedback simulations; for these two simulations only, the model with the higher statistical score has 440 

been identified using a bold font.   441 

From Table S1, no model is clearly superior to the other models for a given statistic, or for all statistics 442 

within one variable.  There is a large amount of variation  in performance between the models for the 443 

different pollutants and statistical measures, and this underlines the utility of ensembles as explored 444 

earlier (Solazzo et al., 2012a,b) and elsewhere in this special issue (Im et al, 2014(a), (b)).However, if all 445 

chemical statistical measures, for all variables, are assumed to have equal “weight”, then the Phase 1 446 

models outperform the Phase 2 models (bearing in mind that WRF-CMAQ did not report values of NO2 447 

in time for writing): CMAQ 43 best values, AURAMS 24, GEM-MACH (no-feedback): 11, GEM-448 

MACH(feedback):17, WRF-CMAQ:21, WRF-CHEM: 10.  In some ways this is a sobering finding, in 449 
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that it implies that further development work is needed for the first generation fully coupled models or 450 

their emissions data.  The incorporation of feedbacks did improve the overall score for the GEM-MACH 451 

model relative to its no-feedback climatological state, increasing the number of best scores by 54%.  The 452 

emissions inventories between phases 1 and 2 of AQMEII were modified with more recent information, 453 

resulting in significant changes in some emissions (see Pouliot et al, (2014) e.g. emissions of NOx, where 454 

the phase 1 models performed better).  The methodology used to generate the new emissions data may 455 

need to be reexamined, given these findings, though other model differences (such as the boundary 456 

condition updates) may also be influencing the results.  457 

Second, the 2006 annual results of the model with both no-feedback and feedback simulations (GEM-458 

MACH) were not always improved by the employment of feedbacks.  Improvements occurred for SO2, 459 

PM2.5 NH4, PM NO3, and PM10, but the no-feedback model had better overall performance (by number of 460 

higher scoring statistics) for O3, NO2, CO, PM2.5, PM2.5 SO4, PM2.5 NO3, and PM SO4.  Comparing just 461 

the two GEM-MACH simulations, the total number of higher scores for the feedback model was 42, with 462 

75 for the no-feedback GEM-MACH.   463 

2.2 Annual Analysis, North America, 2010 464 

The statistical metrics for the NA 2010 comparison are tabulated in Table S2 (Supplementary Information 465 

Appendix).  The models compared are limited here to those participating in the current work (AQMEII-1 466 

did not simulate the year 2010 for North America).   The distribution of best scores for 2010 was similar 467 

to 2006 (aside from the absence of the phase 1 models), with GEM-MACH(no-feedback): 23, GEM-468 

MACH(feedback): 37, WRF-CMAQ: 37, WRF-CHEM: 16.  The incorporation of feedbacks improved 469 

the GEM-MACH scores by 61%, similar to the 2006 improvement.  In both years, the incorporation of 470 

feedbacks in the GEM-MACH model resulted in improved SO2 scores, while worsening the scores for 471 

NO2 and NO.  When the two GEM-MACH simulations were compared only to each other (bold-face font 472 

numbers in Table S2), the feedback model improved with 65 best scores compared to 45 with the no-473 
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feedback model (this is in contrast to the 2006 results).  It should be noted that a significant difference 474 

between the two years may be found in the boundary conditions used for the models (MACC reanalysis).  475 

Hogrefe et al (2014) suggests that positive winter O3 biases in 2006 and negative O3 biases in 2010 may 476 

in part be due to the boundary conditions used by all models in the comparison. 477 

The NA comparisons to observations, for the variables compared here, imply that indirect + direct effect 478 

feedbacks are capable of improving a model’s results relative to peer models, given that the total number 479 

of best scores for GEM-MACH improved in both years with the inclusion of feedbacks.  A caveat on this 480 

finding is that the model to model variation remains high.  The relative improvement between the specific 481 

model for which feedback and no-feedback simulations exist varies between the simulated year, with 482 

feedbacks improving performance in 2010, but worsening it in 2006.  One possible interpretation of this 483 

latter finding is that the climatological parameterizations used in the GEM-MACH “no-feedback” 484 

simulations for the aerosol direct and indirect effects are closer to the actual averages in 2006, while the 485 

model-generated feedback values are closer to the actual averages in 2010.  Differences between the 486 

boundary conditions created by global model reanalyses between the years may also cause some of the 487 

differences, particularly in winter (Hogrefe et al, 2014). 488 

   2.3 Annual Analysis, EU, 2010 489 

The statistical metrics for the EU 2010 comparison are tabulated in Table S3 (Supplementary Information 490 

Appendix).  Once again, the best scoring model of those used in this work is identified in the summary 491 

scores by italics.  The SI1 and SI2 models differ only in the incorporation of direct effect feedbacks; the 492 

better scores for these two models alone are identified by bold face text.  The differences between these 493 

simulations is relatively small; this is echoed in the summer-only comparisons for WRF-CMAQ; models 494 

incorporating the aerosol direct effect have smaller feedback impacts than those incorporating the aerosol 495 

indirect effect.  As noted above, the WRF-CHEM direct+indirect effect feedback was for a slightly 496 
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different version of the WRF-CHEM model, so the differences shown here are not necessarily due to the 497 

indirect effect feedback alone.   498 

The models have very different performance for gases versus particulate matter, with the model 499 

incorporating direct + indirect feedback having better performance for urban O3, SO2, NO (both all 500 

stations and urban stations only), as well as NO2, while having relatively poor performance for most PM 501 

variables, with large negative biases and the lowest scores for PM10 (all stations and regional stations), 502 

PM2.5, and speciated PM and PM2.5.  Overall, the no-feedback WRF-CHEM had 57 top or tied for top 503 

scores, the direct effect model had 60 (a slight improvement with the direct effect) and the direct+indirect 504 

effect model had 47 top scores.     505 

Comparing the no-feedback and direct effect only versions of WRF-CHEM to each other, the direct effect 506 

by itself has resulted in a decrease in model performance, with the no-feedback version of the model 507 

leading with 86 higher or equal scores, and the direct effect model leading or equal with only 67 scores.   508 

Based on the above comparison, the following conclusions may be drawn, specifically for annual 509 

performance: 510 

(1) The incorporation of direct + indirect feedbacks in the GEM-MACH model in general improved 511 

its chemical performance relative to the suite of models compared, for both years simulated. 512 

(2) The incorporation of direct + indirect effect feedbacks in the GEM-MACH model relative to its 513 

own no-feedback simulation, worsened its performance in 2006, but improved its performance in 514 

2010.   515 

(3) Comparisons between the AQMEII Phase 1 uncoupled and AQMEII Phase 2 coupled models 516 

suggests that the former had better performance, with the confounding factor that both emissions 517 

and the global model reanalysis boundary conditions changed between the two sets of 518 

simulations.   519 
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(4) In the EU domain, the incorporation of feedbacks had a less discernable benefit, with a slight 520 

increase in the number of best scores going from no feedback to direct effect feedback, and a 521 

substantial decrease in the number of best scores going to direct+indirect feedback.  The 522 

incorporation of direct + indirect effects resulted in a substantial improvement in gas-phase 523 

statistics, while significantly degrading the aerosol performance of the model.  The latter 524 

performance degradation may be due to other model differences aside from feedbacks.   525 

2.4 Summer 2010 Analysis, North America 526 

The time series comparison of feedback and no-feedback simulations for North America consistently 527 

showed the summer period as having the largest impacts for both direct and indirect feedback models, 528 

hence suitable for a focused comparison to observations.  The ENSEMBLE database was used to generate 529 

summary statistics during the period July 15th through August 15th, 2010 (Table 4).  Here, hourly 530 

observations were paired with model values where possible; PM2.5 and speciated PM2.5 values are daily 531 

averages.  The “validity cutoff” mentioned in Tables 4, 5, SI1, SI2, SI3 refers to the percentage of 532 

observations available at a given monitoring site relative to the highest number of observations possible.  533 

A 75% validity criterion for hourly data thus means that only those stations with 6570 or more hourly 534 

observations during the year were used for the comparison.  Some of the PM monitoring networks report 535 

daily average values at only a 1 day in 6 frequency, hence a 16.6% validity cutoff was used for daily PM 536 

observations.    537 

Examining the GEM-MACH performance in Table 4, the performance was improved with the 538 

implementation of feedbacks for most of the gases and PM10;  regional and urban/suburban O3 (8 and 7 539 

out of 9 statistics improved), SO2 (7 out of 9 statistics), NO (5 out of 9), NO2 (7 out of 9),  all PM10 540 

stations (7 out of 9), and regional PM10 stations (7 out of 9).  Carbon monoxide performance is degraded 541 

(5 out of 9 stations had better performance with the no-feedback model).  For PM2.5, the addition of 542 

feedbacks had a negative effect on model performance, with total PM2.5 performance scores being better 543 
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with the no-feedback model for all measures (9 out of 9), as was the case for PM2.5 SO4 and NH4.  PM2.5 544 

NO3 and total organic carbon had a smaller decrease in performance with the incorporation of feedbacks 545 

(only 3  and 2 out of 9 measures improved with feedbacks, respectively)  For the GEM-MACH model, 546 

the inclusion of feedbacks has improved the gas-phase chemistry and PM10 performance, but reduced the 547 

performance for PM2.5. 548 

Another important finding from Table 4 is that the magnitude of the change in model performance 549 

associated with interactive feedbacks relative to climatological aerosol properties without feedbacks is 550 

often smaller than the changes in performance going from one model to another.  That is, the change the 551 

magnitude of the performance statistics between the two GEM-MACH runs is often less than the 552 

differences between GEM-MACH, WRF-CMAQ and WRF-CHEM “(for example, the mean biases for 553 

urban/suburban O3 for the GEM-MACH no-feedback, GEM-MACH feedback, WRF-CMAQ and WRF-554 

CHEM simulations are  2.86, 2.47, 2.61 and -4.32 ppbv, respectively).   The difference between a 555 

climatological approach to aerosol direct and indirect effects and that of “fully coupled” direct + indirect 556 

effect feedbacks, has less of an impact on model performance than the model architecture employed.   557 

The findings suggest that targeted studies examining specific species where the performance between 558 

different models is examined in detail would be of great benefit to the community.  For example, the 559 

advection, dispersion, gas and aqueous phase oxidation of SO2 likely differs between the three modelling 560 

frameworks examined here, and a process study of the production and losses of SO2 would help explain 561 

the observed performance differences.  Similarly the differences in PM performance between the models 562 

should be examined using process analysis.  Future ensemble studies such as AQMEII phases 1 and 2 563 

should include process analysis as a focus, in order to improve understanding of these differences, and 564 

improve overall model performance. 565 

  566 
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2.5 Russian Fires Analysis:  EU domain, July 25th to August 19th, 2010  567 

Statistics for the EU domain were regenerated for the period corresponding to the large deviation in grid 568 

average values between feedback and no-feedback simulations noted in the above analysis on the EU 569 

results, from July 25th through August 19th.  The results of this analysis are shown in Table 5.  It must be 570 

remembered at the outset that the direct + indirect effect simulation here was carried out with a slightly 571 

less recent version of WRF-CHEM, hence some differences noted may be due to other model 572 

parameterizations aside from the institution of indirect effect feedbacks.   573 

During this period, the best overall performance for the gas-phase species was usually with the 574 

direct+indirect effect simulation.  Regional O3 was the exception, with 8 best or tied scores being 575 

attributable to the no-feedback model, compared to 3 for the direct effect model and one for the combined 576 

direct + indirect model.  However, for urban O3, the number of best scores (no-feedback, direct effect, 577 

direct + indirect effect) was in favour of direct+indirect effect model (2,1,7), as was the case for SO2 (1, 1, 578 

9),  for all NO stations (2,1,7), urban NO stations (1,2,7), regional NO stations (0,0,9), urban NO2 stations 579 

(0,1,8).  For CO, the no-feedback model had the highest number of best scores (6,5,1).   580 

For particulate matter variables, the direct + indirect effect model often, but not always, had the least 581 

number of best scores across the metrics considered, while the relative impact of the direct effect varied 582 

according to the particulate species or size range considered.  For all PM10 stations, the direct effect 583 

simulation had the highest number of best scores, (no-feedback, direct effect, direct + indirect effect) was 584 

(6,4,1), while for regional PM10 stations scored (5,4,1), PM2.5 (2,4,3), PM SO4 (4,6,3), PM NH4 (0,6,3), 585 

and PM NO3 (2,5,2). 586 

While the model architecture used in the EU simulations differs from the GEM-MACH model, it is worth 587 

noting here that the pattern of changes associated with going from a no-feedback model to the direct + 588 

indirect feedback model was similar for both EU and NA summer comparisons:  improvements took 589 

place in most gas-phase species, the performance was equivocal for CO, and the performance decreased 590 
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for PM.  The gas-phase improvements also tended to manifest themselves more for statistics other than 591 

correlation coefficient in both cases, with slight decreases for PCC while the other statistical metrics 592 

improved (NO2 being one exception).   593 

Combined indirect + direct effect feedbacks tend to improve gas-phase simulation accuracy while 594 

decreasing PM simulation accuracy, at this stage in the fully coupled models’ development.  It is worth 595 

noting here that both of the indirect effect models showing this effect (GEM-MACH and the EU/IT2 596 

WRF-CHEM simulation) make use of the cloud condensation nucleation parameterization of Abdul-597 

Razzak and Ghan (2002).  Moreover, detailed analysis by Gong et al (2014) using ICARTT 2004 in-598 

cloud observations suggests that this parameterization is highly sensitive to the choices made in 599 

describing the standard deviation of cloud updraft velocity.  It seems likely, then, that the degraded 600 

performance in the mean PM performance statistics with both models is linked to the models’ rate of 601 

uptake of aerosols into clouds, aqueous processing, and rainout/washout of the aerosols .  In GEM-602 

MACH, the chemical processing may be dominating, hence creating positive biases in aerosol sulphate.  603 

In WRF-CHEM/IT2, the particle removal processes may be dominating, leading to excessive particle 604 

removal and negative biases.  A comparison of the process parameterizations for the “in-and-below-605 

cloud” processes between these two models may thus be a fruitful avenue for future research.  In both 606 

cases, changes in intensity and location of precipitation events are also linked to improvements in ozone 607 

formation statistics, implying an aerosol indirect effect feedback impact on ozone formation, in both cases 608 

leading to a reduction in positive O3 biases seen in the no-feedback model (See Makar et al (2014), Part 1, 609 

this special issue).   610 

3. Spatial Analysis of Feedbacks, Annual and Events 611 

In this section, we return to the no-feedback versus feedback comparison, this time analyzing the model 612 

results averaged over time at each model gridpoint, rather than averaged over space.  The resulting model-613 

to-model comparison statistics are described in Table 2, where N is now the number of hours, rather than 614 
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the number gridpoints.  Due to space limitations, not all statistical comparisons created will be shown 615 

here, with mean differences and correlation coefficients being the primary means of displaying the 616 

regions with the greatest impact of feedbacks.  This portion of the analysis pairs NA and EU contour 617 

maps of feedback influences.  The maps were generated for the period July 15th through August 15th , 618 

2010 for the NA domain, and July 25th through August 19th, 2010 for the EU domain, in order to allow all 619 

three models to be compared for NA, and to focus on the Russian fires period for EU.  620 

3.1 O3  621 

The GEM-MACH and WRF-CMAQ NA domain mean concentration differences are shown in Figure 10 622 

(a,b), the correlation coefficients in Figure 10 (c,d) and the change in standard deviation (feedback – 623 

basecase)  in Figure 10 (WRF –CHEM comparisons are only available for meteorological variables over 624 

North America, see Part 1).    The equivalent EU fields for the WRF-CHEM direct effect simulation 625 

during the Russian fires period (July 25th through August 19th) is shown in Figure 11.     Both the GEM-626 

MACH simulation with both direct and indirect feedbacks and the WRF-CMAQ direct effect simulation 627 

have resulted in the largest regional changes in mean O3 in eastern NA.  In the direct+indirect effect 628 

feedback GEM-MACH simulation (Fig. 10(a), ozone has decreased over much of this region, with the 629 

largest decreases over the Great Lakes, upstate New York, and many of the urban regions along the 630 

Mississippi valley and the SE USA, with the largest decreases  in mean O3 during the period of -2.93 631 

ppbv.  The direct effect feedback WRF-CMAQ (Fig 10(b)) has a smaller range of O3 changes (WRF-632 

CMAQ:  +0.6 to -0.5 ppbv, GEM-MACh+1.9 to -2.93 ppbv - note the scales change between panels in 633 

the figure).  The direct effect feedback changes are less organized into a regional pattern; both positive 634 

and negative regions are side-by-side in the direct effect (Fig. 10(b)) as opposed to the indirect+direct 635 

effect (Fig. 10(a)).  The changes noted with the direct effect simulation represents shifts in local wind 636 

direction or cloud amounts.  In contrast, the indirect+direct effect feedback simulation results in an 637 

overall decrease in O3 over most of the eastern half of the continent.  The GEM-MACH simulation mean 638 

difference (Fig. 10(a)) also shows increases in O3 in the cities of San Francisco, Los Angeles, while the 639 
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WRF-CMAQ simulation shows decreases or no change there.  Both simulations show O3 decreases in 640 

cities in the SE USA (e.g. Atlanta, New Orleans).  Increases in O3 in northern Canada may reflect 641 

decreases in isoprene concentrations noted in the above time series analysis:  northern Canada includes 642 

large boreal forest regions, with few large regional sources of NOx emissions – a reduction in biogenic 643 

emissions due to decreased temperatures and increased cloud cover would result in less O3 destruction by 644 

alkene + O3 reactions in that area.   645 

The lower value correlation coefficients (Fig. 10(c,d)) highlight the regions where the feedbacks are 646 

having the greatest impact in O3 concentrations.  Both models show the Los Angeles area as being 647 

significantly affected by feedbacks (and in the GEM-MACH simulation comparison, this region extends 648 

up the entire California coast).  Other areas signficiantly impacted by feedbacks in the GEM-MACH 649 

simulation include central Washington state (possibly due to a forest fire during the period), Phoenix, 650 

Denver, Chicago, central Lake Superior, Georgia just north of Atlanta, and Jacksonville and Orlando in 651 

Florida.  The correlation coefficients from the WRF-CMAQ direct effect simulation have less of a 652 

tendency to relate to the position of large cities aside from Los Angeles and Jacksonville; minima occur in 653 

the state of northern Montana, and the south of the provinces of Alberta and Saskatchewan, possibly 654 

related to oil and gas extraction activities in those regions, and northern Lake Michigan.  The magnitude 655 

of the changes in correlation coefficient differ – the GEM-MACH values dropping to 0.565, while the 656 

direct-effect-only WRF-CMAQ values reach 0.90. 657 

The standard deviations (Fig. 10 (e,f)) show regional increases in standard deviation of hourly O3 (orange 658 

areas) over much of North America for the direct + indirect feedback GEM-MACH simulation (Fig 659 

10(e)), with smaller regions in which the variability has either increased or decreased relative to the no-660 

feedback simulation.  The Washington State fire event shows a paired increase/decrease in variability, 661 

indicating a change in direction of a large plume resulting from the feedbacks.  Lake Michigan’s O3 662 

variability decreases, while the region to the north-east of Atlanta noted above has increased variability.  663 

The direct effect WRF-CMAQ simulation has smaller magnitude variability changes – with decreases in 664 
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Los Angeles, again, a change opposite to that of the direct+indirect effect simulation with GEM-MACH, 665 

a paired set of increases and decreases near Minneapolis, south-eastern Indiana, Columbus Ohio, and to 666 

the north-west of Montreal.  These paired changes in variability seem to reflect changes in the locations of 667 

plumes in the direct effect-only simulation. 668 

The differences in magnitude of the impacts between the available simulations suggests that the indirect 669 

effect may have a larger impact on O3 concentrations than the direct effect.   Confirmation of this finding 670 

will require further ‘direct-only’ and ‘indirect-only’ simulations within individual models incorporating 671 

both direct and indirect effects (see Conclusions and Recommendations).  The changes in O3 mean value 672 

and variability are also often in different directions between the two model runs for large cities and 673 

plumes.  This suggests that the direct and indirect effects may sometimes act in competition, with the 674 

direct effect increasing O3, the indirect effect decreasing O3, and vice-versa.  The direct effect will 675 

increase the amount of scattering of light, potentially increasing photo-oxidation rates hence increasing 676 

surface O3 concentrations, while the indirect effect may increase the amount of clouds, hence leading to 677 

decreases in photo-oxidation rates, in turn decreasing  O3 concentrations.  678 

The substantial direct effect impact of the Russian fire event on O3 mean values, correlation coefficents 679 

and changes in standard deviation is shown in Figure 11 (a-c), with the largest feature in the model grid 680 

corresponding to the fires and their downwind plumes.  Mean differences are both positive and negative, 681 

with decreases in O3 dominating (Fig. 11 (a), note that most of the colour scale encompasses negative 682 

numbers, with the greatest decrease in the time-averaged O3 in excess of 7 ppbv).  Correlation coefficients 683 

(Fig. 11(b)) show local decreases far larger than elsewhere on the grid (most of the grid having values 684 

higher than 0.975 while the Russian fires have values as low as 0.85).  The direct effect feedback 685 

decreases O3 variability (Fig. 11(c))  in the region of the fires – the emissions were of sufficiently long 686 

term and the chemical effects relatively uniform over time to decrease the variability by 10 ppbv.  The 687 

magnitude of these changes can be compared to the direct effect simulations in the previous figure with 688 

the WRF-CMAQ model – the changes in the European grid are far larger than either of the NA 689 
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simulations (direct or direct + indirect effect feedbacks), indicating the very substantial impact of the 690 

Russian fires via the direct effect feedback, and the likely dominating influence of large fires of this 691 

nature on chemistry downwind.  Similar findings were noted by Wong et al (2012), for fires in California. 692 

The distribution of the changes also explains the reason why the impact of the fires relative to 693 

observations in the analysis above is not larger – all of the observation stations used in the comparison 694 

were in the EU, none within Russia and downwind, hence the more dramatic effects did not appear in the 695 

measurement record for most of Europe.  From Figure 11, Northern Finland would have experienced 696 

some of the fire impact –observations from Finland or Russia are needed to evaluate the feedback effects 697 

against measurements.   698 

Feedback-induced changes in chemical regime are examined for the NA GEM-MACH and EU WRF-699 

CHEM simulations in Figure 12.  The branching ratio describes the relative importance of the NO versus 700 

HO2 and RO2 pathways for organic radical reactions, numbers closer to unity being representative of 701 

more VOC-limited regimes: 702 

݋݅ݐܴܽ	݄݃݊݅ܿ݊ܽݎܤ ൌ 	
௞ೃೀమశಿೀሺேைሻ

ሺ௞ೃೀమశಿೀሺேைሻା௞ೃೀమశಹೀమሺுைమሻା௞ೃೀమశೃೀమሺோைమሻሻ
                                  (1) 703 

Negative changes in the mean branching ratio thus represent shifts towards a more NOx-limited regime, 704 

and positive changes represent a shift towards a more VOC-limited regime.  A second measure of 705 

atmospheric chemistry changes with regards to ozone formation pathways is the net VOC reactivity, 706 

defined here as the sum of non-methane VOC concentrations multiplied by their OH rate constants.  707 

Positive changes in the VOC reactivity indicate higher concentrations of VOCs, negative changes indicate 708 

lower concentrations.   709 

Figure 12 (a) and (b) contrast the changes in the branching ratio for NA with changes in NO2 710 

concentrations for the summer time period of interest.  The mean difference in the branching ratio (Fig. 711 

12(a)) has become substantially more negative for the cities of San Francisco and Los Angeles (shifted 712 
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towards more NOx-limited conditions), and more positive (shifting towards VOC-limited conditions) for 713 

the cities and industrial regions of the province of Alberta, the cities of New Mexico, Arizona and 714 

Colorado, as well as Vancouver/Seattle, Detroit, Toronto, Montreal, and Birmingham.   NO2 changes in 715 

the same locations follow the reverse pattern. This allows interpretation of the O3 changes noted above:  716 

in San Francisco and Los Angeles, already VOC-limited areas, the feedbacks lead to reductions in NOx, 717 

shifting these cities towards a more NOx-limited environment.  However, the very VOC-limited starting 718 

point of these changes means that the net result is a decrease in NOx titration of O3, hence increasing local 719 

O3 levels.  The other cities show a shift towards more VOC-limited regimes, suggested reduced O3 720 

concentrations there may be the result of increased NOx titration.  This is borne out in Figure 12(b),  721 

showing the changes in NO2.   In Europe, the central region of the Russian fires has become more NOx-722 

limited immediately under the plume and more VOC-limited on the periphery (Fig. 12(c)) –the direct 723 

effect feedbacks have resulted in higher levels of VOCs (Fig. 12(d)) due to less surface reactions, possibly 724 

due in part to shadowing effects of the smoke plumes, and lower concentrations of NOx (Fig. 12(e)) near 725 

the surface close to the fires, possibly as a result of increased strength of plume convection and vertical 726 

transport under the direct effect scenario.  This in turn results in more NOx dispersion downwind, shifting 727 

the outlying regions in the direction of VOC limitation.    728 

3.2 PM2.5 729 

Figures 13 and 14 compare the feedback-induced changes in PM2.5 mean differences, the correlation 730 

coefficients and the changes in standard deviation for the two summer periods on the NA and EU 731 

domains, respectively.  732 

For GEM-MACH (Fig 13(a)), the increases in PM2.5 are the largest along the California coast, at the fire 733 

location in Washington State, and over the Great Lakes, though an overall increase in “background” PM2.5 734 

can be seen across the domain.  For the WRF-CMAQ direct effect feedback simulation (Fig. 13(b), 735 

increases in PM2.5 can be seen at an intense hot-spot change at Portland, Oregon and  to a lesser degree 736 
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over a broad region in the north-eastern part of the study areas (the same region as the ozone changes 737 

described above).  Both models again show the California coast and coastal cities as being strongly 738 

affected by the feedbacks (Fig. 13(c,d)); GEM-MACH increasing PM2.5 there, and WRF-CMAQ 739 

decreasing it.  GEM-MACH shows much broader regions of low correlation values than WRF-CMAQ; 740 

the addition of indirect effect feedbacks has resulted in changes in PM2.5 over a much larger portion of 741 

NA.. The changes in the standard deviation between the simulations (Fig. 13 (e,f)) are dominated on a 742 

linear scale such as used here by the “hot-spots” in Washington State (GEM-MACH) and Oregon (WRF-743 

CMAQ).   744 

The EU WRF-CHEM direct effect simulations again show the dominating influence of the Russian fires.  745 

With the addition of the direct effect feedbacks, the PM2.5 concentrations generally increase in the vicinity 746 

of the fire centres (Fig. 14(a)) – a similar pattern seen for NO2 (Fig. 12(e)), and consistent with a greater 747 

vertical rather than horizontal dispersion at the surface, with subsequent downmixing further downwind.  748 

The largest impact on correlation coefficients (Fig 14(b) again corresponds to the fire locations.  The 749 

variability in PM2.5 shows paired increases and decreases at the fire hot-spots, indicating a local change in 750 

plume location and strength; a shift in the location of a highly time-varying source, as opposed to an 751 

increase in inherent variability.   752 

These findings highlight a common theme amongst the models – the simulation of the height and 753 

dispersion pattern of very large emissions sources is clearly highly sensitive to the local meteorological 754 

conditions.  An examination of other time periods with the models shows that these changes in plume 755 

height and direction, particularly from forest fires, following the incorporation of feedbacks, commonly 756 

occur in the models.  Given this high degree of sensitivity, the accurate simulation of large plume 757 

dispersion may require fully coupled models such as those studied here.  At the same time, the work 758 

shows that the plume rise algorithms used in the models are also very sensitive to changes in 759 

meteorological conditions, a sensitivity that is increased when the emissions are allowed to modify the 760 
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meteorology via feedbacks.  We therefore recommend the use of feedback models for the testing and 761 

improvement of forest fire and large urban plume rise and dispersion simulations.   762 

3.3 Isoprene 763 

Mean differences in isoprene concentrations are shown in Figure 15, for NA/GEM-MACH, NA/WRF-764 

CMAQ, and EU/WRF-CHEM.  The GEM-MACH decreases in isoprene (Fig. 15(a)) align well with the 765 

location of the main emitting regions, the Canadian boreal forest, and south-eastern USA.  This suggests 766 

that the changes in isoprene concentrations noted earlier correspond to continental-scale changes in the 767 

emitting conditions (photosynthetically active radiation and temperature).  In contrast, the WRF-CMAQ 768 

direct effect isoprene changes and those in the EU WRF-CHEM simulation (Fig. 15 (b,c)) are much more 769 

localized.  For WRF-CMAQ, the changes are both positive and negative, likely indicating a shift of local 770 

clouds.  For WRF-CHEM, the feedbacks have resulted in areas of isoprene decreases and increases in the 771 

vicinity of the Russian fires, again suggesting that changes in the location of the plumes are having a large 772 

impact on local chemistry, in this case via changes to the emissions of isoprene, hence to the relative 773 

importance of biogenic versus anthropogenic hydrocarbons in the atmosphere.   774 

Conclusions and Recommendations 775 

In our Introduction, we posed three questions for investigating the impacts of feedbacks between weather 776 

and chemistry.  The work we have conducted here suggests that the direct and indirect effects may have 777 

significant impacts on air-quality predictions, and allows us to provide initial answers to these questions, 778 

as follows: 779 

(1)   The incorporation of feedbacks resulted in systematic changes in the predictions of chemistry.  780 

The largest impact on the model results, as inferred by hourly-calculated spatial correlation 781 

coefficients between feedback and no-feedback models, occurred during the summer season, 782 

when the most active photochemistry takes place, and when forest fire emissions are the highest.   783 
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(2) The feedback-induced changes vary spatially – the largest changes associated with feedbacks 784 

corresponded to the regions with the highest emissions, significantly changing the local to 785 

regional concentrations of O3, PM2.5 and other pollutants.  For example, feedback effects 786 

associated with large forest fires in Russia in the summer of 2010 resulted in larger impacts on 787 

chemical predictions than the feedback effects associated with anthropogenic emissions in Europe 788 

during the same time period.  Similarly, the impact of feedbacks in North America was usually 789 

greatest in the industrialized east of the continent, the region of highest overall emissions and 790 

downwind chemical processing.  Feedback effects were also shown to have the largest impacts 791 

near cities, with defined shifts in ozone production regimes towards more/less NOx or VOC-792 

sensitive regimes for individual cities.   793 

(3) At the current state of fully coupled model development, the incorporation of feedback effects did 794 

not always result in improvements in model performance, depending on the year and time period 795 

of comparison to observations.  The differences in annual performance between the different 796 

models’ predictions with respect to observations were usually larger than the changes resulting 797 

from implementing feedbacks within a given model.  This suggests that the implementation 798 

details of other processes, such as chemical mechanisms, particle microphysics, etc., have a larger 799 

effect on model performance than feedbacks, when annual simulations are considered.    During 800 

the summer season, the incorporation of feedbacks was shown to significantly improve 801 

predictions of atmospheric gas concentrations in both North America and Europe.  Predictions of 802 

summer particulate matter became slightly worse in North America with the incorporation of both 803 

direct and indirect feedbacks.  In Europe, summer simulations including the both direct and 804 

indirect effects improved the gas prediction performance relative to observations, while the best 805 

PM2.5 performance was for the direct-effect only model.    The aerosol indirect effect feedback 806 

was shown to be the dominant process in modifying atmospheric chemistry compared to the 807 

direct effect feedback, consistent with Wang et al. (2014b, this issue).  The direct and indirect 808 

effect feedbacks were also shown to often be in competition with regards to the resulting 809 
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chemistry of the atmosphere, with opposing changes in O3 and PM2.5 occurring in direct-effect-810 

only versus direct+indirect effect simulations.  811 

The above work also suggests several directions for further research to improve our understanding of 812 

feedback processes, given the potential improvements seen here from this first intercomparison of fully 813 

coupled feedback models.  Some of these recommendations are also made in order to address 814 

uncertainties resulting from the limitations of the above work, as described below: 815 

(1) Shorter timer period “event” modelling studies.  Future studies making use of a broader array of 816 

models, but simulating a shorter specified time period (such as the Russian Forest Fire period 817 

during the summer of 2010), with a focus on mass tracking and comparison of indirect and direct 818 

effect parameterizations, would be of great value to the community.  The shorter time period 819 

would allow for the participation of more modelling groups, and simulations of no-feedback, 820 

direct-effect, indirect effect and direct+indirect effect conditions for each of the participating 821 

models.  We note here that a considerable source of uncertainty in our results stems from the 822 

limited number of simulations available for each model, this in turn stemming from the 823 

computational resources needed for annual simulations, required under the AQMEII-2 protocol. 824 

(2) Indirect effect algorithm and process studies.  Further work is clearly needed to improve the 825 

representation of aerosol indirect effect in feedback models.  For example, while all of the 826 

indirect-effect models employed here made use of the Abdul-Razzak and Ghan (2002)  827 

formulation as the basis for parameterizations for the formation of cloud condensation nuclei 828 

from aerosols,  the response of the models relative to observations when the indirect effect is 829 

incorporated varied widely.  The GEM-MACH model in North America had an increased positive 830 

bias with the incorporation of feedbacks, while the WRF-CHEM PM2.5 simulations in Europe had 831 

a large negative bias with the indirect effect implementation.  Incorporating the indirect effect has 832 

the potential to improve the distribution and radiative effects of clouds (improving the radiative 833 

budget and hence ozone formation accuracy as noted above).  However, the models’ in-cloud 834 
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aerosol formation and removal processes may create or remove too much aerosol mass.  The 835 

inter-comparison of the different in-and-below-cloud aerosol formation and removal 836 

parameterizations used in the current generation of fully coupled feedback models should 837 

therefore be a focus for continued research.  838 

(3) Directed studies of feedback effects for large emission sources.  The work carried out here 839 

showed that feedback effects are strongest for sources such as large forest fires and 840 

industrial/urban plumes.  This suggests that short-time-period studies for these sources will 841 

provide the best conditions for the improvement and testing of feedback models. 842 

(4) Detection of feedback effects in existing observation data.  The O3 formation regime was shown 843 

to be sensitive to feedbacks, as was winter inorganic particle formation.  It therefore may be 844 

possible to detect feedback effects in observation data through careful analysis of NOx and VOC 845 

sensitivity of O3 (e.g. through comparing observed O3 and particle nitrate formation regimes on 846 

days with high aerosol column loadings to otherwise similar days with low aerosol column 847 

loadings).  Similarly, the work undertaken here suggests that indications of feedback effects may 848 

be present in observations of inorganic aerosol partitioning and biogenic hydrocarbon emissions, 849 

and may be identified through re-analysis of such data, particularly when coupled with 850 

observations of aerosol column optical properties.  Such analysis would help identify useful 851 

periods for further model evaluation.   852 

(5) Further studies on the interaction between aerosol direct and indirect effects.  The work 853 

undertaken here suggested the direct and indirect effects may have competing influences on both 854 

ozone and PM2.5 formation, though the manner in which this takes place has not been 855 

investigated.  Short term case studies such as the ones described above should examine this 856 

competition at a process level, using separate direct, indirect and combined simulations, and 857 

existing or new observations. 858 
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     We discuss the meteorological impacts of feedbacks (and their relationship to the above chemical 859 

impacts), in Part 1 of this work. 860 
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Table 1.  Methodologies used in simulating aerosol direct and indirect effects and feedbacks in the suite of models. 998 
Domain Model  

(AQMEII-2 
ID) 

Direct Effect Methodology Indirect Effect Methodology Time Period, Data available for 
comparisons 

NA GEM-
MACH 
(CA2, CA2f) 

Mie scattering (Bohren and Huffman, 1983), 
homogeneous aerosol assumed, complex 
refractive indexes from bilinear interpolation 
in aerosol water content; detailed code used 
to generate high resolution lookup tables 
tested to be within 1% accuracy of the 
original Mie code.  

Milbrandt-Yao 2 moment microphysics scheme (Milbrandt and 
Yao, 2005).  No-feedback uses Cohard et al (1998) ‘typical 
continental aerosol’ cloud condensation nucleii tables.  Feedback 
uses the aerosol size and speciation-dependent formulation of 
Abdul-Razzak and Ghan (2002), operating across bins. Aerosol 
activation determined by comparing the upper and lower bounds 
of critical supersaturation for each size bin to the maximum 
supersaturation in an updraft, through a number-weighted critical 
supersaturation (See Gong et al, 2014, this issue of Atm. Env)).   

2006, 2010, feedback and non-feedback. 
Both chemical and meteorological variables 
available for comparisons  

WRF-CHEM 
3.4.1 (US8) 

Fast-Chapman 
Fast et al. [2006] 

Chapman et al. [2009] 
 

Indirect effects simulated following Chapman et al. (2009), using 
the Morrison 2-moment microphysics scheme (Morrison et al., 
2009), with aerosol activation based on the parameterization of 
Abdul-Razzak (2002), operating across the each mode of the 
WRF-CHEM aerosol distribution. 

2006, 2010 feedback simulations, weather-
only simulations. Meteorological variables 
available for comparisons 

WRF-
CMAQ 
(US6) 

CMAQ Feedback 
Bohren and Huffman [1998]; Wong et al. 
[2012] 

None; the cloud droplet concentration is assumed to be 250 cm-3. June 1 to September 1, 2006; May 1 to 
October 1, 2010.  Both chemical and 
meteorological variables available for 
comparison.  

EU WRF-CHEM 
3.4.1 
(Feedback: 
SI1,basecase: 
SI2)  

Fast-Chapman 
Fast et al. [2006] 

Chapman et al. [2009] 
 

None; the cloud droplet concentration is assumed to be 250 cm-3. 2010, feedback and non-feedback.  Both 
chemistry and meteorological models 
available for comparison. 

 WRF-CHEM 
3.4 + 
(New 
experimental 
version 
based on v 
3.4; IT2) 

Direct effects simulated following Fast et al. 
(2006). The lognormal modes are divided in 
bins. Each aerosol constituent is associated 
with a complex index of refraction. The 
refractive index of each bin is calculated with 
viavolume averaging. Mie theory is used to 
calculate the extinction and scattering 
efficiency. 

Indirect effects simulated following Chapman et al. (2009), using 
the Morrison 2-moment microphysics scheme (Morrison et al., 
2009), with aerosol activation based on the parameterization of 
Abdul-Razzak (2002), operating across the each mode of the 
WRF-CHEM aerosol distribution. When indirect effects are de-
activated (no-feedback simulation), it is assumed that the cloud 
droplet concentration is 250 cm-3. 

2010, feedback and weather-only 
simulation.  Meteorological variables 
available for comparison. 

999 
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 1000 

Table 2  Statistical measures used to compare Feedback (F) and No-Feedback (NF) simulations 1001 

 1002 

Statistical 
Measure 

Description Formula 

PCC Pearson Correlation 
Coefficient 
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Slope Slope of observations 
vs. model best-fit line    
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variability, where F 
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 1004 

Table 3  Statistical measures used for model – observation performance estimates.  N is the number of 1005 

paired observed-model values.  For comparisons between observations and model values, O is the mean 1006 

observed value, M is the mean model value.   1007 

Statistical 
Measure 

Description Formula 

FA2 Fraction (percentage) of 
model values within a factor 

of two of observations. 

- 

FA5 Fraction (percentage) of 
model values within a factor 

of five of observations. 
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Table 4  Model Evaluation, 2010, July 15 0:00 to August 15th 0:00.  Values hourly unless otherwise 1010 

noted.  Bold face indicates the best performing model of the GEM-MACH no-feedback and feedback 1011 

pair, italics the best performing model of all four examined here.  A bold face font is used to identify the 1012 

best performing model of the two GEM-MACH simulations, and italics to identify the highest performing 1013 

model of the suite of four models examined here. 1014 

Variable Statistic GEM-
MACH 
non-
feedback 
(CA2) 

GEM-
MACH 
feedback 
(CA2f) 

WRF-
CMAQ 
(US6) 

WRF-
CHEM 
(US8) 

O3 (Regional) 
75% validity 
cutoff, 257 
stations.  

NP 187330 187287 188017 188269 
FA2 (%) 83.49 83.72 85.03 86.11 
FA5 (%) 96.75 98.77 97.21 97.64 
MB 4.21E+00 3.81E+00 3.36E+00 -4.05E+00 
FB 1.20E-01 1.09E-01 9.72E-02 -1.31E-01 
NMB (%) 12.78 11.57 10.21 -12.30 
PCC 0.60 0.60 0.70 0.67 
ME 1.15E+01 1.13E+01 1.01E+01 9.98E+00 
NMSE 1.81E-01 1.77E-01 1.42E-01 1.82E-01 
NME (%) 34.96 34.42 30.79 30.30 
N. Scores 0 (0) 1 (8) 5 3 

O3  
(Urban + 
suburban) 75% 
validity cutoff, 
494 stations 

NP 333840 334317 345222 345649 
FA2 (%) 79.26 79.31 78.45 80.65 
FA5 (%) 95.06 95.04 94.17 95.68 
MB 2.86E+00 2.47E+00 2.61E+00 -4.32E+00 
FB 8.72E-02 7.59E-02 8.09E-02 -1.50E-01 
NMB (%) 9.11 7.88 8.43 -13.96 
PCC 0.63 0.63 0.69 0.69 
ME 1.16E+01 1.15E+01 1.11E+01 1.01E+01 
NMSE 2.12E-01 2.10E-01 1.94E-01 2.16E-01 
NME (%) 37.03 36.65 35.87 32.70 
N. Scores 0 (1) 3 (7) 2 5 

SO2, all 
stations, 75% 
validity cutoff, 
181 stations 

NP 86816 86789 81894 81896 
FA2 (%) 39.09 38.97 40.97 42.84 
FA5 (%) 75.26 74.96 74.99 76.64 
MB 1.31E+00 1.18E+00 -1.29E+00 -1.58E+00 
FB 3.34E-01 3.05E-01 -4.88E-01 -6.37E-01 
NMB (%) 40.10 36.01 -39.23 -48.33 
PCC 0.12 0.13 0.19 0.21 
ME 4.03E+00 3.95E+00 2.63E+00 2.45E+00 
NMSE 4.89E+00 4.88E+00 7.00E+00 8.18E+00 
NME (%) 122.95 120.48 79.97 75.13 
N. Scores 0 (2) 4 (7) 0 5 

NO, all 
stations, 16% 

NP 45481 45311 53593 51701 
FA2 (%) 31.50 30.18 27.14 21.02 
FA5 (%) 62.95 60.88 56.07 47.79 
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validity cutoff, 
135 stations 

MB 3.76E-01 1.62E-01 1.56E+00 -2.33E+00 
FB 9.14E-02 4.03E-02 3.48E-01 -8.98E-01 
NMB (%) 9.58 4.12 42.15 -61.96 
PCC 0.26 0.24 0.15 0.19 
ME 4.40E+00 4.35E+00 5.60E+00 3.30E+00 
NMSE 4.72E+00 4.77E+00 8.50E+00 7.64E+00 
NME (%) 112.22 110.79 151.42 87.46 
N. Scores 4 (4) 3 (5) 0 2 

NO2, 75% 
validity cutoff, 
198 stations, all 
stations 

NP 131961 131961 130776 130776 
FA2 (%) 49.97 49.96 50.31 49.03 
FA5 (%) 87.49 87.60 87.76 86.18 
MB 1.14E+00 1.01E+00 2.38E+00 6.38E-01 
FB 1.35E-01 1.20E-01 2.62E-01 7.77E-02 
NMB (%) 14.45 12.79 30.20 8.09 
PCC 0.47 0.46 0.50 0.46 
ME 6.03E+00 5.99E+00 6.40E+00 5.77E+00 
NMSE 1.33E+00 1.32E+00 1.25E+00 1.16E+00 
NME (%) 76.59 76.11 81.14 73.22 
N. Scores 0 (2) 0 (7) 3 6 

CO, 75% 
validity cutoff, 
108 stations, 
urban, 
suburban and 
regional 

NP 48037 48037 48029 48029 
FA2 (%) 68.95 68.55 69.24 72.72 
FA5 (%) 95.83 95.84 95.82 96.28 
MB -1.88E+01 -2.67E+01 -2.97E+01 -5.38E+01 
FB -7.27E-02 -1.05E-01 -1.18E-01 2.23E-01 
NMB (%) -7.02 -9.95 -11.10 -20.09 
PCC 0.15 0.14 0.21 0.21 
ME 1.62E+02 1.59E+02 1.50E+02 1.36E+02 
NMSE 1.15E+00 1.12E+00 8.94E-01 8.27E-01 
NME (%) 60.53 59.45 56.00 50.60 
N. Scores 3 (5) 0 (4) 1 5 

PM10, 16% 
validity cutoff, 
350 stations, all 
station types 

NP 3896 3896 3896 3896 
FA2 (%) 54.26 53.77 39.66 11.32 
FA5 (%) 94.12 94.79 77.10 61.78 
MB -1.64E+00 -1.43E+00 -9.09E+00 -1.93E+01 
FB -6.55E-02 -5.69E-02 -4.28E-01 -1.19E+00 
NMB (%) -6.34 -5.53 -35.22 -74.64 
PCC 0.09 0.08 0.13 0.26 
ME 1.74E+01 1.72E+01 1.74E+01 1.93E+01 
NMSE 1.08E+00 1.05E+00 1.40E+00 3.47E+00 
NME (%) 67.46 66.66 67.59 74.77 
N. Scores 1 (2) 7 (7) 0 1 

PM10, 16% 
validity cutoff, 
stations,  
regional 
stations only, 
72 stations 

NP 1088 1088 1088 1088 
FA2 (%) 49.92 41.64 37.22 8.00 
FA5 (%) 89.89 91.54 77.30 61.49 
MB 6.02E+00 5.66E+00 -2.49E+00 -2.02E+01 
FB 2.08E-01 1.97E-01 -1.01E-01 -1.27E+00 
NMB (%) 23.20 21.82 -9.59 -77.74 
PCC 0.02 0.01 0.06 0.25 
ME 2.49E+01 2.44E+01 2.17E+01 2.02E+01 
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NMSE 1.64E+00 1.60E+00 1.64E+00 4.77E+00 
NME (%) 96.18 93.90 83.60 77.74 
N. Scores 1 (2) 2 (7) 3 3 

PM2.5, daily 
average, 16% 
validity cutoff 
(to capture 1 
day in 6 
stations):  900 
stations, all 
stations 
combined 

NP 11754 11754 11798 11798 
FA2 (%) 78.06 75.63 79.27 82.48 
FA5 (%) 99.06 98.91 99.08 99.28 
MB 3.37E+00 4.02E+00 -1.71E+00 -2.03E+00 
FB 2.66E-01 3.09E-01 -1.69E-01 -2.03E-01 
NMB (%) 30.66 36.53 -15.59 -18.44 
PCC 0.52 0.51 0.63 0.72 
ME 5.80E+00 6.25E+00 4.01E+00 3.59E+00 
NMSE 5.13E-01 5.51E-01 3.06E-01 2.27E-01 
NME (%) 52.78 56.86 36.49 32.66 
N. Scores 0 (9) 0 (0) 3 6 

PM2.5 SO4, 16% 
validity cutoff 
(to capture 1 
day in 6 
stations):  297 
stations, all 
station types 

NP 2468 2468 2492 2492 
FA2 (%) 46.03 42.30 86.88 81.54 
FA5 (%) 91.69 89.47 99.12 99.20 
MB 2.25E+00 2.61E+00 -2.09E-01 -1.34E-01 
FB 7.34E-01 8.03E-01 -1.14E-01 -7.18E-02 
NMB (%) 116.03 134.21 -10.77 -6.93 
PCC 0.72 0.71 0.84 0.80 
ME 2.41E+00 2.74E+00 6.07E-01 7.27E-01 
NMSE 1.89E+00 2.17E+00 2.74E-01 3.97E-01 
NME (%) 124.27 141.08 31.33 37.55 
N. Scores 0 (9) 0 (0) 5 4 

PM2.5 NH4, 
16% validity 
cutoff (to 
capture 1 day 
in 6 stations):  
142 stations, all 
station types 

NP 1359 1359 1380 1380 
FA2 (%) 62.69 60.41 53.99 64.57 
FA5 (%) 95.58 95.00 94.06 92.75 
MB 1.73E-01 2.16E-01 -3.65E-01 -2.93E-01 
FB 2.13E-01 2.59E-01 -6.73E-01 -5.07E-01 
NMB (%) 23.80 29.73 -50.38 -40.44 
PCC 0.66 0.65 0.82 0.80 
ME 4.46E-01 4.72E-01 3.83E-01 3.38E-01 
NMSE 7.10E-01 7.43E-01 1.35E+00 8.73E-01 
NME (%) 61.37 64.94 52.93 46.70 
N. Scores 4 (9) 0 (0) 1 3 

PM2.5 NO3, 
16% validity 
cutoff (to 
capture 1 day 
in 6 stations):  
139 stations, all 
types 

NP 1281 1284 1342 885 
FA2 (%) 18.58 17.99 12.67 15.93 
FA5 (%) 37.39 35.12 32.19 35.03 
MB -1.22E-01 -1.32E-01 -2.45E-01 -2.23E-01 
FB -4.59E-01 -5.09E-01 -1.27E+00 -7.89E-01 
NMB (%) -37.32 -40.55 -77.59 56.60 
PCC 0.16 0.15 0.26 0.22 
ME 3.62E-01 3.57E-01 2.91E-01 3.68E-01 
NMSE 7.42E+00 7.25E+00 1.46E+01 6.59E+00 
NME (%) 110.61 109.19 92.31 93.69 
N. Scores 5 (6) 0 (3) 3 1 

PM2.5 TOC NP 1525 1525 1549 1549 
FA2 (%) 60.46 57.11 47.45 51.00 
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16% validity 
cutoff (to 
capture 1 day 
in 6 stations):  
160 stations, all 
types 

FA5 (%) 94.89 94.89 91.28 87.15 
MB 6.92E-01 8.01E-01 -5.12E-01 -1.29E-03 
FB 4.21E-01 4.72E-01 -4.98E-01 1.00E-03 
NMB (%) 53.38 61.76 -39.87 -0.10 
PCC 0.38 0.40 0.55 0.26 
ME 1.02E+00 1.08E+00 6.97E-01 9.10E-01 
NMSE 1.24E+00 1.16E+00 1.07E+00 1.18E+00 
NME (%) 78.38 83.04 54.29 70.89 
N. Scores 2 (6) 1 (2) 4 3 

 1015 

 1016 

Table 5  Model Evaluation, EU, 2010, July 25th 00:00 to August 19th 00:00.  The relative performance of 1017 

the no-feedback and direct-effect only feedback simulations with WRF-CHEM v3.4.0 are highlighted 1018 

using a bold font, while the best scores over all three models are highlighted with an italic font. 1019 

N/A:  Data not available in the ENSEMBLE archive 1020 

Variable Statistic WRF-
CHEM 
(no direct 
effect 
feedback- 
SI1) 

WRF-
CHEM 
(direct 
effect 
feedback – 
SI2) 

WRF-
CHEM 
(direct and 
indirect 
effect 
feedback – 
IT2) 

O3 (Regional) 
75% validity 
cutoff, 498 
stations 

NP 284959 284959 284914 
FA2 (%) 89.50 89.45 88.94 
FA5 (%) 97.87 97.87 98.19 
MB 7.53E-01 8.90E-01 -8.65E+00 
FB (%) 1.12E-02 1.33E-02 -1.39E-01 
NMB (%) 1.13 1.35 -12.98 
PCC 0.55 0.55 0.53 
ME 1.88E+01 1.88E+01 2.06E+01 
NMSE (%) 1.28E-01 1.28E-01 1.75E-01 
NME (%) 28.16 28.20 30.85 
N. Scores 8 (5) 3 (0) 1 

O3  
(Urban + 
suburban) 75% 
validity cutoff, 
1005 stations 

NP 1294806 1294806 1294713 
FA2 (%) 81.02 80.97 83.15 
FA5 (%) 94.58 94.57 95.64 
MB 1.02E+01 1.03E+01 -1.18E-01 
FB (%) 1.70E-01 1.72E-01 -2.16E-03 
NMB (%) 18.55 18.78 -0.21 
PCC 0.59 0.59 0.54 
ME 1.98E+01 1.98E+01 1.89E+01 
NMSE (%) 1.78E-01 1.78E-01 1.91E-01 
NME (%) 35.90 35.98 34.36 
N. Scores 2(7) 1(0) 7 
NP 445468 445697 474455 
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SO2, all 
stations, 75% 
validity cutoff, 
1000 stations 

FA2 (%) 22.82 22.55 32.72 
FA5 (%) 51.78 51.39 68.27 
MB -2.44E+00 -2.46E+00 -1.97E+00 
FB (%) -9.28E-01 -9.42E-01 -7.02E-01 
NMB (%) -63.39 -64.02 -51.94 
PCC 0.17 0.17 0.17 
ME 3.28E+00 3.27E+00 3.01E+00 
NMSE (%) 1.09E+01 1.09E+01 8.08E+00 
NME (%) 85.08 84.98 81.47 
N. Scores 1 (3) 1 (4) 9 

NO, all 
stations, 75% 
validity cutoff, 
904 stations 

NP 416717 416563 609303 
FA2 (%) 17.46 17.23 18.70 
FA5 (%) 44.97 44.32 42.01 
MB -3.14E+00 -3.16E+00 -2.84E+00 
FB (%) -1.41E+00 -1.42E+00 -1.23E+00 
NMB (%) -82.57 -83.13 -76.01 
PCC 0.08 0.08 0.06 
ME 3.37E+00 3.37E+00 3.16E+00 
NMSE (%) 2.30E+01 2.37E+01 2.11E+01 
NME (%) 88.66 88.74 91.03 
N. Scores 2 (9) 1 (0) 7 

NO, urban 
stations only, 
75% validity 
cutoff, 383 
stations 

NP 177863 177802 263704 
FA2 (%) 14.17 13.80 16.31 
FA5 (%) 39.76 39.07 36.27 
MB -4.44E+00 -4.46E+00 -3.73E+00 
FB (%) -1.52E+00 -1.53E+00 -1.37E+00 
NMB (%) -86.28 -86.67 -81.46 
PCC 0.11 0.11 0.09 
ME 4.58E+00 4.59E+00 4.08E+00 
NMSE (%) 2.46E+01 2.53E+01 2.10E+01 
NME (%) 88.97 89.16 88.29 
N. Scores 1 (7) 2 (3) 7 

NO2, 75% 
validity cutoff, 
regional 
stations, 366 
stations 

NP 281752 281752 281752 
FA2 (%) 48.33 48.01 52.63 
FA5 (%) 85.67 85.50 88.61 
MB -3.04E+00 -3.11E+00 -2.61E+00 
FB (%) -5.01E-01 -5.16E-01 -4.15E-01 
NMB (%) -40.04 -41.00 -34.37 
PCC 0.23 0.25 0.30 
ME 4.83E+00 4.82E+00 4.66E+00 
NMSE (%) 2.62E+00 2.33E+00 1.83E+00 
NME (%) 63.64 63.49 61.45 
N. Scores 0 (5) 0 (4) 9 

NO2, 75% 
validity cutoff, 
urban stations, 
721 stations 

NP 403113 403113 403113 
FA2 (%) 30.73 30.37 32.77 
FA5 (%) 71.29 70.86 73.98 
MB -9.94E+00 -1.00E+01 -9.87E+00 
FB (%) -8.69E-01 -8.80E-01 -8.60E-01 
NMB (%) -60.58 -61.11 -60.14 
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PCC 0.34 0.36 0.35 
ME 1.13E+01 1.13E+01 1.11E+01 
NMSE (%) 2.40E+00 2.42E+00 2.32E+00 
NME (%) 68.66 68.82 67.61 
N. Scores 0 (8) 1 (2) 8 

CO, 75% 
validity cutoff, 
431 stations, all 
station types 

NP 233292 233292 233292 
FA2 (%) 57.14 57.24 46.90 
FA5 (%) 94.47 94.47 92.11 
MB -9.07E+01 -9.27E+01 -1.11E+02 
FB (%) -4.17E-01 -4.28E-01 -5.36E-01 
NMB (%) -34.53 -35.27 -42.25 
PCC 0.06 0.05 0.06 
ME 1.67E+02 1.67E+02 1.80E+02 
NMSE (%) 2.62E+00 2.40E+00 3.10E+00 
NME (%) 63.74 63.44 68.52 
N. Scores 6 (5) 5 (4) 1 

PM10, daily 
average, 95% 
validity cutoff, 
887 stations, all 
station types 

NP 22521 22521 22521 
FA2 (%) 68.13 67.19 26.85 
FA5 (%) 97.20 97.20 90.82 
MB -4.01E+00 -4.19E+00 -1.16E+01 
FB (%) -2.36E-01 -2.47E-01 -8.73E-01 
NMB (%) -21.08 -22.01 -60.79 
PCC 0.35 0.35 0.39 
ME 9.45E+00 9.45E+00 1.23E+01 
NMSE (%) 1.04E+00 1.01E+00 2.28E+00 
NME (%) 49.67 49.66 64.65 
N. Scores 6 (6) 4 (4) 1 

PM10, 75% 
validity cutoff, 
stations,  
regional 
stations only, 
307 stations 

NP 7534 7534 7534 
FA2 (%) 70.95 70.87 36.06 
FA5 (%) 96.60 96.60 92.49 
MB -1.51E+00 -1.70E+00 -8.95E+00 
FB (%) -9.84E-02 -1.11E-01 -7.69E-01 
NMB (%) -9.38 -10.56 -55.53 
PCC 0.32 0.33 0.35 
ME 8.18E+00 8.13E+00 9.95E+00 
NMSE (%) 1.20E+00 1.08E+00 2.16E+00 
NME (%) 50.76 50.48 61.78 
N. Scores 5 (5) 4 (3) 1 

PM2.5, daily 
average, 75% 
validity cutoff:  
499 stations, all 
stations 
combined 

NP 12041 12041 12041 
FA2 (%) 65.92 66.37 51.76 
FA5 (%) 97.67 97.61 97.18 
MB 1.12E+00 9.58E-01 -5.04E+00 
FB (%) 9.57E-02 8.23E-02 -5.83E-01 
NMB (%) 10.05 8.58 -45.11 
PCC 0.26 0.25 0.32 
ME 6.50E+00 6.43E+00 6.03E+00 
NMSE (%) 7.72E-01 7.49E-01 1.22E+00 
NME (%) 58.22 57.84 54.05 
N. Scores 2 (2) 4 (4) 3 
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PM SO4, 16% 
validity cutoff 
(to capture 1 
day in 6 
stations):  38 
stations, all 
types 

NP 909 909 909 
FA2 (%) 47.52 47.08 32.23 
FA5 (%) 85.04 85.04 73.38 
MB 4.33E-02 4.24E-02 -1.47E+00 
FB (%) 1.69E-02 1.65E-02 -8.11E-01 
NMB (%) 1.70 1.66 -57.71 
PCC 0.23 0.23 0.17 
ME 1.94E+00 1.94E+00 1.90E+00 
NMSE (%) 1.22E+00 1.22E+00 3.23E+00 
NME (%) 76.09 76.24 74.73 
N. Scores 4 (5) 6 (5) 3 

PM NH4, 16% 
validity cutoff 
(to capture 1 
day in 6 
stations):  25 
stations, all 
types 

NP 567 567 567 
FA2 (%) 37.39 38.10 29.63 
FA5 (%) 73.19 73.54 69.49 
MB 5.61E-01 5.27E-01 -9.13E-01 
FB (%) 3.12E-01 2.96E-01 -8.63E-01 
NMB (%) 37.00 34.79 -60.28 
PCC 0.35 0.36 0.20 
ME 1.47E+00 1.45E+00 1.22E+00 
NMSE (%) 1.78E+00 1.72E+00 5.20E+00 
NME (%) 97.17 95.63 80.59 
N. Scores 0 (2) 6 (6) 3 

PM NO3, 16% 
validity cutoff 
(to capture 1 
day in 6 
stations):  19 
stations, all 
types 

NP 349 351 406 
FA2 (%) 34.96 34.47 10.34 
FA5 (%) 61.60 60.40 27.09 
MB 5.65E-01 3.85E-01 -2.80E+00 
FB (%) 1.36E-01 9.47E-02 -1.33E+00 
NMB (%) 14.57 9.94 -79.81 
PCC 0.28 0.31 0.16 
ME 3.72E+00 3.61E+00 3.25E+00 
NMSE (%) 2.74E+00 2.55E+00 1.26E+01 
NME (%) 95.91 93.22 92.59 
N. Scores 2 (2) 5 (7) 2 
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Feedbacks between Air Pollution and Weather, Part 2:  Effects on Chemistry, P.A. Makar et al 1023 

 1024 

Figure 1. Grid-average O3 time series for GEM-MACH (left column) and WRF-CMAQ (right column).  1025 

Top row:  mean non-feedback (blue) and mean differences (red), middle:  correlation coefficients.  1026 

Bottom row:  non-feedback standard deviation (blue) and difference in standard deviation (feedback – 1027 

non-feedback, red).  1028 
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 1029 

Figure 2.  (a,b):  Hourly grid-average O3 no-feedback mean concentrations, mean differences (feedback – 1030 

no-feedback), and simulation correlation coefficients, EU domain, 2010 (ppbv). 1031 

 1032 

Figure 3.  Grid mean PM2.5, non-feedback (blue) and mean difference (red), for (a) NA/GEM-MACH, (b) 1033 

NA/WRF-CMAQ, (c) EU/WRF-CHEM.  (d,e,f):  Correlation coefficients for these models. 1034 



53 
 

 1035 

Figure 4.  As for Figure 3, NO2. 1036 

 1037 

Figure 5.  As for Figure 3, Isoprene. 1038 
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 1039 

Figure 6.  As for Figure 3, HCHO. 1040 

 1041 

Figure 7.  Non-feedback mean HNO3 (blue) and mean differences (red) for NA/GEM-MACH(a), 1042 

NA/WRF-CMAQ(b), EU/WRF-CHEM(c), followed by non-feedback mean PM2.5 NO3 (blue) and mean 1043 

differences (red) for the same three models. 1044 

 1045 

 1046 
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 1047 

Figure 8.  GEM-MACH (left column) and WRF-CMAQ (right column) non-feedback grid mean values 1048 

(blue) and mean differences (red) for SO2 (a,b), PM2.5 SO4 (c,d), NH3 (e,f) and PM2.5 NH4 (g,h). 1049 
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 1050 

Figure 9.  (a,b):  SO2 domain average concentrations, domain average concentration differences with 1051 

direct effect feedback, and correlation coefficients, AQMEII-2 EU domain, 2010.  (c,d):  PM2.5 SO4.  1052 

(e,f):  NH3.  (g,h):  PM2.5 NH4. 1053 



57 
 

 1054 

Figure 10.  Comparison between O3 feedback and no-feedback simulations for GEM-MACH (a,c,e) and 1055 

WRF-CMAQ (b,d,f) , AQMEII-2 NA domain, July 15th to August 15th, 2010.  (a,b):  Mean differences 1056 

from no-feedback simulations.  (c,d):  Correlation coefficients between feedback and no-feedback 1057 

simulations.  (e,f):  Changes in standard deviation (feedback s – no-feedback).  Note that the scales differ 1058 

between the panels depicting the two model simulations.   1059 
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 1060 

Figure 11.  Comparison between WRF-CHEM direct effect feedback and no feedback O3 simulations for 1061 

the AQMEII-2 EU domain, July 25th to August 19th.  (a) Mean differences, (b) Correlation coefficients, 1062 

(c) changes in standard deviation (feedback – no-feedback).  Compare scales to those in Figure 10. 1063 
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 1064 

Figure 12.  Analysis of O3 changes, NA and EU.  (a,b):  NA mean differences in branching ratio and NO2 1065 

concentrations.  (c,d,e) EU changes in branching ratio, VOC reactivity and NO2 concentration. 1066 
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 1067 

Figure 13.  As for Figure 10, PM2.5. 1068 
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 1069 

Figure 14.  As for Figure 11, PM2.5.   1070 
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 1071 

Figure 15.  Mean isoprene differences, summer analysis periods.  (a) GEM-MACH (direct+indirect 1072 

effect), (b) WRF-CMAQ, (direct effect) , (c) WRF-CHEM/EU (direct effect). 1073 


