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Abstract 

A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) 

for various buildings where people spend their time. The AER, which is the rate of exchange of 

indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for 

removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of 

the scientific literature on empirical and physical AER models for residential and commercial 

buildings, which are feasible for exposure assessments. Models are included for the three types of 

airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical 

ventilation. Guidance is provided to select the preferable AER model based on available data, 

desired temporal resolution, types of airflows, and types of buildings included in the exposure 

assessment. For exposure assessments with some limited building leakage or AER measurements, 

strategies are described to reduce AER model uncertainty. This review will facilitate the selection of 

AER models in support of air pollution exposure assessments. 
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INTRODUCTION 

Assessing the health effects of air pollutants requires estimates of human exposures. On average, 

people living in the United States (US) spend 87% of their time within enclosed buildings.1 

Therefore, an important aspect of air pollution exposure assessments is the air exchange rate (AER) 

for the various types of buildings where people spend their time (Figure 1). The AER, defined by 

AER=Q/V                                              (1) 

where Q is the rate of airflow into and out of a building and V is the building volume, is a 

determinant of entry of outdoor-generated air pollutants and removal of indoor-generated air 

pollutants. The exchange of outdoor air with air inside occupied spaces of buildings can be 

separated into three categories: leakage, natural ventilation, and mechanical ventilation (Figure 2). 

Leakage is the airflow through unintentional openings in the building envelope (e.g., cracks around 

windows and doors). Natural ventilation is the intentional airflow through controlled openings in 

the building envelope (e.g. open windows and doors). The airflows for leakage and natural 

ventilation are driven by pressure differences across the building envelope due to indoor-outdoor 

temperature differences (stack effect) and wind (wind effect).2 Mechanical ventilation is the airflow 

from outdoor-vented fans. A primary goal of this paper is to describe models that consider each of 

these airflows, and to provide guidance on the various models and their appropriate use for 

exposure assessments.  

 The fraction of the outdoor pollutant concentration that enters and remain airborne indoors 

(infiltration factor, Finf) is defined at steady-state conditions as 

                                            Finf = P*AER/(AER+k)                                                         (2) 

where P is the fraction of outdoor pollutant passing indoors (penetration coefficient) and k is the 

indoor loss rate.3 For some gaseous pollutants (e.g., carbon monoxide) with negligible k compared 
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to AER (Finf ~P), Finf can be considered relatively independent of the AER.4 For air pollutants with 

k>0 (e.g., particulate matter and ozone), Finf depends on the AER, which can vary from building to 

building and across time.5 Studies with particulate matter show that the AER can explain a 

substantial amount of the variability of the Finf .
6-9  

The AER affects the magnitude of indoor air pollutant concentrations. For outdoor-

generated pollutants, indoor concentrations Cin at steady-state conditions can be described by  

     Cin=Finf*Cout                                                                      (3) 

where Cout is the outdoor concentration.10 In Equation 2, setting P=0.9 and k=1.0 h-1 based on 

average reported values for airborne particles (diameter = 2.5µm),3,11 Cin for a tight (ka =0.1 h-1) and 

leaky (ka=2.0 h-1) building2 is 0.08 and 0.60 times Cout, respectively. For indoor-generated 

pollutants, Cin at steady-state conditions can be described by 

Cin=S/(V(ka+kd))                                                                 (4)  

where S is the source emission rate and V is the building volume.10 Assuming k=1.0 h-1, Cin for a 

tight (ka =0.1 h-1) and leaky (ka=2.0 h-1) building is 0.91 and 0.33 times S/V, respectively. Therefore, 

the AER can substantially affect the level of Cin under steady-state conditions. 

 The AER also affects the time-course behavior (e.g., peak level and delay time to peak level) of 

indoor air pollutant concentrations. For time-varying outdoor concentrations (e.g., morning and 

evening traffic rush hours), indoor concentrations can be described by the dynamic mass balance 

equation10  

dCin/dt=kaPCout-(ka+kd)Cin                                   (5).  

Computer simulations for different scenarios of time-varying outdoor concentrations showed that 

indoor concentrations increase slower and reach lower peak levels for tighter buildings.12 Predicting 
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this dynamic indoor concentration behavior can be used for exposure assessments of chemicals with 

toxicity influenced by peak concentrations and short-term exposures.   

 AER models have several possible applications. First, AER models can reduce the uncertainty 

of exposure models by accounting for the various factors that affect the AER (Figure 2). These 

factors include the physical driving forces of the airflows (e.g., pressure differences across building 

envelope from wind, indoor-outdoor temperature differences, and mechanical ventilation), building 

characteristics (e.g., local wind sheltering, tightness of the building envelope), and occupant 

behavior (e.g., opening windows, operating outdoor-vented fans, thermostat temperature setting 

during heating and cooling seasons). Therefore, substantial AER variations can occur from temporal 

and geographical differences in weather conditions, building characteristics, and occupant behavior. 

The resulting temporal and geographical variations in exposure may help explain the differences 

observed in epidemiologic associations between ambient concentrations and health effects in 

different US communities.13 The AER variations may also help to better understand the impact of 

AER for individuals with exceptionally high and low exposures. Second, AER measurements are 

often limited due to the costs of collecting site-specific field data, participant burden, and building 

access restrictions. Therefore, AER models integrated within individual and population exposure 

models can be a feasible method to determine exposure metrics for epidemiological analysis and 

regulatory risk assessments.14-18 Finally, AER models can be used to evaluate the impact of 

alternative future scenarios, such as sheltering-in-place due to local toxic release, and changes in 

weather, building characteristics or operation due to climate change, energy conservation, and air 

pollution risk management decisions. 

There are a few reports of using physical AER models within exposure models to examine 

possible future scenarios, such as sheltering-in-place.19-20 Other exposure models estimate AER 
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using empirical methods.16-18 Descriptions of the physical AER models are scattered in the literature 

and often provided in national laboratory reports and building engineering handbooks.2 Also, 

certain types of physical models cannot be applied for exposure assessments due to extensive input 

requirements.  

This paper provides an overview and critical analysis of the scientific literature on the various 

AER models that are feasible for exposure assessments, and provides guidance to select the 

appropriate AER model for a particular situation. Below, we first describe the various types of AER 

models for residential and non-residential buildings. Then, we describe the strengths and limitations 

of each model, considerations for selecting models for exposure assessments, and gaps in current 

knowledge with recommendations for future research.  

 

MEASUREMENTS FOR ESTIMATION OF AER AND LEAKAGE 

The primary measurement methods to determine the AER and leakage of building envelopes are 

tracer gas methods and whole-building fan pressurization (blower door) tests, respectively. Tracer 

gas methods determine AER for the current weather conditions, and account for airflows due to 

leakage, natural ventilation, and mechanical ventilation.2 Alternatively, fan pressurization measures 

critical inputs (i.e., building properties that typically vary little with time and weather) for leakage 

models.2 Below, we briefly describe these measurement methods.  

 

Tracer Gas Measurements 

To determine the AER, a non-reactive tracer gas is released into the building, and allowed to mix 

with the indoor air.2 The tracer concentration is then monitored to determine the AER. The various 

tracer gas methods are based on a mass balance of the tracer gas in the building. Assuming the 
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outdoor concentration is zero and the tracer gas is well-mixed within the building that is considered 

a single compartment, the mass balance is 

       dC t
V I t Q t C t

dt

 
  

          (6) 

 where V is building volume, C(t) is the tracer gas concentration at time t, I(t) is the tracer gas 

injection rate at time t, Q(t) is the airflow across building envelope at time t due to leakage, natural 

ventilation, and mechanical ventilation. The different tracer gas methods, and their benefits and 

limitations are described elsewhere.2 

 

Pressurization Measurements 

To model the AER due to leakage, fan pressurization determines the leakage of a building 

envelope.2,21 A large fan is mounted to an exterior doorway using a specialized frame to seal the 

opening. The fan airflow (Q∆P) is adjusted to generate various indoor-outdoor pressure differences 

(P, typically increased incrementally from 10 to 75 Pa) with natural ventilation openings closed 

and mechanical ventilation turned off.  

The pressurization measurements (Q∆P, P) are used to calculate inputs for some of the AER 

models described below. First, the constant rate (CR) leakage model requires the AER at P=50 Pa 

(AER50). Second, the Alberta Air Infiltration Model (AIM-2) requires the power law coefficients (n, 

c), which are estimated by fitting the set of measured Q∆P and P to the empirical power law 

equation 

 P

n
Q c P  

          (7)
 

where c is the flow coefficient and n is the pressure coefficient.22 The power law, which can be 

derived theoretically based on laminar flow in short pipes, approximates the relationship between 
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Q∆P and P for small openings in a building envelope.2 To reduce measurement errors, buildings 

are pressurized at higher P than the desired reference P (typically 4 Pa). The power law 

relationship is used to extrapolate Q∆P at the reference P. 22 Third, the Lawrence Berkeley 

Laboratory (LBL) and the Extended LBL (LBLX) models require the effective leakage area (Ainf) 

defined by    

0.5
inf  

2
nA c P

  
                               (8) 

where  is the air density, and P is set to the reference P (4 Pa). Equation 8 is derived from fluid 

mechanics using the Bernoulli equation, which reduces to the orifice equation   

inf

2
P

P
Q A




                                (9) 

since the airflow resistance from drag can be considered negligible for small openings in the 

building envelope at the reference P.22 Combining Equations 7 and 9 yields Equation 8. 

 

OVERVIEW OF AER MODELS 

Three broad categories of AER models can be distinguished: empirical models, single-zone physical 

models, and multizone physical models (Figure 3). This review focuses on empirical and simplified 

single-zone models. Multizone models are typically not feasible at this time for air pollution 

exposure assessments due to intensive data needs and high level of expertise required for 

implementation.23 

Empirical AER models are data-driven approaches, whereas physical models are based on 

fundamental physical theory. We will first describe empirical approaches that include sampling 

methods based on AER measurements from other buildings, constant rate models based on 



 

9 
 

pressurization tests, scale factor models based on building characteristics, and regression-based 

models based on AER driving factors. We will then describe physical models that separate the 

airflows from leakage, natural ventilation, and mechanical ventilation. After the summary 

descriptions, we provide guidance on selecting AER models for exposure assessments.\ 

A comprehensive literature search was performed on September 13, 2012 with Web of Science 

and Pubmed to retrieve articles related to AER modeling. To identify a subset of articles describing 

specific AER models, we screened the search results for relevance based on the model type (i.e., 

empirical and simplified single-zone AER models). We also identified relevant AER models cited 

by key publications. 

 

EMPIRICAL MODELS  

Sampling AER Distributions from Residences and Large Buildings 

Sampling distributions of literature-reported AER measurements from various field studies can be 

used to estimate AER. Exposure assessors can select AER measurements based on various factors 

(e.g., building characteristics, season, geographical region) most similar to the exposure 

assessment,16-18 and several studies of AER measurements have been published. For US residences, 

measured AER distributions have been reported by region and season.24,25 For small to medium size 

commercial buildings, studies reported AER distributions26,27 and individual28 AER measurements 

with and without mechanical ventilation. The mechanical ventilation for commercial buildings can 

vary by season for energy efficiency with higher rates during mild seasons (spring and fall) and 

lower rates in summer and winter. For office buildings, one study reported AER from seven large 

multi-story buildings ranging from 0.45 to 1.45 h-1.29 Another study reported ventilation rates 

measured in 100 US office buildings.30  
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For exposure assessments, sampling AER distributions based on particular characteristics (e.g., 

season, region) requires few inputs. The main limitation is the uncertainty of using AER 

measurements from other buildings and from sampling periods with different weather conditions, 

natural ventilation, and mechanical ventilation.   

 

Constant Rate (CR) Leakage Model based on Pressurization Measurements 

The CR (rule-of-thumb) models are typically used to estimate the annual average leakage by 

dividing AER50 by a scale factor of 20 or a scale factor based on climate and building characteristics 

(e.g., height, local wind shielding, leakiness correction factor).31 Limitations of the CR models 

include uncertainty and low temporal resolution from not considering the leakage driving forces 

(indoor-outdoor temperature differences, wind) and airflows due to natural ventilation and 

mechanical ventilation. For exposure assessments, the CR models provide a long-term average AER 

that may be sufficient for air pollution studies examining long-term health effects.  

 

Scale Factor (SF) Model based on Building Characteristics 

The SF model relates the AER at 50 Pa (AER50) to the AER under typical conditions (4 Pa) using a 

scaling factor (F) defined as  

                                       50 50
SF

AER Q V
AER

F F
                                                                              (10) 

where V is set to the floor area (Afloor) multiplied by the ceiling height (Hc).

 

22 To describe AER50 in 

terms of the normalized leakage area NL defined as  

                                                     

0.3

inf

floor

1000
2.5

A H
NL

A
   
                                                               

(11)
 

where H is the building height, Equations 7, 9, and 11 are combined to yield  
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0.3

50

2.5
48

C

NL
AER

H H
   
                                                           (12)

 

Using residential AER measurements, the values for F were empirically derived based on house 

height, local sheltering, and climatic region, without using meteorological data (i.e., wind and 

temperature).14,22  

The NL can be determined from pressurization measurements22 or estimated from leakage area 

models.22,32 One reported leakage area model was developed based on year of construction Ybuilt and 

floor area Afloor as described by 

                                  0 1 built 2 floorexp( )NL Y A        (13) 

where 0 1 2, ,    are the regression parameters, which were estimated for three housing types: low-

income, conventional, and energy-efficient.22 Using a goodness of fit, the measured and modeled 

geometric means categorized by year built, floor area, and housing type showed R2 ranges from 

0.86 to 0.92. Any collinearity that may occur between the variables can increase the model 

uncertainty. Another similar regression-based leakage area model was reported, which requires 

three additional variables: building height, foundation type, and climate zone.32 These two leakage 

area models were shown to perform equally well with a 0.3% difference between the root mean 

square of the residuals. 32 

 For the purposes of exposure assessments, the benefit of the SF model is the consideration of 

building characteristics, which can be obtained from various sources (e.g., questionnaires, public 

databases). The main limitation of the model is the uncertainty and low temporal resolution from 

not including the weather conditions. Therefore, the SF model can provide long-term average AER 

for exposure assessors. An evaluation of the model using a building leakage database showed the 
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modeled AER distribution was in good agreement with measured AER distributions from other 

studies.22  

 

Regression-based Models based on AER Factors  

Regression models can be used to examine the empirical relationship between AER and the various 

driving factors. The main driving force of leakage is the indoor-outdoor temperature difference. 

Several studies found a linear relationship between the AER and temperature difference.33-39 

Reported correlation ranges were Spearman r=0.74-0.75 and Pearson r=0.77-0.83.37-39  

The wind (speed and direction) is the other driving force for leakage. The reported relationship 

between wind and leakage is variable. One study found no effect from wind speed.38 Other studies 

showed a linear or quadratic relationship between the AER and wind speed33-37,39 and wind 

direction.36   

For exposure assessments, regression models can typically predict daily or long-term average 

AER with relatively few or no input data requirements for building characteristics. The main 

limitation of regression-based models is the limited ability to extrapolate to other buildings and 

weather conditions. Also, the building leakage area is often not included as a separate independent 

(predictive) variable since the AER driving forces are often being investigated. Therefore, a 

regression model may not perform well for buildings with different leakage characteristics.  

 

Hybrid Leakage Model 

A reported hybrid leakage model includes a balance between theoretical and empirical 

approaches.40 This model was developed based on physical factors shown to be correlated with 

measured air leakage rates. These factors include building leakage, indoor-outdoor temperature 
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difference, wind speed that can be modified by local sheltering from surrounding structures (e.g., 

buildings, trees). Based on measured residential leakage rates, the AER was defined as  

  1.5
hybrid in out

0.03
AER (0.006L T T U

C
     
 

                                 (14)  

where L is the generalized building leakiness factor (1<L<5) and C is the generalized terrain 

sheltering factor (1<C<10). The model has two parameters (L, C) and three input variables (Tin, Tout, 

U). The empirical leakiness factor has values for tight (L<1.5) and leaky (L>2.5) homes. The 

empirical sheltering factor has values for low (C=1), moderate (C=3), and high (C=10) wind 

sheltering based on the local terrain. 

The benefit of the hybrid model is the few inputs required. The main limitation is the 

uncertainty of determining building-specific values for L and C. Based on a goodness of fit, 

evaluations of the hybrid model showed a mean absolute error of 13% in predicted AER across 11 

homes.40 For exposure assessors, the hybrid model could provide a screening-level or qualitative 

assessment of the AER.     

 

PHYSICAL MODELS  

Physical models can separately estimate the AER for the three types of airflows (leakage, natural 

ventilation, mechanical ventilation), which can be combined to predict the overall AER.  Even 

though interactions can occur between these three airflows, we did not identify any simplified 

single-zone models that considered these dependencies. Physical models can be classified into two 

primary categories: single-zone and multi-zone models (Figure 3).23 Single-zone models are 

appropriate for small buildings and residences that can be represented as a single, well-mixed 

compartment with no internal resistance to airflow. The more complex multizone models are 

required for large buildings that need to be represented by a series of interconnected compartments 
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with distinct pressures and temperatures. Since the input data for multizone models (e.g., spatial 

configuration of internal walls) is typically unavailable for air pollution exposure assessments, this 

paper considers only single-zone models. There are two types of single-zone models: simplified and 

network models (Figure 3).41 Network models account for each flow path across the building 

envelope, whereas simplified single-zone models require only the whole house leakage. Since the 

data requirements for network models (e.g., flow path distribution and characteristics) are typically 

not available for exposure assessments, this paper focuses on simplified single-zone models. We 

first describe leakage models, then models for natural and mechanical ventilation.   

 

Lawrence Berkeley Laboratory (LBL) Leakage Model 

The LBL model is widely used to predict residential leakage rates.2,42 The model assumes leakage is 

described by the orifice equation derived from fluid mechanics (Equation 9). The driving force for 

the two physical processes (stack and wind effects) are calculated separately, and then combined 

using superposition. The stack-induced airflow is described by 

s s inf in outQ k A T T 
                                                      

(15) 

and the wind-induced airflow is defined as 

w w infQ k A U                                                                (16) 

where ks is the stack coefficient that depends on building height, kw is the wind coefficient that 

depends on building height and local sheltering from nearby buildings and natural structures, Tin 

and Tout are the indoor and outdoor temperatures, and U is the wind speed. Since the physical details 

of each leakage opening of the building are unknown, a superposition method is required to 

simplify the complex interactions that can occur between the stack and wind effects. A robust 

superposition equation was empirically-derived from measurements43,44 as defined by 



 

15 
 

2 2
LBL s wQ Q Q                                                                 (17)  

The AER is calculated as QLBL divided by V. 

The LBL model has two parameters (ks and kw) and five input variables (Ainf, Tin, Tout, U, and 

V). The variable Ainf can be measured (Equation 8) or modeled (Equations 11 and 13), Tout and U are 

measurements from local weather stations, and Tin can be measured, set to a constant, or estimated 

from outdoor temperatures using thermal comfort models.45,46  Parameters ks and kw are set to 

literature values based on building height and local sheltering.2,42  

For exposure assessments, the benefit of the LBL model is the consideration of building 

characteristics and weather conditions. The LBL model can predict hourly or daily AER as well as 

long-term averages, based on the temporal resolution of the metrological data. Therefore, the LBL 

model can be applied for a variety of exposure studies. The main limitation of the LBL model is the 

detailed building information needed for the inputs. This information can be obtained from 

questionnaires for individual exposure assessments, and obtained from public databases such as 

censuses, property assessments, and residential surveys for population-based exposure assessments. 

Evaluations of the LBL model using leakage area measurements showed mean absolute errors of 

26-46% 47 and 25% 48 for detached homes. Using a leakage area model, the LBL model had a mean 

absolute error of 43% for 31 detached homes across four seasons.14 

 

Extended LBL Leakage Model (LBLX) for Natural Ventilation 

The LBL model predicts the AER due to leakage, but does not account for natural ventilation. To 

address this limitation, the LBL model was extended (LBLX) to predict the natural ventilation 

airflow through large intentional openings (e.g., windows, doors).14 Briefly, the natural ventilation 

airflow Qnat was calculated as  
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2 2
nat nat,wind nat,stackQ Q Q 

              (18) 
 

where Qnat,wind and Qnat,stack are the natural ventilation airflows from the wind and stack effects, 

respectively. The combined airflow QLBLX from both leakage and natural ventilation was calculated 

as  

2 2
LBLX LBL natQ Q Q 

         (19)
 

The AER for the LBLX model is the QLBLX divided by V. Input data include the area of the natural 

ventilation openings, indoor and outdoor temperatures, and wind speed.     

For exposure assessments, the benefit of the LBLX model is the consideration of occupant 

behavior related to natural ventilation. In homes without air conditioning, the AER due to natural 

ventilation could be substantial in the warmer seasons. The LBLX model could be applied for 

exposure studies when window opening data are available from questionnaires for individual 

exposure assessments or from public databases for city or county-level exposure assessments. The 

main limitation of the LBLX model is the detailed information needed for natural ventilation (e.g., 

size of opened windows, doors).  Using literature-reported parameter values, AER predictions from 

the LBLX model were compared to data from 642 daily AER measurements across 31 detached 

homes in central North Carolina, with corresponding window opening and meteorological data.14 

For individual model-predicted and measured AER, the median absolute difference was 40% 

(0.17 h-1).  

  

Alberta Air Infiltration (AIM-2) Model   

The AIM-2 infiltration model is an enhancement of the LBL leakage model.2,49 Unlike the LBL 

model, the AIM-2 model assumes leakage is described by the empirical power law relationship 

(Equation 7), considers the stack and wind effects from chimney flues, and considers the wind 
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effect from slab and crawlspace foundations.2 Similar to the LBL model, the driving force for the 

stack and wind effects are calculated separately, then combined using the superposition. The stack-

induced airflow Qs and wind-induced airflow Qw are defined as  

in out

n

S SQ cC T T 
                                                            

(20)

 

 2n

W WQ cC sU                                                               (21) 

where Cs is the stack coefficient that depends on chimney flue and house height; Cw is the wind 

coefficient that depends on chimney flue, house height, and foundation type; and s is the shelter 

factor that depends on local wind sheltering from surrounding buildings, house height, and chimney 

flue. Using superposition (Equation 17), the total airflow QAIM is defined as  

2 2
AIM s wQ Q Q                                                                    (22) 

The AER is calculated as QAIM divided by V.  

The AIM-2 model has three parameters (Cs, Cw, s) and six input variables (c, n, Tin, Tout, U, and 

V). Inputs c and n can be estimated from measurements (Equation 7) or set to literature values.20 

Parameters Cs, Cw, and s can be set to literature values based on building height, foundation type, 

and presence of flue.2  

For exposure assessments, the accuracy of the AIM-2 model (19% mean error) can be better 

than the LBL model (25% mean error) when the parameters are well known for the building.48 The 

limitations of the AIM-2 model are the additional input requirements as compared to the LBL 

model, and no model available for the leakage-related inputs c and n, unlike the leakage area 

models available for the LBL model.  

 

 Shaw-Tamura Leakage Model for Tall Buildings 
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Modeling leakage for large multi-story buildings is more complicated than small buildings. Large 

buildings tend to have more internal partitions, which inhibit stack-effect airflows, and airflow 

connectivity structures (e.g., ventilation ducts, elevator shafts, stairwells), which enhance stack-

effect airflows.20  For tall buildings, the indoor-outdoor pressure difference can vary substantially 

with height. A model was developed to predict leakage rates of tall buildings.50 Simple adjustment 

factors account for the effects of internal partitions and airflow connectivity structures in large 

buildings. The model inputs include building characteristics, indoor-outdoor temperatures, and wind 

speed. The model has been used for a community-scale analysis.20 For exposure assessments, the 

Shaw-Tamura model provides a critical need for exposure assessors, the ability to estimate the 

leakage of multi-story buildings (e.g., offices, schools, apartments) where people can spend a 

substantial percentage of their day. A limitation for applying this leakage model for exposure 

assessments is that mechanical ventilation used in many tall buildings will likely be the dominate 

airflow for the total AER.       

 

Combining Leakage and Mechanical Ventilation 

Mechanical ventilation systems can be divided into two categories: balanced and unbalanced. 

Balanced-flow systems (e.g., air-to-air heat exchangers) have two fans, one pumping air into the 

building (intake fan) and one pumping the same amount of air out (exhaust fan). Therefore, there is 

no change in the internal pressure and no subsequent interaction between the mechanical system 

and leakage. Unbalanced-flow systems have either an intake or exhaust fan that changes the internal 

pressure and alters the leakage. Unbalanced airflows can occur from bathroom exhaust fans, 

outdoor-vented kitchen range hoods, vented clothes dryers, window fans, whole-house fans, and 
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window/wall air conditioners operated with open outdoor vents. Since mechanical ventilation and 

leakage occur simultaneously, a model was developed for the combined airflow Qcomb as defined by  

2 2
comb bal unbal leakQ Q Q Q                                                       (23) 

where Qbal and Qunbal are the balanced and unbalanced mechanical ventilation airflows, respectively, 

and Qleak is the leakage airflow.2,51  

The benefits of using this model for exposure assessments is the ability to reduce the modeled 

AER uncertainty in buildings with substantial mechanical ventilation, such as commercial buildings 

(e.g., offices) where many people work and spend much time. The main challenge with applying 

this model for exposure assessments is the need for input data on the operation and type of intake or 

exhaust fans in homes (e.g., window fan, bathroom fan) and offices (e.g. mechanically ventilation 

systems).   

  

MODELING STRATEGIES WITH LEAKAGE OR AER MEASUREMENTS 

As previously noted above, physical models can be used to support exposure assessments without 

measurements of leakage (based on pressurization tests) or AER (based on tracer gas) (Figure 4A). 

Limited leakage or AER measurements can be used to reduce the uncertainty of the physical models 

when predicting AER under different weather and ventilation conditions (Figures 4B and 4C). 

Using leakage measurements has several benefits. First, the uncertainty of leakage measurements is 

expected to be less than the uncertainty of leakage models. Second, for many exposure studies, a 

reasonable simplifying assumption can be that the effective leakage remains relatively constant for 

the duration of the study. Then, a single leakage measurement for a home can be sufficient to 

predict the AER for other days with different weather conditions (Figure 4B). Additionally, by 

using a physical model that considers available data on natural ventilation (e.g., opening windows) 
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and mechanical ventilation (e.g., operating window fans), one could expand the approach to predict 

the AER for other days with different ventilation conditions. Finally, this method may be useful to 

reduce the cost of studies since pressurization-derived leakage measurements are typically less 

expensive52 and performed only one time, as compared to tracer gas-derived AER measurements.   

Limited AER measurements can be used to calibrate physical AER models to reduce model 

uncertainty when predicting AER on days without measurements (Figure 4C). AER measurements 

obtained on certain days are not necessarily predictive for other days with different weather 

conditions. However, the measured AER and weather conditions can be used to estimate the 

leakage parameter of a physical model. The estimated leakage can then be used to predict the AER 

for other days (Figure 4B). Using a physical model that considers natural ventilation and 

mechanical ventilation, this approach could be expanded to predict the AER for other days with 

different ventilation conditions. This method can be useful for studies that require long-term 

exposure assessments and have limited AER measurements. This approach can estimate individual 

hourly or daily AER as well as long-term averages, based on the temporal resolution of the 

meteorology data.    

 

SELECTION OF AER MODELS  

There are various factors that influence AER and thus contribute to the selection of an appropriate 

AER model for specific exposure assessments. For residences, temporal AER variations are due to 

changes in meteorology (temperature and wind speed) and occupant behavior (opening windows, 

operating window fans, indoor temperature from thermostat setting during heating and cooling 

seasons).14 The AER variations across residences in the same geographical region are due to 

differences in occupant behavior (opening windows, operating window fans, indoor temperature), 
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and building characteristics (leakage of building envelope). For residences in different geographical 

regions, the AER variations can also include differences in wind speed (near coast versus inland) 

and outdoor temperature.  For commercial buildings, temporal AER variations can occur from 

occupancy level and seasonal energy-saving settings on HVAC systems (intake air flows increased 

during periods of higher occupancy and during seasons with comfortable temperatures).20  

Selecting the preferable AER model for a particular application depends on the available data, 

desired temporal resolution, airflows (e.g., leakage, ventilation), and building type. A summary of 

the input requirements, benefits, and limitations (Table 1) can be used as a model selection guide. 

The AER models not incorporating weather data have lower temporal resolution, and their 

uncertainty may be greater since they do not explicitly consider the AER driving forces. The 

empirical models often require fewer inputs than physical models, but can have greater uncertainty 

from extrapolation to other buildings and different weather conditions. All of the models are 

appropriate for houses and small buildings without internal partitions, except the Shaw-Tamura 

leakage model and the sampling of AER distributions that support large tall buildings. The physical 

models estimate airflows from leakage, except the LBLX model that accounts for natural 

ventilation.14  

Various factors need to be considered for including models that support natural ventilation. 

Intentional openings may not substantially increase the AER because there is a dependence on the 

natural (wind and stack) driving forces.14 The stack effect can be small for natural ventilation since 

windows and doors are generally opened more often on days when the indoor-outdoor temperature 

differences are small, and indoor-outdoor thermal equilibriums can be reached soon after opening 

windows or doors. Therefore, wind effect may dominate the AER due to natural ventilation and 

may be small for days with low winds.14 Due to these non-intuitive effects of natural ventilation, 
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models can be used to help quantify the total AER and the individual contributions from leakage 

and natural ventilation.    

Input data for the AER models (e.g., building characteristics) can be obtained from various 

sources. For cohort health studies with individual health outcomes, individual-level AER can be 

estimated from questionnaires and public property assessment databases. For city or county-level 

exposure assessments, population-level AER can be estimated from public databases such as 

censuses and residential surveys,53 and occupant window opening surveys.54   

 

GAPS IN CURRENT KNOWLEDGE  

Further development and evaluation of AER models appropriate for exposure assessments are 

needed for (1) estimating AER for different types of buildings, (2) predicting AER due to natural 

ventilation, and (3) mechanical ventilation. First, the AER models described above have primarily 

been evaluated for single-family detached homes. Since many people live in multi-family 

residences (e.g., apartments, townhomes) and work in commercial buildings, AER estimates are 

needed for these building types to support exposure assessments for health studies and regulatory 

risk assessments. New or modifications to existing AER models together with field study 

measurements for model evaluation, will be needed to address this knowledge gap.   

 Second, there is a need to further develop and evaluate AER models for natural ventilation.14 

By combining information from window opening studies, modeled distributions of natural 

ventilation airflows (Equation 18) could be estimated. This research would address a critical need 

for exposure assessments since people in US and Canada spend approximately 66% of their time 

indoors at home,1,55 and their exposures can vary from differences in AER from opening windows 

as compared to operating air conditioners.  
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Third, models are needed to predict the AER due to mechanical ventilation. This is a critical 

aspect for commercial buildings with outdoor-vented forced-air systems, which can provide the 

bulk of the total AER. For residences, forced-air distribution systems can have leaks with the 

outdoors (e.g., attics, unfinished basements, crawlspaces). On hot and cold days when these systems 

are operated for long durations, the AER due to mechanical ventilation would tend to be highest. 

However, the AER due to leakage from the stack effect would also tend to be highest on hot and 

cold days. Thus, a better quantitative understanding of the contribution of mechanical ventilation 

could help develop more predictive AER models for exposure assessments.     

 

SUMMARY 

This paper presented an overview and critical analysis of the various literature-reported AER 

models feasible for air pollution exposure assessments. Strategies to reduce AER model uncertainty 

were described to support exposure assessments with limited leakage or AER measurements. 

Guidance was provided for selecting the appropriate AER models based on the available data, 

desired temporal resolution, and type of buildings. The knowledge gaps identified can help guide 

future research to support improved exposure assessments.        

 

ACKNOWLEDGEMENTS 

We thank Jennifer Richmond-Bryant and Vito Ilacqua for review comments and helpful 

suggestions. Although the manuscript was reviewed by the U.S. Environmental Protection Agency 

and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade 

names or commercial products does not constitute endorsement or recommendation for use. 

 
 



 

24 
 

REFERENCES 

1. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, 

Engelmann WH. The national human activity pattern survey (NHAPS): a resource for assessing 

exposure to environmental pollutants. J Expo Anal Environ Epidemiol 2001; 11: 231-252.   

 

2. The 2009 ASHRAE Handbook-Fundamentals. American Society of Heating, Refrigerating, and 

Air Conditioning Engineers: Atlanta, GA, 2009. 

 

3. Liu DL, Nazaroff WW. Modeling pollutant penetration across building envelopes. Atmos 

Environ 2001; 35: 4451-4462. 

 

4. U.S. EPA. Integrated Science Assessment for Carbon Monoxide (Final Report). U.S. 

Environmental Protection Agency, Washington, DC, EPA/600/R-09/019F, 2010. 

 

5. U.S. EPA. Integrated Science Assessment of Ozone and Related Photochemical Oxidants - Third 

External Review Draft. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-

10/076C, 2012.; U.S. EPA. Integrated Science Assessment for Particulate Matter (Final Report). 

U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009. 

 

6. Meng QY, Spector D, Colome S, Turpin B. Determinants of indoor and personal exposure to 

PM2.5 of indoor and outdoor origin during the RIOPA study. Atmos Environ 2009; 43: 5750-5758. 

 



 

25 
 

7. Williams R, Suggs J, Rea A, Sheldon L, Rodes C, Thornburg J. The Research Triangle Park 

particulate matter panel study: modeling ambient source contribution to personal and residential PM 

mass concentrations. Atmos Environ 2003; 37: 5365-5378. 

 

8. Wallace L, Williams R, Suggs J, Jones P. Estimating contributions of outdoor fine particles to 

indoor concentrations and personal exposures: effects of household characteristics and personal 

activities. EPA/600/R-06/023; United States Environmental Protection Agency: Washington, DC, 

2006.  

 

9. Allen RW, Adar SD, Avol E, Cohen M, Curl CL, Larson T, Liu LJ, Sheppard L, Kaufman JD. 

Modeling the residential infiltration of outdoor PM2.5 in the multi-ethnic study of atherosclerosis 

and air pollution (MESA Air). Environ Health Perspect 2012; 120: 824-830. 

 

10. Wallace L, Williams R. Use of personal-indoor-outdoor sulfur concentrations to estimate the 

infiltration factor and outdoor exposure factor for individual homes and persons. Environ Sci 

Technol 2005; 39: 1707-1714. 

 

11. Riley WJ, McKone TM, Lai AC, Nazaroff WW. Indoor particulate matter of outdoor origin: 

importance of size-dependent removal mechanisms. Environ Sci Technol 2002; 36: 200-207. 

 

12. Chan WR, Nazaroff WW, Price PN, Gadgil AJ. Effectiveness of urban shelter-in-place-I: 

idealized conditions. Atmos Environ 2007; 41: 4962-4976. 

 



 

26 
 

13. Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F. Ozone and short-term mortality in 

95 US urban communities, 1987-2000. JAMA 2004; 292: 2372-2378. 

 

14. Breen MS, Breen M, Williams RW, Schultz BD. Predicting residential air exchange rates from 

questionnaires and meteorology: model evaluation in central North Carolina. Environ Sci Technol 

2010; 44: 9349-9356. 

 

15. United States Environmental Protection Agency. Exposure Model for Individuals (EMI). 

Available at: http://www.epa.gov/heasd/emi.  

 

16. Burke JM, Zufall MJ, Ozkaynak H. A population exposure model for particulate matter: case 

study results for PM2.5 in Philadelphia, PA. J Expo Anal Environ Epidemiol 2001; 11: 470-489. 

 

17. United States Environmental Protection Agency.  Total Risk Integrated Methodology (TRIM) - 

Air Pollutants Exposure Model Documentation (TRIM.Expo / APEX, Version 4.4) Volume I: 

User’s Guide, EPA-452/B-12-001a; Office of Air Quality Planning and Standards, US EPA: 

Research Triangle Park, NC. Available at: http://www.epa.gov/ttn/fera/human_apex.html 

 

18. United States Environmental Protection Agency.  Total Risk Integrated Methodology (TRIM) - 

Air Pollutants Exposure Model Documentation (TRIM.Expo / APEX, Version 4.4) Volume II: 

Technical Support Document, EPA-452/B-12-001b; Office of Air Quality Planning and Standards, 

US EPA, Research Triangle Park, NC.  Available at: http://www.epa.gov/ttn/fera/human_apex.html 

 



 

27 
 

19. Chan WR, Nazaroff WW, Price PN, Gadgil AJ. Effectiveness of urban shelter-in-place-II: 

residential districts. Atmos Environ 2007; 41: 7082-7095. 

 

20. Chan WR, Nazaroff WW, Price PN, Gadgil AJ. Effectiveness of urban shelter-in-place III: 

commercial districts. Build Simul 2008; 1: 144-157. 

 

21. ASTM 2003. Test method for determining air leakage rate by fan pressurization. Standard 

E779-03. American Society for Testing and Materials, West Conshohocken, PA. 

 

22. Chan WR, Nazaroff WW, Price PN, Sohn MD, Gadgil AJ. Analyzing a database of residential 

air leakage in the United States. Atmos. Environ. 2005; 39: 3445-3455. 

 

23. Orme M. Applicable Models for Air Infiltration and Ventilation Calculations, Technical Note 

51; International Energy Agency Air Infiltration and Ventilation Centre, Sint-Stevens-Woluwe: 

Belgium, 1999. 

 

24. Murray DM, Burmaster DE. Residential air exchange rates in the United States: empirical and 

estimated parametric distributions by season and climatic region. Risk Anal 1995; 15: 459-465. 

 

25. Koontz MD, Rector HE. Estimation of distributions for residential air exchange rates (Final 

Report). United States Environmental Protection Agency: Washington DC, 1995.  

 



 

28 
 

26. Lagus PL, Grot RA. Consultant report: air change rates in non-residential buildings in 

California. Lagus Applied Technology, Inc., P400-91-034BCN. Sacramento, CA: California Energy 

Commission, 1995. 

 

27. Cummings JB, Withers CR, Moyer N, Fairey P, McKendry B. Final report: uncontrolled air 

flow in non-residential buildings. FSEC-CR-878-96. Cocoa, FL: Florida Solar Energy Center, 1996. 

 

28. Bennett DH, Fisk W, Apte MG, Wu X, Trout A, Faulkner D, Sullivan D. Ventilation, 

temperature, and HVAC characteristics in small and medium commercial buildings in California. 

Indoor Air 2012; 22: 309-320.  

 

29. Persily AK, Grot RA. Pressurization testing of federal buildings. Measured air leakage of 

buildings, In: ASTM STP 904, Trechsel HR, Lagus PL (eds). American Society for Testing and 

Materials, Philadelphia 1986; pp 184-200. 

 

30. Persily AK, Gorfain J, Brunner G. Survey of ventilation rates in office buildings. Building 

Research and Information 2006; 34: 459-466. 

 

31. Sherman M. Estimation of infiltration for leakage and climate indicators. Energy and Buildings 

1987; 10: 81-86. 

 

32. McWilliams J, Jung, M. Development of a mathematical air-leakage model from measured data, 

Report LBNL-59041; Lawrence Berkeley National Laboratory: Berkeley, CA, 2006. 



 

29 
 

 

33. Laschober RR, Healy JH. Statistical analyses of air leakage in split - level residences. ASHRAE 

Trans 1964; 70: 364–374. 

 

34. Wang FS, Sepsy CF. Field studies of the air tightness of residential buildings. In: Hunt CM, 

King JC, Trechsel HR (eds). Building Air Change Rate and Infiltration Measurements, STP 719. 

American Society for Testing and Materials, Philadelphia, PA, 1980; 24– 35.  

  

35. Goldschmidt VW, Leonard GR, Ball JE, Wilhelm DR. Wintertime infiltration rates in mobile 

homes. In: Hunt CM,  King JC, Trechsel HR (eds). Building Air Change Rate and Infiltration 

Measurements, STP 719. American Society for Testing and Materials, Philadelphia, PA, 1980; pp 

107– 124. 

 

36. Malik N. Field studies of dependence of air infiltration on outside temperature and wind. Energy 

and Buildings 1978; 1: 281–292.  

 

37. Nazaroff WE, Feustel H, Nero AV, Rexvan KL, Grimsrud DT, Essling MA, Toomey RE. 

Radon transport into a detached one-story house with a basement. Atmos Environ 1985; 19: 31-46. 

 

38. Wallace LA, Emmerich SJ, Howard-Reed C. Continuous measurements of air change rates in an 

occupied house for 1 year: the effect of temperature, wind, fans, and windows. J Expo Anal Environ 

Epidemiol 2002, 12: 296-306.  

 



 

30 
 

39. Persily A.K. Measurements of air infiltration and airtightness in passive solar homes. In: 

Trechsel HR and Lagus PL (eds), Measured Air Leakage of Buildings, STP 904. American Society 

for Testing and Materials, Philadelphia, PA, 1986, pp 46– 60. 

 

40. Dietz RN, Goodrich RW, Cote EA, Wieser RF. Detailed description and performance of a 

passive perfluorocarbon tracer system for building ventilation and air exchange measurement. In: 

Trechsel HR, Lagus PL (eds). Measured Air Leakage of Buildings. ASTM STP904. American 

Society for Testing and Materials: Philadelphia, 1986, pp 203-264. 

 

41. Feustel HE. Mathematical modeling of infiltration and ventilation. Air Infiltration and 

Ventilation Centre (AIVC) Conference, Dipoli, Finland, 1989; Paper 8. Available at: 

http://www.aivc.org. 

 

42. Sherman MH, Grimsrud DT. Infiltration-pressurization correlation: simplified physical model. 

ASHRAE Transactions 1980; 86: 778-807. 

 

43. Walker IS, Wilson DJ 1993. Evaluating models for superposition of wind and stack effects in air 

infiltration. Building and Environment 28:201-210 . 

 

44. Sherman MH 1992. Superposition in infiltration modeling. Indoor Air 2:101-114. 

 

45. Humphreys M, Nicol JF. Understanding the adaptive approach to thermal comfort. ASHRAE 

Technical Data Bulletin 14, 1998, pp 1-14. 



 

31 
 

 

46. De Dear R, Brager GS. The adaptive model of thermal comfort and energy conservation in the 

built environment. Int J Biometeorol 2001; 45: 100-108. 

 

47. Palmiter L, Francisco PW. Modeled and measured infiltration phase III: a detailed case study of 

three homes. (Technical Report); Ecotope Inc, Seattle, WA, 1996. 

 

48. Wang W, Beausoleil-Morrison I, Reardon J. Evaluation of the Alberta air infiltration model 

using measurements and inter-model comparisons. Build Environ 2009; 44: 309-318. 

 

49. Walker IS, Wilson DJ. Field validation of algebraic equations for stack and wind driven air 

infiltration calculations. HVAC&R Research 1998; 4: 119-140. 

 

50. Shaw CY, Tamura GT. The calculation of air infiltration rates caused by wind and stack action 

for tall buildings. ASHRAE Transactions 1977; 83: 145-158. 

 

51. Sherman MH. Superposition in infiltration modeling. Indoor Air 1992; 2: 101-114. 

 

52. Keefe D. Blower door testing. J Light Construction 2010; January, pp 1-7. 

 

53. United States Department of Energy. Housing characteristics: residential energy consumption 

survey. Energy Information Administration: Washington, DC, 2001. 

 



 

32 
 

54. Price PP, Sherman M, Lee RH, Piazza T. Study of ventilation practices and household 

characteristics in new California homes, CEC-500-2007-033, Final Report, ARB Contract 03-326; 

California Energy Commission, PIER Program: Sacramento, 2007. 

 

55. Leech, JA, Nelson WC, Burnett RT, Aaron S, Raizenne ME. It’s about time: a comparison of 

Canadian and American time-activity patterns. J Exposure Anal Environ Epidemiol 2002; 12: 427-

432. 

 

 



 

33 
 

Figure Legends 

 

Figure 1. Role of AER models for air pollution exposure and risk assessments. 

 

Figure 2. Factors contributing to AER due to airflows from leakage, natural ventilation, and 

mechanical ventilation. 

 

Figure 3. Classification of AER models due to airflows from leakage. The highlighted categories 

(empirical models and simplified single-zone models) are considered in this review.  

 

Figure 4. Modeling methods to estimate AER due to leakage with different input data (A: building 

characteristics, B: leakage measurements, C: AER measurements. Each method requires 

meteorological data (temperature and wind speed) from local weather station and building 

characteristics related to AER driving forces (e.g., sheltering, building height). With input data on 

building operations, these methods could estimate AER due to natural ventilation (opening of 

windows and doors) and mechanical ventilation (operation of outdoor-vented fans). 
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