
 Methods for Reducing Biases and Errors in Regional 1 
Photochemical Model Outputs for Use in Emission 2 

Reduction and Exposure Assessments 3 
 4 

 5 
P. Steven Porter1, S. Trivikrama Rao2, Christian Hogrefe3, Edith Gego1, Rohit 6 

Mathur3 7 
 8 

1Porter-Gego, Idaho Falls, ID 83401 9 
2North Carolina State University, Raleigh, NC 27695 10 

3US EPA National Exposure Research Laboratory, Research Triangle Park, NC 11 
27711 12 

   13 
 14 
Abstract 15 

 16 

In the United States, regional-scale photochemical models are being used to design emission 17 

control strategies needed to meet the relevant National Ambient Air Quality Standards (NAAQS) 18 

within the framework of the attainment demonstration process. Previous studies have shown that 19 

the current generation of regional photochemical models can have large biases and errors in 20 

simulating absolute levels of pollutant concentrations.   Studies have also revealed that regional 21 

air quality models were not always accurately reproducing even the relative changes in ozone air 22 

quality stemming from changes in emissions. This paper introduces four approaches to adjust for 23 

model bias and errors in order to provide greater confidence for their use in estimating future 24 

concentrations as well as using modeled pollutant concentrations in exposure assessments.  The 25 

four methods considered here are a mean and variance (MV) adjustment, temporal component 26 

decomposition (TC) adjustment of modeled concentrations, and two variants of cumulative 27 

distribution function (CDF) mapping.  These methods were compared against each other as well 28 

as against unadjusted model concentrations and a version of the relative response approach based 29 

on unadjusted model predictions.  The analysis uses ozone concentrations simulated by the 30 
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Community Multiscale Air Quality (CMAQ) model for the northeastern United States domain 31 

for the years 1996 to 2005.    Ensuring that base case conditions are adequately represented 32 

through the combined use of observations and model simulations is shown to result in improved 33 

estimates of future air quality under changing emissions and meteorological conditions. 34 
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1.  Introduction 39 

 40 

Regional-scale photochemical models are useful tools for forecasting (Eder et al., 2010), 41 

regulatory decision-making (USEPA, 2014), and exposure assessments (Garcia et al., 2010; Lin 42 

et al., 2012).  Forecasts of future air quality enable people to take appropriate precautionary 43 

measures to reduce their exposure to high pollution levels (Eder et al., 2010).  With respect to 44 

exposure assessments, it is desirable to relate air quality to human health at unmonitored 45 

locations (Garcia et al., 2010; Lin et al., 2012) and to deal with missing data at monitoring sites 46 

(i.e., Junninen et al., 2004).  Spatially and temporally dense model outputs, adjusted for biases in 47 

mean and variability are used for these purposes.  Attainment demonstrations use a set of model 48 

experiments to assess the magnitude and extent of air pollution and to determine emission 49 

reductions needed to meet the National Ambient Air Quality Standards (NAAQS).  In particular, 50 

models are used to compare past air quality (base case) with model-predicted future conditions.  51 

This paper addresses the use of models in attainment demonstrations and exposure assessments. 52 

 53 

Before a regional photochemical model is applied in the regulatory setting, USEPA’s guidance 54 

for the attainment demonstration recommends a thorough evaluation of the model performance 55 

for the base case simulation (USEPA, 2014).  Sistla et al. (2004), Jones et al. (2005), Pegues et 56 

al. (2012), Hogrefe et al. (2012), Kulkarni et al. (2014), and Cohan and Chen (2014) have 57 

examined some issues with the use of projected design values in attainment demonstrations.  58 

Dennis et al. (2010) provided a framework for performing comprehensive model evaluation, 59 

which entails conducting operational (Appel et al., 2007), dynamic (Napelenok et al., 2011), 60 

diagnostic (Godowitch et al., 2011), and probabilistic evaluations (Hogrefe and Rao, 2001; Foley 61 
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et al., 2012; Reich et al., 2013).  Also, scientists from North America and Europe have been 62 

helping advance the model evaluation framework outlined by Dennis et al. (2010) as part of the 63 

Air Quality Modelling Evaluation International Initiative (AQMEII) project (Rao et al., 2011; 64 

Galmarini et al., 2012).  The AQMEII community is currently focusing on evaluating the 65 

performance of coupled meteorology and atmospheric chemistry models (Baklanov et al., 2014) 66 

to examine the strengths and limitations of air quality models being used in North America and 67 

Europe.  In addition, techniques such as Kalman filtering (Delle Monache, 2006; Kang et al., 68 

2008 and 2010) and spectral decomposition approach (Galmarini et al., 2013) have been used to 69 

correct for model bias in air quality forecasting. 70 

 71 

It is important to promote model evaluations to establish credibility for air quality models so they 72 

can be more confidently used for regulatory decisions.  However, despite continual improvement 73 

in models, discrepancies between model predictions and observations persist, stemming from 74 

both reducible and irreducible errors.  In addition, whereas modeled concentrations represent 75 

volume-average concentrations, observations reflect point measurements at a given location.  76 

Also, the stochastic variations affecting the monitored concentrations are not explicitly modeled 77 

in the current regional numerical air quality models.  Reducible errors (structural and parametric) 78 

are attributable to our inadequate understanding of the relevant atmospheric processes, and errors 79 

in model input variables (e.g., emissions, meteorology, boundary conditions, physics and 80 

chemistry).  Irreducible errors arise from our inability to properly characterize the initial state as 81 

well as the stochastic nature of the atmosphere.  A critical point to bear in mind is that it is 82 

difficult, if not impossible, to specify the atmospheric conditions (i.e., emissions, initial and 83 

boundary conditions, meteorology, physics, and chemistry) that real-world observations are 84 
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seeing in all locations at all times by simulating the base case conditions using air quality 85 

models.  In consequence, modeled pollutant concentrations often are biased (average observed 86 

values are not reproduced) (Simon et al., 2012), exhibit less variability than the corresponding 87 

observations (i.e., the distribution of modeled values is often more narrow than that of the 88 

observations), and show changes in pollutant levels from the base case that differ from observed 89 

changes (Gilliland et al., 2008; Godowitch et al., 2010).  One way to address these limitations is 90 

to constrain the model output by the observations to ensure that observations and modeled values 91 

are starting from the same point so the deviations from the base case can be properly evaluated 92 

as emissions and/or meteorology are altered.  It should be emphasized that this does not imply 93 

that scientific advances for better simulating the interactions of pollutants and transport and fate 94 

in the atmosphere are not needed.   95 

 96 

In an attempt to better meet the needs of regulatory agencies as well as the health sciences 97 

community for regional air quality models, we propose four new methods for bringing the 98 

statistical properties (i.e., mean, variance, percentiles) of model predictions into closer harmony 99 

with pollutant concentrations observed at monitoring sites.  Included are adjustments to the 100 

concentration time series (matching the mean and variance of model ozone time series to 101 

observations), spectral decomposition of time series (matching the low and high frequency 102 

variations in model ozone time series to observations), and two variations of cumulative 103 

distribution function (CDF) matching (matching sample CDFs of modeled and observed 104 

concentrations, disregarding the time sequence).  A ten-year long photochemical model 105 

simulation for the northeastern USA is used to assess the performance of these methods.  The 106 

ability of these methods to reproduce different-year ozone concentrations as well as 107 
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contemporaneous predictions, that is, same-year ozone concentration time series, is evaluated.  108 

The new approaches are compared with absolute model projections and with model-based, 109 

relative response factors based on unadjusted model predictions. 110 

 111 

 112 

2.  Data and Methods 113 

 114 

A.  Model Setup 115 

 116 

The following is a brief summary of the model set-up used to perform the simulations analyzed 117 

in this study.  The reader is referred to Hogrefe et al. (2009, 2010) for additional details. The 118 

Mesoscale Meteorological Model MM5 (Grell et al., 1994) was used to simulate meteorological 119 

conditions for the time period from 1 January 1988 to 31 December 2005. In the current study, 120 

we utilize model simulations for the ten year period from 1996 to 2005. The meteorological 121 

simulations were performed on two-way nested grids with 36 km and 12 km grid cell sizes 122 

covering the northeastern US.  Throughout the model simulation, MM5 was nudged towards 123 

reanalysis fields from the National Center for Environmental Prediction (NCEP) using four-124 

dimensional data assimilation.  All emission processing, including mobile and biogenic sources, 125 

was performed within the Sparse Matrix Operator Kernel Emissions (SMOKE) system 126 

(Houyoux et al., 2000).  Anthropogenic emission inventories for 1988–2005 were compiled from 127 

a variety of sources as described in Hogrefe et al. (2009).  Various regulatory control programs 128 

were implemented for the utility sector (e.g., the acid rain control program, NOx SIP Call) 129 

during the period 1995 to 2005.  Also, fleet turnover has contributed to large changes in mobile 130 

6 
 



source emissions and control programs were also implemented for a number of other emission 131 

sources.  The combined effect of all emission control programs was a decrease of domain-wide 132 

anthropogenic NOx and VOC emission by roughly 24% and 28%, respectively during the 1996-133 

2005 period.  Biogenic emissions were estimated with the BEIS3.12 model (Pierce et al., 1998) 134 

taking into account MM5 temperature, radiation, and precipitation.   135 

 136 

Regional air quality simulations were performed with the Community Multiscale Air Quality 137 

(CMAQ) model (Byun and Schere, 2006), version 4.6, rather than CMAQ 4.5.1 that was used in 138 

Hogrefe et al. (2009) with the same set of meteorological and emission inputs.  Air quality model 139 

simulations were performed with two one-way nested grids of 36 km and 12 km, corresponding 140 

to the MM5 grids except for a ring of buffer cells.  The height of the first model layer was set at 141 

38 m.  Gas phase chemistry was represented by the CB-IV mechanism (Gery, 1989) while 142 

aerosol chemistry was simulated with the “aero3” module.  In this study, only results from the 12 143 

km CMAQ simulations were utilized.  Chemical boundary conditions for the 36 km grid were 144 

extracted from archived monthly-mean fields of global chemistry simulations performed for the 145 

1988–2005 time period with the ECHAM5-MOZART modeling system as part of the RETRO 146 

project (RETRO, 2007).  The MM5/CMAQ simulations for this paper have been evaluated 147 

against observations in Hogrefe et al. (2009, 2010) and Civerolo et al. (2010). 148 

 149 

B.  Observations 150 

  151 

Hourly ozone observations during 1996-2005 were extracted from the USEPA’s Air Quality 152 

System (AQS) (http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm).  153 
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From these hourly data, daily maximum 8-hr average ozone concentration time series for each 154 

ozone season (May 1 – September 30) and year were developed and screened to ensure that all 155 

stations used in this analysis had at least 80% data completeness for any given ozone season and 156 

year.   157 

 158 

C.  Adjustment Methods 159 

 160 

(1)  RATIO 161 

 162 

The USEPA-recommended use of models in an attainment demonstration (USEPA, 2014) is 163 

based on an assumption that the ratio of future case model simulations to base case model 164 

simulations averaged over high simulated ozone days is a good predictor of changes in observed 165 

ozone design values.  Model predictions for the future year are usually a combination of past 166 

meteorology and future emission scenarios needed to reduce ozone concentrations in non-167 

attainment areas.  168 

  169 
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𝑫𝑫𝑫𝑫𝑫𝑫 =  𝑫𝑫𝑫𝑫𝑫𝑫 ● 𝑹𝑹𝑹𝑹𝑫𝑫           (1) 170 

 171 

DVF = Design Value for the Future Year 172 

DVC = Design Value for the Current Year 173 

RRF = Relative Response Factor 174 

 175 

As detailed in USEPA (2007), the calculation of the DVC is based on multiple years of observed 176 

data while the RRF is calculated from averaged model simulations for both emission scenarios 177 

under the same meteorological conditions following a specified set of criteria. This calculation is 178 

based on a combination of past meteorology and future emissions, which cannot be verified 179 

because future year meteorology cannot be known and there are no comparable future 180 

observations available for model adjustments.  In this study, we examine a simple ratio method 181 

(hereafter referred to as the RATIO method) based on a single year of observations and non-182 

averaged model predictions for the base case and future case: 183 

 184 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 𝒑𝒑𝒇𝒇𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑𝒇𝒇𝒑𝒑𝒑𝒑𝒑𝒑 =  𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆  ×  𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇
𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇

      (2) 185 

 186 

For example, when applying the RATIO method, defined in Eq (2), to project the future year 4th 187 

highest daily maximum 8-hr ozone (4HDM8O3) concentration, one would multiply the observed 188 

base year 4HDM8O3 concentration with the ratio of CMAQ predicted 4HDM8O3 189 

concentrations for the future and base year.  Like the RRF approach described in USEPA (2007), 190 

the RATIO approach assumes that model predictions can be used in a relative sense; that is, even 191 

though the absolute levels of modeled concentrations may be biased, they can be used to predict 192 
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the change in pollution levels from a given scenario. In contrast to the approach outlined in 193 

USEPA (2007), the CMAQ base year and future year simulations analyzed in this study reflect 194 

changes in both emissions and meteorology while in typical attainment demonstrations, the base-195 

year meteorological conditions are used for both the base year and future year when calculating 196 

RRFs because the future year meteorology cannot be known.  Also, given the uncertainties 197 

associated with estimating future year modeled concentrations, the EPA approach is intended to 198 

estimate multi-year average design values.  The EPA approach does not attempt to precisely 199 

predict 4HDM8O3 concentrations.  Because meteorology is not held constant in the RATIO 200 

approach, it can be verified via a simulation of ozone for the northeastern U.S. for the years 1996 201 

to 2005.   202 

 203 

Figure 1 presents an illustrative test of the RATIO approach for an arbitrary base year / future 204 

year combination selected from the observational and model database described in the previous 205 

section.  This figure depicts the observed and CMAQ ratios of future year (2004) to base year 206 

(2001) 4HDM8O3 concentrations at all (80% complete) monitoring sites in the modeling domain 207 

along with the 1-to-1 line.  CMAQ typically underestimates observed changes (Gilliland et al 208 

2008; Godowitch, et al., 2010; Napelenok et al. 2011).  The large scatter evident in this figure 209 

suggests that it is worth investigating potential alternatives to the RATIO approach that may 210 

provide better performance in predicting 4HDM8O3 concentrations into the future. 211 

 212 

(2)  Mean and Variance matching (MV) 213 

 214 
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For each ozone season, we adjust the mean and variance of the modeled 8-hour ozone time series 215 

(i.e., the daily maximum 8-hr average ozone time series) so that they match those observed:   216 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 𝒑𝒑𝒇𝒇𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑𝒇𝒇𝒑𝒑𝒑𝒑𝒑𝒑 =  mean {𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆}  +      (3) 217 

 218 

       {𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 −𝒎𝒎𝒆𝒆𝒃𝒃𝒑𝒑 𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆}  × 
𝝈𝝈(𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇)
𝝈𝝈(𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇)   219 

 220 

+   𝒎𝒎𝒆𝒆𝒃𝒃𝒑𝒑 {𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇 −  𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇}  221 

 222 

Base year adjustment factors (ratio of standard deviations and the mean bias) computed for each 223 

ozone season (153 days) are applied to other ozone seasons (prediction years).  The prediction 224 

year 4HDM8O3 is then compared with that observed.  The rationale for this method is that the 225 

distribution of CMAQ ozone is typically narrower than that observed (see Figure 7 in section 3) 226 

because modeled values reflect grid volume averages while observations represent discrete point 227 

measurements.   228 

 229 

(3)  Mean and Variance matching with temporal components (TC) 230 

 231 

In this approach, mean and variance matching are applied to temporal components of modeled 232 

and observed values.  Temporal components in this case are high- and low-frequency variation 233 

(denoted ‘HF and ‘LF’, respectively).  The LF component is the output of a low-pass filter (i.e., 234 

the KZ filter with a window size of five (5) days and five (5) iterations, and a 50% cutoff period 235 

of about 24 days, Rao and Zurbenko, 1994), while the HF component is the difference between 236 
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observations and the LF component (and therefore has a mean of zero).  The period of separation 237 

between the HF and LF components is roughly 24 days.   238 

 239 

The adjusted CMAQ values are given by: 240 

 241 

𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑 (𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇) =  𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑 (𝑳𝑳𝑫𝑫,𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇) + 𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑(𝑯𝑯𝑫𝑫,𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇)            (4) 242 

 243 

𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪   =  𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪(𝑳𝑳𝑫𝑫) + 𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪(𝑯𝑯𝑫𝑫)          (5) 244 

 245 

The principle behind this approach is that low- and high-frequency processes are driven by 246 

different phenomenon, with high-frequency variation attributable primarily to the synoptic-scale 247 

weather (i.e., variations due to fast changing emissions, diurnal forcing, and weather-induced 248 

variations embedded in  ozone time series data), and low-frequency variation driven by seasonal 249 

emissions and trends  (Rao et al., 1997).  It follows that components with different driving forces 250 

should have different adjustments. Therefore, we adjust the mean and variance of each 251 

component of the modeled daily maximum 8-hr ozone time series so that they match those 252 

observed: 253 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 (𝑳𝑳𝑫𝑫) =     mean {𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 𝑳𝑳𝑫𝑫} +        (6) 254 

 255 

       {𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 𝑳𝑳𝑫𝑫 −𝒎𝒎𝒆𝒆𝒃𝒃𝒑𝒑 𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 𝑳𝑳𝑫𝑫}  ×  
𝝈𝝈(𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇 𝑳𝑳𝑫𝑫)
𝝈𝝈(𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇𝑳𝑳𝑫𝑫)   256 

 257 

                                 +   𝒎𝒎𝒆𝒆𝒃𝒃𝒑𝒑 {𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇 𝑳𝑳𝑫𝑫 −  𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇 𝑳𝑳𝑫𝑫}  258 

 259 
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 260 

 261 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 (𝑯𝑯𝑫𝑫) =  𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 𝑯𝑯𝑫𝑫 ×  𝝈𝝈(𝒑𝒑𝒐𝒐𝒐𝒐𝒆𝒆𝒇𝒇𝒐𝒐𝒆𝒆𝒑𝒑 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇 𝑯𝑯𝑫𝑫)
𝝈𝝈(𝑫𝑫𝑪𝑪𝑪𝑪𝑪𝑪 𝒐𝒐𝒃𝒃𝒐𝒐𝒆𝒆 𝒚𝒚𝒆𝒆𝒃𝒃𝒇𝒇𝑯𝑯𝑫𝑫)        (7) 262 

  263 

 264 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 =  𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 (𝑳𝑳𝑫𝑫) +  𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒆𝒆 (𝑯𝑯𝑫𝑫)               (8) 265 

 266 

As with the MV method, the TC method adjusts the entire time series (not just the 4th highest) 267 

and assumes base year variance ratios and mean bias will be the same in future years for both 268 

high- and low- frequency components. 269 

 270 

(4)  Cumulative Distribution Function matching (CDF1) 271 

Cumulative distribution function matching (CDF matching) is a bias correction technique used in 272 

climate data analysis and image processing (see Wang and Chen, 2014 for example).  Observed 273 

and modeled concentrations are rank-ordered to establish sample CDF’s (sample quantiles).  The 274 

observed quantiles are regressed against those of CMAQ yielding the following:    275 

observed base year quantiles = Ko + K1 ● CMAQ base year quantiles                        (9) 276 

          future quantiles  = Ko + K1 ● CMAQ future quantiles 277 

The slope and intercept, Ko and K1, rotate and displace the CMAQ CDF such that the root mean 278 

squared distance between the modeled and observed quantiles are minimized.  The original time 279 

order of CMAQ and observations is lost with this approach.  As with methods 1 and 2, the 280 
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adjustment parameters estimated using base year observed and CMAQ information (in this case, 281 

Ko and K1) are applied to future years. 282 

 283 

(5)  Cumulative Distribution Function matching (CDF2) 284 

 285 

In contrast with CDF1, the parameters Ko and K1 in equation (11) are applied only to the base 286 

year and the future year 4HDM8O3 concentration is estimated by adding the model predicted 287 

change in 4HDM8O3 concentrations to the base year adjusted 4HDM8O3 concentration.  As 288 

with CDF1, the time order is lost.   289 

Observed base year quantiles = Ko + K1 ● CMAQ base year quantiles                      (10) 290 

future quantiles  = {CMAQ future quantiles – CMAQ base year quantiles}  291 

                           +{ Ko + K1 ● CMAQ base year quantiles} 292 

 293 

3.  Results and Discussion  294 

 295 

A.  Predicting the 4th Highest Daily Maximum 8-hr Ozone Concentration 296 

 297 

For every pair of years from 1996-2005, one year served as a base year and the other a prediction 298 

year (a total of 90 pairs where the two years are different).  For each base year-prediction year 299 

pair, there are approximately 250 sites from which performance metrics were computed, 300 

including mean bias (MB), fractional mean bias (FMB), mean absolute bias (MAB), fractional 301 

MAB (FMAB), root mean squared error (RMSE), fractional RMSE (FRMSE), square of 302 

14 
 



correlation (R2) and index of agreement (IA).  As noted above, the quantity being evaluated in 303 

this analysis is the 4HDM8O3 concentration. 304 

 305 

Domain-wide RMSE, MAB, and R values, using 1996 as the base year for predicting the 306 

4HDM8O3 for 1997 to 2005, are presented in Figure 2.  There is a considerable amount of year-307 

to-year variation in the RMSE values, ranging from about 6 to 15 ppb.  To provide a more 308 

comprehensive evaluation of the different approaches, Table 1 provides the performance metrics 309 

and their 95% bootstrap confidence intervals for predicting 4HDM8O3 concentrations for all 310 

base year-prediction year pairs.  From Figure 2, it is evident that no one method is best suited for 311 

all the prediction years, but CDF2 often is the best among the six methods examined here for 312 

predicting the 4HDM8O3 concentration.  Table 1, with respect to the MAB metric on the basis 313 

of overlapping confidence intervals, shows that, the MAB  follows the order (TC, CDF1, CDF2) 314 

< MV < RATIO < CMAQ, whilst for RMSE performance ranks are:  (CDF1 , CDF2) , MV , (TC 315 

, RATIO , CMAQ).  For the other metrics (R2 and IA) none of the methods stand out because all 316 

the confidence intervals overlap.  To help sort out these relationships, a multiple comparison for 317 

all metrics MAB and RMSE (Table 2) also supports the conclusion that CDF1 and CDF2 318 

perform better than RATIO and CMAQ methods.  319 

 320 

The fact that the TC method has a higher RMSE, but not MAB, than the other methods both for 321 

the 1996 base year (Figure 2) as well as all base year / future year pairs (Table 1) implies the 322 

presence of outliers in the projected values that influence the RMSE metric to a greater degree 323 

than the MAB metric. 324 

  325 
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Spatial images of the RMSE values for all base year / prediction year pairs at a given site, 326 

displayed in Figure 3, indicate with the large number of red and orange dots that all methods 327 

exhibit poorer performance at sites along the northeastern urban corridor (along interstate 95), 328 

the northeastern seaboard, and near large water bodies.  However, at many locations the four 329 

adjustment methods introduced in this study tend to perform better in predicting 4HDM8O3 330 

concentrations than the raw CMAQ output and RATIO approach.  Table 3 shows the percentage 331 

of pairwise counts for a given metric of ‘best’ results for all 90 base year / prediction year pairs.  332 

Reading across row 1, for example, CMAQ has a lower MAB than RATIO and MV for 36% and 333 

27% of the 90 pairs, respectively.  For every metric, CDF2 and CDF1 are better than all other 334 

methods for more than 50% of the pairs.  CMAQ and RATIO are not better than any of the other 335 

methods for more than 50% of the pairs.    Thus, judging from the values of MAB, RMSE and 336 

R2, CDF2 appears to be the best method among the four bias and error adjustments methods 337 

considered here.  However, it is evident from Table 1 that the differences in performance in 338 

predicting the 4HDM8O3 values though often statistically significant are often small.  For 339 

example, RATIO has an RMSE of 9.5 ppb compared with CDF2 of 8.7 ppb.  340 

 341 

As noted above, the EPA guidance recommends that a number of the highest ozone days be 342 

averaged.  Table 4 compares the adjustment methods when used with the highest ozone day up to 343 

the average highest 10 days and with the 4th highest.  Averaging brings benefits to all the 344 

methods discussed here, but the relative performance of each method is little changed.   345 

 346 

Next, we computed the frequency with which the predicted 4HDM8O3 concentration falls within 347 

a specified range of the observed 4HDM8O3 concentrations across all sites and base-year / 348 
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prediction-year pairs.  This metric can be thought of as the fraction of correct predictions.  349 

Results depicted in Figure 4 show that all methods involving bias/error adjustments improve the 350 

predictions of future 4HDM8O3 concentrations compared to the raw CMAQ output.  Only 25% 351 

of predictions fall within a target of 3% of observed 4HDM8O3’s.  While the CMAQ 4HDM8O3 352 

concentrations are within 10% of the corresponding observations at 60% of the sites, CDF2 is 353 

within 10% of the corresponding observations at 70% of the sites.  As noted before, not all 354 

monitoring sites in the model domain can be considered to be regionally-representative sites 355 

since several sites are near urban areas or water bodies where regional scale air quality models 356 

such as the 12 km CMAQ simulations used in this study cannot be expected to perform well 357 

(Hogrefe et al., 2014). 358 

 359 

 360 

RMSE values for the daily maximum 8-hr ozone concentrations predicted by the four methods 361 

for the upper half of the distribution for the year 2004 using 2001 as the base year, presented in 362 

Figure 5, reveal that all methods perform poorly in reproducing the observed concentrations for 363 

the extreme values (upper percentiles >90%).  Also, there is a large disparity between the 364 

changes in absolute levels of CMAQ and observed ozone between 2001 and 2004 for the upper 365 

half of the concentration frequency distribution (Fig.6a). The ozone improvement (the difference 366 

in ozone concentrations between 2001 and 2004) simulated by CMAQ is much lower than that 367 

seen in observations, especially in the upper percentiles (>75%).  The difference is highlighted in 368 

Fig. 6b which is a histogram of the change in ozone between 2001 and 2004 at the 98th percentile 369 

for all monitors in the domain.    Napelenok et al (2011) and Kang (2013) speculated that CMAQ 370 

underestimation of ozone change is due to uncertainties in the NOX emission inventory, 371 
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particularly mobile and area sources (because most point source emissions are measured by 372 

continuous emission monitors found at electricity generating facilities).  373 

 374 

Both Figures 6a and 6b reveal that all four bias and error adjustment methods tend to reduce the 375 

discrepancy between the simulated and observed changes and help to bring the simulated change 376 

in ozone between 2001 and 2004 closer to what was observed.  It may be, then, that for 377 

regulatory assessments (i.e., attainment demonstration), using observations to adjust base case 378 

model bias and error    leads to  better estimates of future year design values than  does use of the 379 

original model values.   380 

 381 

B.  Same-year Performance (demonstration of model’s usefulness for exposure assessment) 382 

Spatially continuous time-series of air quality surfaces over large geographic regions are 383 

desirable for assessments of the effects of chronic human exposure to air pollutants.  384 

Photochemical models have been used for this purpose and it has been shown that their use in 385 

conjunction with observations is an improvement over the use of observations alone (Garcia et 386 

al, 2010).  Put simply, model-observation bias is projected to unmonitored sites using 387 

geostatistical methods.  Modeled values for the gridded model domain are then adjusted using 388 

the interpolated bias.  Prediction of future (or past) times is usually not of interest (though 389 

temporal interpolation may be).  In this section, we suggest that model values adjusted via the 390 

methods presented here may be an improvement over projecting model bias.  A validation of the 391 

use of adjusted values for exposure assessments will be addressed in a future paper. 392 

 393 
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As noted above, model probability distributions tend to be narrower than those observed (smaller 394 

standard deviation and range).  If modeled ozone values used in a health assessment have a 395 

smaller range (or standard deviation) than what would be observed, the estimated health effect 396 

will be biased.  Many of the methods discussed here could be applied in same-year fashion to 397 

model and observed information to help construct ozone fields or any pollutant species with 398 

unbiased standard deviation.  399 

 400 

As a first step in this direction,  in this section, we evaluate ‘same-year’ performance for ozone 401 

time series from raw CMAQ output, modeled ozone that is adjusted for bias and error using the 402 

MV and TC methods, and modeled ozone that is adjusted using the CDF1 approach at the 403 

discrete locations of the monitoring stations.  By same-year it is meant that there is no projection 404 

from base-year to prediction-year.  Note that no results are computed in this section for the 405 

RATIO and CDF2 approaches. For the RATIO approach, the same-year ratio of model 406 

predictions shown in Eq (2) is equal to one, thus, predicted values would equal observed values;  407 

for the CDF2 approach, the  predicted value equals that for the CDF1 approach since the model 408 

predicted differences between base-year and prediction-year are zero.  The object of 409 

investigating same-year performance, as noted above, is to test the potential usefulness of these 410 

approaches for creating spatially continuous pollutant concentration time series that could be 411 

used for exposure assessment. 412 

 413 

Domain-wide statistics for (MAB, standard deviation, and correlation coefficient) for same-year 414 

adjusted CMAQ values (annual 4th highest 8-hour daily maximum, 4HDM8O3) predictions were 415 

computed for all years from 1996 – 2005. Results, depicted in Figures 7a-c, indicate TC and 416 
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CDF1 outperform MV and as expected the raw CMAQ.  As noted above, an important criterion 417 

for fitting exposure models is that the standard deviation of the adjusted values matches those 418 

observed.  As expected, standard deviations for the CDF1, MV, and TC methods closely match 419 

the observed standard deviation while raw CMAQ underestimated the observed standard 420 

deviation (Fig. 7b). That exposure assessment requires unbiased standard deviation estimates 421 

was highlighted by NRC (2004).  Therefore, a conclusion that can be reached from this study is 422 

that raw CMAQ output should not be used for exposure assessments without some type of 423 

bias/error-adjustment, and that the CDF1 and TC methods produces surrogate ozone time series 424 

that, on average, are very close to the observed ozone time series.  While CDF1 also exhibits 425 

good performance as measured by these summary statistics, it does not retain the original time 426 

order because it is designed to adjust the overall distribution rather than an adjusted 427 

concentration time series. Thus, its potential use in health assessment studies would be limited to 428 

analyses focused on long-term (chronic) rather than short-term (acute) exposures.  The relative 429 

performances of the three methods discussed above for reducing the bias in years 2001 and 2004 430 

reveal the superior performance of the CDF1 and TC methods (Figs. 8) across a wide range of 431 

percentiles, especially when compared to raw CMAQ output. However, it should also be noted 432 

that the performance of all methods investigated here degrades at the very top end of the 433 

concentration distribution (>90%).  Nevertheless, the bias adjustment methods reduce the 434 

magnitude of the error and bias present in the raw CMAQ output. 435 

 436 

Since chronic exposure assessments rely on time series of pollutant concentrations, the TC 437 

adjustment method appears to be the best approach; this is very useful information because 438 

CMAQ output can be more confidently used for filling-in for the days when observations are not 439 
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available (see Junninen et al., 2004 for examples of data fill-in methods).  For example, most 440 

PM2.5 and speciated PM2.5 monitoring sites operate on a 1 in 3 day schedule.  For the days with 441 

missing data, the TC method can be used for correcting CMAQ output for bias and error so the 442 

adjusted model output can be used to generate continuous pollutant time series for exposure 443 

assessments by the health community. One could also adjust black carbon (BC) estimates or 444 

other species simulated by CMAQ that are of particular interest to health scientists with one of 445 

the above two methods to generate daily BC or other pollutant species time series for the whole 446 

year for use in health risk assessments.  Further steps then would be to spatially-interpolate the 447 

adjusted ozone concentrations to the entire model domain using techniques such as those 448 

suggested by Garcia et al. (2010), Macmillan (2010), Fuentes and Raftery (2005), and Crooks 449 

and Isakov (2013).   450 

 451 

4.  Summary 452 

 453 

Future year air quality predictions can be improved by adjusting for biased concentration 454 

estimates while exposure assessments may also benefit from unbiased standard deviation 455 

estimates.  This paper discussed four methods for reducing the bias and errors in model predicted 456 

pollutant concentrations so that the model can be more effectively used for both of these tasks.   457 

Four methods were developed and tested using long-term modeling simulations for the 458 

northeastern US domain.  Three of the methods project base-year CMAQ bias metrics to 459 

prediction-years. The projected metrics are (1) mean and variance, (2) mean and variance of 460 

temporal components, and (3) regression parameters of a QQ plot.  The fourth method uses QQ 461 

plot regression parameters only for the base year.  The methods were compared against 462 
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unadjusted model concentrations and model concentrations adjusted with a relative response 463 

factor approach, similar in concept to what is typically used in attainment demonstrations to 464 

estimate future air quality. Results demonstrate that the adjustment of modeled concentrations so 465 

that they more closely resemble observations (i.e. the process of combining observations and 466 

model predictions) usually improves the usefulness of CMAQ for both estimating future 467 

concentrations stemming emission reduction policies and for conducting exposure assessments.  468 

All adjustment methods were demonstrated to improve future year model estimates compared to 469 

the absolute modeled projections. The following conclusions can be drawn based on the 470 

performances of the methods considered here. 471 

 472 

For estimating future year concentrations, the uncertainty in predicted changes in ozone levels 473 

can be substantial and depends heavily on the particular locations and base- / prediction-year 474 

pairs (recall Figure 1).  Uncertainty estimates for predictions are unavailable without validation 475 

studies based on multi-year modeling experiments.  Methods that use the base year parameters 476 

(MV, TC, and CDF1) to adjust prediction year model values are often less effective than 477 

methods that do not (CDF2), suggesting that the characteristics of CMAQ’s bias are non-478 

stationary.  For exposure assessments, MV or TC adjustment methods applied to CMAQ model 479 

output provide continuous pollutant time series having standard deviation that is close to that 480 

observed.   481 

 482 
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Legend for Tables 686 
 687 
Table 1: Domain-wide mean metric of 4HDM8O3 predictions for all base year – target year  688 
  pairs.  Values in brackets are  95% confidence intervals 689 
 690 
Table 2: Multiple comparisons of adjustment methods (95% level) 691 
 692 
Table 3:  Percent of base- / prediction- year pairs where a given method is better according to a  693 
  particular metric.  Example for MAB:   MV is better than CMAQ (73% of pairs)  694 
  and RATIO (58% of pairs).  695 
 696 
Table 4.  Effect of averaging the largest values for a given year.  Each set of average values  697 
  begins with the largest observed.  For example, ‘1’ means the largest while ‘3’  698 
  means the 3 largest. 699 
 700 
 701 
Legend for Figures 702 
 703 
Fig.1: Ratios of future year (2004) to base year (2001) 4th highest daily maximum 8-hr ozone 704 
concentrations extracted from the observations and CMAQ output. 705 
 706 
Fig. 2: Domain-wide statistics in predicting future 4HDM8O3 concentrations using 1996 as the 707 
base year for raw CMAQ output, RATIO approach, and the four new methods introduced in this 708 
study. a)  RMSE (ppb), b) MAB (ppb), and c) Correlation. 709 
 710 
Fig. 3: Spatial image of RSME (in ppb) in predicted 4HDM8O3 concentrations for all base 711 
year/prediction year combinations from each method. 712 
 713 
Fig. 4: Fraction of sites predicted 4HDM8O3 concentrations fall within a given distance from 714 
observations 715 
 716 
Fig. 5: RSME (in ppb) for the 2004 daily maximum 8-hr ozone concentrations using 2001 as the 717 
base year for the upper half of the distribution of daily maximum 8-hr ozone concentrations. 718 
 719 
Fig. 6: Change in daily maximum 8-hr ozone distributions between 2001 base year and 2004 720 
prediction year for each method:  a) Change in the upper half of the frequency distribution; b) 721 
change in the 98th percentile (changes in the CDF2 method are the same as CMAQ).  722 
 723 
Fig. 7: Domain-wide statistics for same year predictions:   a) mean absolute bias, b) standard 724 
deviation, c) correlation coefficient. Note that no results are shown for the RATIO and CDF2 725 
approaches.  For the RATIO approach, the same year ratio of model predictions is equal to one 726 
and, thus, the same year predicted value equals the observed value, and for the CDF2 approach, 727 
the same year predicted value equals that for the CDF1 approach. 728 
   729 
Fig. 8: Mean bias of same-year predictions by percentiles. a) 2001, b) 2004.730 
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Table 1.  Domain-wide mean metric of 4HDM8O3 predictions for all base year – target year pairs.  Values in brackets are  731 
  95% confidence intervals 732 
  733 
 734 

 735 
 736 
 737 
 738 
 739 
 740 
 741 
 742 
 743 
 744 
 745 
 746 
 747 
 748 
 749 

750 

 Method 
Metric RATIO CMAQ MV TC CDF1 CDF2 

MAB  (ppb) 7.48 [7.39  7.57] 8.31 [8.07  8.54] 7.26 [7.18  7.36] 7.06 [6.96  7.17] 7.00 [6.89  7.05] 6.90 [6.82  6.98] 

RMSE (ppb) 9.49 [9.38  9.60] 10.35 [10.08  10.62] 9.25 [9.14  9.37] 9.81 [9.52  10.17] 8.91 [8.81  9.02] 8.71 [8.62  8.81] 

FMAB (%) 8.7 [8.6  8.8] 9.6 [9.3  9.9] 8.5 [8.4  8.6] 8.2 [8.1  8.3] 8.1 [8.0  9.2] 8.1 [8.0 8.2] 

FRMSE (%) 11.1 [11.0  11.2] 11.8 [11.5  12.1] 10.7 [10.6  10.8] 11.4 [11.1  11.8] 10.5 [10.4  10.6] 10.3 [10.2  10.4] 

R2 0.26 [0.245  0.272] 0.32 [0.281  0.353] 0.31 [0.300  0.328] 0.29 [ 0.267  0.306] 0.33 [0.316  0.344] 0.32 [0.306  0.333] 

Index of 
agreement 0.78 [0.772  0.785] 0.77 [0.750  0.780] 0.81 [0.799   0.811] 0.79 [0.776   0.799] 0.82 [0.811  0.821] 0.81 [0.802  0.813] 
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Table 2.  Multiple comparisons of adjustment methods (95% level) 751 
 752 

 MAB RMSE 
RATIO  < CMAQ CMAQ, TC 
               > MV, TC, CDF1, CDF2 CDF1, CDF2 
   
CMAQ  < NONE NONE 
               > ALL RATIO, MV, CDF1, CDF2 
   
MV        < RATIO , CMAQ CMAQ, TC 
               > TC, CDF1, CDF2 CDF2 
   
TC         < RATIO, CMAQ, MV NONE 
              > NONE RATIO, MV, CDF1, CDF2 
   
CDF1    < RATIO, CMAQ, MV RATIO, CMAQ, TC 
              > NONE NONE 
   
CDF2    < RATIO, CMAQ, MV   RATIO, CMAQ, MV, TC 
              > NONE NONE 

 753 
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Table 3.  Percent of base- / prediction- year pairs where a given method is better according to a particular metric.   
  Example for MAB:   MV is better than CMAQ (73% of pairs) and RATIO (58% of pairs).  
 
 
 CMAQ RATIO MV TC CDF1 CDF2 
MAB       
  CMAQ  36 27 27 23 17 
  RATIO 64  42 32 16 17 
  MV 73 58  46 38 27 
  TC 73 68 54  43 34 
  CDF1 77 84 62 57  30 
  CDF2 83 83 73 66 70  
       
RMSE       
  CMAQ  47 30 46 28 20 
  RATIO 53  38 44 18 11 
  MV 70 62  54 37 26 
  TC 54 56 46  42 32 
  CDF1 72 82 63 58  31 
  CDF2 80 89 74 68 69  
       
R2       
  CMAQ  52 38 48 39 19 
  RATIO 48  34 38 16 04 
  MV 62 66  46 37 19 
  TC 52 62 54  42 28 
  CDF1 61 84 63 58  20 
  CDF2 81 96 81 72 80  
 
 
 
 
 

 
 



 
Table 4.  Effect of averaging the largest values for a given year.  Each set of average values begins with the largest observed.   
  For example, ‘1’ means the largest while ‘3’ means the 3 largest. 
 
number in average: 1 2 3 4 5 6 7 8 9 10 4th highest  
             
 mean absolute bias             
    RATIO 12.71 10.75 9.44 8.57 7.94 7.49 7.15 6.88 6.66 6.47 7.48  
    CMAQ 11.99 10.78 9.90 9.26 8.77 8.37 8.05 7.79 7.55 7.35 8.31  
    MV 11.07 9.66 8.74 8.15 7.70 7.37 7.11 6.89 6.72 6.56 7.26  
    TC 10.95 9.46 8.53 7.92 7.45 7.11 6.85 6.63 6.46 6.30 7.06  
    CDF1 10.96 9.47 8.52 7.89 7.44 7.10 6.83 6.60 6.42 6.25 7.00  
    CDF2 10.28 8.98 8.16 7.62 7.24 6.96 6.73 6.55 6.39 6.26 6.90  
             
  RMSE             
    RATIO 16.12 13.62 11.90 10.78 9.99 9.43 9.01 8.68 8.41 8.19 9.49  
    CMAQ 14.88 13.29 12.11 11.32 10.72 10.26 9.89 9.58 9.31 9.07 10.35  
    MV 14.05 12.26 11.08 10.31 9.74 9.32 8.99 8.73 8.50 8.31 9.25  
    TC 14.60 12.80 11.66 10.91 10.35 9.93 9.60 9.33 9.11 8.91 9.81  
    CDF1 13.90 12.03 10.82 10.02 9.45 9.023 8.69 8.41 8.19 7.99 8.91  
    CDF2 12.97 11.36 10.31 9.62 9.13 8.77 8.49 8.26 8.07 7.91 8.71  
             
  R2             
    RATIO 0.22 0.29 0.35 0.39 0.42 0.45 0.47 0.48 0.49 0.50 0.26  
    CMAQ 0.31 0.36 0.40 0.42 0.44 0.45 0.46 0.47 0.48 0.48 0.32  
    MV 0.27 0.34 0.39 0.43 0.46 0.4 0.49 0.50 0.51 0.52 0.31  
    TC 0.26 0.33 0.38 0.41 0.43 0.45 0.46 0.48 0.48 0.49 0.29  
    CDF1 0.28 0.36 0.41 0.45 0.48 0.50 0.52 0.53 0.54 0.55 0.33  
    CDF2 0.29 0.36 0.41 0.44 0.47 0.48 0.50 0.51 0.52 0.52 0.32  

 
 



 

Fig. 1:  Ratios of future year (2004) to base year (2001) 4th highest daily maximum 8-hr ozone concentrations extracted from the 
observations and CMAQ output.  
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Fig. 2. Domain-wide statistics in predicting future 4HDM8O3 concentrations using 1996 as the base year for raw CMAQ output, 
RATIO approach, and the four new methods introduced in this study. a) RMSE (ppb), b) MAB (ppb), and c) correlation 
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Fig. 3: Spatial image of RSME (in ppb) in predicted 4HDM8O3 concentrations for all base year/prediction year combinations from 
each method. 

 



 

 
                    Fig. 4: Fraction of times predicted 4HDM8O3 concentrations fall within a given distance from observations 
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Fig. 5: RSME (in ppb) for the 2004 daily maximum 8-hr ozone concentrations using 2001 as the base year for the upper half of the 
distribution of daily maximum 8-hr ozone concentrations. 
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Fig. 6:  Change in daily maximum 8-hr ozone distributions between 2001 base year 
and 2004 prediction year for each method:  a) Change in the upper half of the 
frequency distribution; b) change in the 98th percentile (changes in the CDF2 
method are the same as CMAQ). 
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Fig 7:  Domain-wide  mean metrics for using same-year CMAQ adjustments (methods applied and compared with observations for a 
single year):  a) mean absolute bias of annual 4th highest  8-hour daily maximum  (4HDM8O3), b) standard deviation of 8-hour daily 
maximum , c) correlation coefficient (R2) between observed and adjusted 4HDM8O3. Note that no results are shown for the RATIO 
and CDF2 approaches.  For the RATIO approach, the same year ratio of model predictions is equal to one and, thus, the same year 
predicted value equals the observed value, and for the CDF2 approach, the same year predicted value equals that for the CDF1 
approach. 
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      Fig. 8: Mean bias of same-year predictions by percentiles. a) 2001, b) 2004  
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