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Abstract 

United States Environmental Protection Agency (USEPA) researchers are developing a strategy 8 

for high-throughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. 9 

These novel modeling approaches for evaluating chemicals based on their potential for 10 

biologically-relevant human exposures will inform toxicity testing and prioritization for chemical 11 

risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic 12 

Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-13 

MM), a new mechanistic modeling approach has been developed to accommodate high-throughput 14 

(HT) assessment of exposure potential. In this SHEDS-HT model, the residential and dietary 15 

modules of SHEDS-MM have been operationally modified to reduce the user burden, input data 16 

demands, and run times of the higher-tier model, while maintaining critical features and inputs that 17 

influence exposure. The model has been implemented in R; the modeling framework links 18 

chemicals to consumer product categories or food groups (and thus exposure scenarios) to predict 19 

HT exposures and intake doses. Initially, SHEDS-HT has been applied to 2507 organic chemicals 20 

associated with consumer products and agricultural pesticides. These evaluations employ data 21 

from recent USEPA efforts to characterize usage (prevalence, frequency, and magnitude), 22 

chemical composition, and exposure scenarios for a wide range of consumer products. In modeling 23 

indirect exposures from near-field sources, SHEDS-HT employs a fugacity-based module to 24 

estimate concentrations in indoor environmental media. The concentration estimates, along with 25 

relevant exposure factors and human activity data, are then used by the model to rapidly generate 26 

probabilistic population distributions of near-field indirect exposures via dermal, non-dietary 27 

ingestion, and inhalation pathways. Pathway-specific estimates of near-field direct exposures from 28 

consumer products are also modeled. Population dietary exposures for a variety of chemicals found 29 
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in foods are combined with the corresponding chemical-specific near-field exposure predictions 30 

to produce aggregate population exposure estimates. The estimated intake dose rates (mg/kg/day) 31 

for the 2507 chemical case-study spanned 13 orders of magnitude. SHEDS-HT successfully 32 

reproduced the pathway-specific exposure results of the higher-tier SHEDS-MM for a case-study 33 

pesticide, and produced median intake doses significantly correlated (p<0.0001, R2=0.39) with 34 

medians inferred using biomonitoring data for 39 chemicals from the National Health and 35 

Nutrition Examination Survey (NHANES). Based on the favorable performance of SHEDS-HT 36 

with respect to these initial evaluations, we believe this new tool will be useful for HT prediction 37 

of chemical exposure potential. 38 

  39 
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INTRODUCTION 40 

The timely assessment of the risks posed to public health by tens of thousands of existing and 41 

emerging commercial chemicals is a critical challenge facing the United States Environmental 42 

Protection Agency (USEPA) and regulatory bodies worldwide.1,2 The pace of conducting risk 43 

assessments is limited by the pace at which defensible and fit-for-purpose information can be 44 

generated on anticipated biological effects and on expected human exposures. Due to significant 45 

data gaps in both hazard and exposure information for risk-based prioritization of chemicals, there 46 

is a need to develop, apply, and evaluate high-throughput (HT) tools and models. The toxicology 47 

community is working to increase the speed of toxicity testing by developing new technologies to 48 

transition from an inefficient, costly, and animal-centric process to one that seeks a better 49 

understanding of disruptions of important biological processes using HT screening bioassays.3,4 50 

Complementary efforts are underway to develop quantitative exposure estimates in a rapid, 51 

efficient manner through models requiring only minimal information.5-8 These models differ in 52 

scope with respect to exposure sources, with some focused on the fate and transport of a chemical 53 

following release into the environment (far-field), and others focused on understanding exposures 54 

resulting from use of consumer products, mostly indoors (near-field). This categorization of 55 

sources and models into near-field and far-field,5,9 and the additional categorization of near-field 56 

sources into direct (releases immediately on or proximate to the body) and indirect (releases within 57 

the residential microenvironment)10 have recently proven useful in chemical exposure estimation.  58 

Consumer products contain and release an array of potentially hazardous chemicals to which 59 

individuals may be exposed via direct or indirect sources.11-15 A growing number of chemicals are 60 

constantly being incorporated into an expanding portfolio of household products;16 accordingly, 61 

the most important pathways of exposure to a great many chemicals may be associated with 62 
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consumer product use.5 Results from USEPA’s Total Exposure Assessment Methodology 63 

(TEAM) field studies of the early 1980s suggested that not only did indoor sources of toxic 64 

chemicals greatly outnumber outdoor sources, but that the proximity of the sources and the limited 65 

opportunity for dilution produced greater exposure intensity.17,18 More recently, a modeling effort 66 

for exposure-based screening of chemicals that combined far-field focused exposure models with 67 

a reverse pharmacokinetics evaluation of biomarker data provided further evidence that chemicals 68 

associated with consumer product use are most often associated with the highest exposures.9   69 

Until the European Union promulgated the Registration, Evaluation, Authorisation and 70 

Restriction of Chemical (REACH) regulation, exposure assessments in residential settings had 71 

largely focused on one or only a few chemicals at a time, as HT exposure predictions for consumer 72 

products require estimates of multi-chemical signatures of exposure, uptake and body burden,19-22 73 

which in turn require information on the chemical composition of consumer products.  New 74 

databases containing such information23,24 have made HT approaches more attainable. 75 

Over the past decade, USEPA has developed a series of predictive exposure models for 76 

chemicals using the Stochastic Human Exposure and Dose Simulation (SHEDS) framework. Most 77 

of the SHEDS models are high-tier, longitudinal models which use many inputs to characterize in 78 

detail the variability and uncertainty in population exposures using demographic, exposure factor, 79 

and chemical application data, in combination with human activity and location 80 

(microenvironment) information from EPA’s Consolidated Human Activity Database 81 

(CHAD).25,26 The SHEDS models, which can examine both residential and dietary sources of 82 

exposure, have been successfully developed and applied for organophosphate and pyrethroid 83 

pesticides,27-31 arsenic,32-34 and methyl mercury.35 Such probabilistic models are extremely useful 84 

for assessing the risks from a single chemical of concern, but can be slow and burdensome to run, 85 
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often requiring a large number of chemical-specific inputs. Based on the SHEDS Model for 86 

Multimedia, Multipathway Chemicals (SHEDS-MM),36 a leaner, more versatile model has been 87 

developed: SHEDS-High Throughput or SHEDS-HT.  SHEDS-HT is the first SHEDS model 88 

designed to be run as a lower-tier model, with relatively few inputs and a fast execution speed. 89 

This allows SHEDS-HT to be applied quickly to a large number of chemicals. The model has the 90 

potential to generate population distributions of daily-level exposures and intake doses (mg/kg-91 

body weight/day) for a range of chemicals present in residential environments, foods, and drinking 92 

water in a HT capacity. 93 

 Here, we describe the development of SHEDS-HT and its initial application to over 2500 94 

consumer product ingredients and agricultural pesticides. Through this case study we demonstrate 95 

the potential of the model for understanding and evaluating key factors contributing to chemical 96 

exposures and for characterizing the impact of variability and/or uncertainty in the input 97 

parameters on exposure and dose predictions. We also demonstrate the ability of the model to 98 

reproduce high-tier results for an individual chemical, and present a comparison of the case study 99 

model results against available exposure predictions developed from biomarker measurements 100 

from the National Health and Nutrition Examination Survey (NHANES).    101 

METHODS 102 

Development of SHEDS-HT from SHEDS-Multimedia 103 

The original SHEDS-MM model is capable of producing detailed year-long pathway-specific 104 

chemical exposures for a population of simulated individuals based on temporally-resolved human 105 

activity data. SHEDS-HT, in contrast, is a cross-sectional model that produces daily-level 106 

pathway-specific exposures and intake doses (mg/kg/day), removing within-day temporal detail 107 

and associated data requirements. Throughout the development of SHEDS-HT, iterative variance 108 
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decomposition-based sensitivity analyses37 and other tests were performed in order to decide 109 

which model inputs, parameters, and algorithms were required to be retained in the model to 110 

accurately reproduce distributions of average daily exposures.  111 

There are several other key differences between SHEDS-MM and SHEDS-HT. SHEDS-MM is 112 

coded in SAS (v. 9.3; Cary, NC), a proprietary environment; SHEDS-HT is coded in the R 113 

language (v. 2.15.3), which is freely available.38 A reduced version of an indoor fugacity model39 114 

has been incorporated into SHEDS-HT as a source-to-concentration module for predicting indoor 115 

environmental concentrations. In addition, direct near-field exposure scenarios (such as direct 116 

dermal, inhalation, and incidental ingestion) have been added. In SHEDS-HT, dietary ingestion 117 

via food and drinking water ingestion pathways has been seamlessly combined with the near-field 118 

exposure predictions to product aggregate exposures.  119 

Chemical, Pathway, Scenario, and Route Domains of SHEDS-HT 120 

The chemical domain of SHEDS-HT is currently organic chemicals, as the properties of these 121 

chemicals can be parameterized (with admitted uncertainty) in a HT manner using quantitative 122 

structure-activity relationship (QSAR)-based tools such U.S. EPA’s Estimation Program Interface 123 

(EPI) Suite.40 Due to lack of information, SHEDS-HT does not explicitly include dissociation for 124 

ionogenic compounds in its indoor fate and transport or chemical absorption (e.g. dermal) 125 

algorithms, although some impacts could be incorporated via use of the model’s chemical-specific 126 

inputs (e.g., properties) if data were available.   127 

The exposure scenarios in SHEDS-HT are summarized in Table 1, with their corresponding 128 

exposure routes and data streams. The near-field direct scenarios reflect exposure during the use 129 

of a consumer product, whereas indirect exposures result from incidental contact with air and 130 

surfaces after the original usage event. The direct dermal scenarios involve the application of 131 
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products to one’s skin (e.g., soap, sunblock); incidental direct dermal exposures can also occur 132 

during the use of other products (e.g., cleaning products, insecticides). The direct ingestion 133 

scenario involves the non-intentional (non-dietary) ingestion associated with direct product use 134 

(e.g., toothpaste, lipstick). Certain consumer products (e.g., those in spray formulations or those 135 

containing chemicals with high vapor pressures) result in exposures via inhalation of vapor or 136 

aerosol mass. The hand-to-mouth exposure route accounts for chemical transferred to the mouth 137 

from the hands and fingers, and is modeled for both direct and indirect chemical sources. The 138 

object-to-mouth route, which is modeled for the indirect pathway, is intended to capture the 139 

behavior of young children who pick up objects (e.g., toys) and chew or suck on them.  140 

SHEDS-HT Modules and Methods  141 

The general SHEDS-HT methodology involves merging multiple data streams to parameterize 142 

the probabilistic exposure model in the manner as shown in Figure 1 and Figure S1 of the 143 

Supporting Information (SI). The near-field pathways, scenarios, and routes that are active for a 144 

given chemical in SHEDS-HT are determined by the consumer product category (or categories) 145 

that are associated with that chemical in the input database; each chemical-category pair has 146 

assigned chemical composition information (mass fraction distributions and a prevalence factor 147 

describing the fraction of category formulations containing the chemical). Each category, in turn, 148 

has assigned usage patterns. Chemicals can also be found in various food groups or in drinking 149 

water.  These input data streams are provided to SHEDS-HT via a text file that fully parameterizes 150 

each active exposure scenario for each chemical. This flexible approach allows for any set of 151 

consumer product categories or food group definitions to be used, as long as they are linked with 152 

available SHEDS-HT scenarios, and parameterized with the required information. 153 
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A full description of the exposure equations used in SHEDS-HT and their corresponding input 154 

parameter distributions are given in Section A of the SI; each SHEDS-HT module is described 155 

briefly below.   156 

Population Module 157 

U.S. Census-based input data are used to generate a simulated population representative of the 158 

U.S. population in terms of age and gender; a population of many thousands of individuals can be 159 

handled by the model.  All active exposure pathways for a chemical are modeled for this simulated 160 

population, and aggregate exposures for each person (with contributions from all active pathways, 161 

scenarios, and routes) are calculated.  After the population is created, Monte Carlo methods are 162 

used to assign relevant exposure factors and cohort-matched activity and food intake diaries to 163 

each person. 164 

The default SHEDS-HT activity diaries are daily-level diaries obtained by summarizing the 165 

event-level human activity diaries provided in CHAD.25,26 The default SHEDS-HT food diaries 166 

are based on the National Health and Nutrition Examination Survey-What We Eat in America 167 

(NHANES-WWEIA) 1999-2006 two-day food intake diaries,41 processed to calculate the mass of 168 

each food group consumed by the individual. SHEDS-HT by default considers a set of 41 crop 169 

groups (Table S7) defined by EPA and used for establishing pesticide tolerances,42 although other 170 

food groups can be used.  171 

Indoor Fugacity Module  172 

The source-to-concentration module used in modeling the indirect near-field exposures is based 173 

on the indoor fugacity model initially presented for pesticides in Bennett and Furtaw39 and 174 

subsequently applied to other chemicals with indoor sources.43,44  An implementation of this model 175 

was analyzed using variance decomposition-based sensitivity analyses developed for SHEDS37  to 176 
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identify the model inputs influencing average daily air and surface chemical concentrations given 177 

a fixed chemical mass application. The analysis demonstrated that the concentrations in treated 178 

and untreated compartments were most influenced by the same limited set of model parameters, 179 

specifically air exchange rate with the outdoors, degradation rate on surfaces (Ds), boundary layer 180 

and floor effective thicknesses, solubility (S), octanol-water partition coefficient (Kow), and vapor 181 

pressure (VP).  In every compartment, these variables alone accounted for greater than 95% of the 182 

variance in concentration, with VP being the largest contributor in all compartments. Only Ds, Kow, 183 

S, and VP are chemical-specific. The strategy for implementation into SHEDS-HT was to reduce 184 

the model in such a way retain these parameters as chemical-specific model inputs, while 185 

hardcoding other parameters with default values or distributions. The molecular weight (MW) and 186 

the decay rate in air (Da) had little contribution to the variance (<1% for MW and <3% for Da) but 187 

were also retained as model inputs since they could be estimated for a wide variety of chemicals 188 

by EPI Suite.40  In addition, the final number of compartments in the model was reduced to two 189 

(air and surfaces), since SHEDS-HT doesn’t discriminate between treated and untreated areas in 190 

the home (in terms of contact).  Sensitivity analysis results, input distributions, and final equations 191 

for the fugacity module are given in Section B of the SI. 192 

Indirect Exposure Module 193 

Exposures via the indirect pathway result from individuals breathing indoor air or touching 194 

contaminated surfaces. The fugacity module is used to model media concentrations in the 195 

residence as functions of time, based on the mass and frequency of use of consumer products. 196 

Concentrations on surfaces include chemical found in both the bulk phase and in dust. The 197 

individual is exposed to these concentrations via inhalation, dermal, and object-to-mouth routes 198 

via contact with the contaminated media as described in Section A of the SI. The amount of contact 199 
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time with each chemical-containing medium in the residential microenvironment is determined 200 

from the activity diary for the individual and user-defined contact probabilities (Table S3). The 201 

resulting dermal exposures are subsequently available for non-dietary ingestion via hand-to-mouth 202 

dermal removal (described below). 203 

Direct Exposure Module 204 

Direct exposures (inhalation, dermal, and ingestion) are parameterized similarly to other 205 

available equations for these routes, such as those available in ConsExpo45 and the Exposure and 206 

Fate Assessment Screening Tool (EFAST) consumer exposure module.46 Probabilistically-207 

predicted exposures for all routes are dependent on category-specific use frequencies, population 208 

prevalences, masses, and compositions. Dermal exposures also consider the fraction of product in 209 

contact with the skin and fraction retained on the skin post-use (which differ for products that are 210 

washed off versus left on), whereas ingestion exposures (e.g., for lip products) are based on a 211 

fraction of mass that is ingested during use. As with the indirect pathway, the dermal exposures 212 

are subsequently available for ingestion via the hand-to-mouth route. Direct inhalation exposure 213 

can occur via intake of vapor or aerosol mass during use.   214 

Dietary Exposure Module 215 

Dietary exposures are calculated by determining the total daily mass of chemical intake for each 216 

simulated person via different foods and/or drinking water. Concentration distributions for each 217 

relevant food group are provided as input. For each simulated individual, daily chemical 218 

concentrations (µg of chemical per g of food) are sampled (one for each food group). Dietary 219 

exposures are calculated as the sum (over food groups) of the product of concentration and mass 220 

of food consumed (as determined by the assigned food diary for the person).  221 
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Exposure Aggregation, Dermal Removal Processes, and Intake Dose 222 

After exposures from all scenarios are calculated for a chemical, SHEDS-HT aggregates 223 

exposures across scenarios and pathways, applies dermal removal processes, and determines the 224 

final intake dose (mg/kg/day) for the simulated person.  The dermal exposures obtained via both 225 

direct and indirect pathways are summed and made available for removal by five related processes: 226 

bathing, hand-washing, rub-off, hand-to-mouth transfer, and dermal absorption. Chemical 227 

transfered to the mouth results in non-dietary ingestion exposure.  228 

Intake dose estimates are calculated using distributions of route-specific fractional absorptions. 229 

Dermal absorption fraction distributions are chemical-specific, as they are linearly scaled via 230 

predicted dermal permeability coefficients (Kp) across chemicals (eq. a27 in the SI). Currently, 231 

distributions for absorption fractions for the inhalation and ingestion pathways are the same for all 232 

chemicals (Table S2). 233 

Initial Case Study: Chemicals in Consumer Products and Pesticides in Foods and Drinking 234 

Water 235 

SHEDS-HT was applied to a case study of 2507 chemicals in consumer products and pesticides 236 

for a simulated population of 10,000 individuals. The parameterization of the model for this case 237 

study is described below; final counts of chemicals, consumer products, and categories associated 238 

with each scenario are given in Table S6.  239 

Consumer Product Chemical Composition Data 240 

The composition data used in the case study were obtained from two existing databases of 241 

chemical ingredients in consumer products. The first database was USEPA’s Consumer Product 242 

Chemical Profile Database (CPCPdb),24 which contains information on 1797 chemicals found in 243 
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8921 consumer products derived from retailer-provided Material Safety Data Sheets (MSDS). The 244 

second database was the National Library of Medicine’s Household Products Database (HPDB),23 245 

which is also based on collated MSDS data and includes 3864 chemicals and proprietary 246 

substances in 12073 products. This case study focused on “consumable” products (i.e. those used 247 

in the home and replenished periodically), so products such as pharmaceuticals and articles were 248 

excluded from both databases. In total, usable data were extracted for 2177 consumer product 249 

chemicals.  250 

All products in both databases were mapped to a harmonized set of 254 categories for assignment 251 

of usage patterns and active exposure scenarios. If a chemical was found in any product within a 252 

consumer product category, it was assumed to be in all products in the category (a 100% chemical 253 

prevalence rate). This assumption represents the worst-case situation for each individual consumer 254 

product category (i.e. a user is always assumed to use a formulation containing the chemical). This 255 

is the most conservative assumption given the lack of knowledge about the 1) market share of 256 

individual products in the databases and 2) the prevalence of the chemical in formulations not 257 

represented in the databases. Chemicals in the databases having no reported composition data were 258 

assigned distributions of compositions derived from all reported data for the corresponding 259 

category.  260 

Assignment of Product Use Information and Scenarios to Harmonized Categories 261 

 The consumer product use patterns developed for the case study included percent of the 262 

population using the product (prevalence), frequency of use, and amount of product (g) per use, 263 

and were age- and gender-dependent where appropriate. The input parameters were developed 264 

from a review of the available literature on consumer product use,47-67 including both survey 265 

measurements and default assumptions from other exposure models. Consensus values were 266 
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selected if multiple sources existed for a parameter; where data were not available, default values 267 

were assumed using judgment. The usage parameter values for each category and the 268 

corresponding data sources are given in Table S8 of the SI. Corresponding active exposure 269 

scenarios were also mapped to each category (Table S9). 270 

Chemical Residues in Foods 271 

For the case study, distributions of residues in foods and drinking water were obtained for 330 272 

pesticides from the U.S. Department of Agriculture’s Pesticide Data Program (PDP) databases.68 273 

These databases contain measurements of pesticide concentrations in a variety of agricultural 274 

commodities collected from 1997-2011. These data were processed to assign commodities to the 275 

food groups used by SHEDS-HT. In this initial analysis, the fraction of the residues that were non-276 

detects were assigned zero concentrations, while the detected residues were fit to food group-277 

specific lognormal distributions using maximum likelihood estimation.  278 

Chemical Properties 279 

Chemical properties required by SHEDS-HT (given in Table S4) were estimated for all 280 

chemicals in the case study using EPI Suite.40 Degradation rates on indoor surfaces are difficult to 281 

quantify (as little data are available), yet they are anticipated to be slower than reported degradation 282 

rates on outdoor surfaces, particularly for semivolatile organic compounds.14 As an initial 283 

assumption, degradation rate was assumed to be equal to the mean of the rates associated with the 284 

(relatively slow) soil and sediment half-lives predicted by EPI Suite, with the acknowledgment 285 

that this may contribute significantly to uncertainty and is therefore a critical parameter to be 286 

considered in the sensitivity analysis discussed below. 287 
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Variability and Uncertainty in Model Inputs and Sensitivity Analyses 288 

Variability in exposure results from true heterogeneity across locations, people, or time. The 1-289 

D Monte-Carlo application performed here represents the combined variability and uncertainty 290 

associated with each of the inputs. SHEDS-HT is a probabilistic model that requires analytical 291 

distributions, empirical distributions, or survey data to develop inputs. The choices of input form 292 

were made depending on available sample size and specifics of the datasets available. The 293 

probability distributions or databases used for each model input parameter (and their data sources) 294 

are given in Tables S1, S2, and S5. For chemical properties, distributions were assumed to be 295 

lognormal with a geometric mean equal to the estimated value. A nominal value of GSD=1.5 was 296 

selected for the case study based on results from analysis of similar data (e.g., vapor pressures) 297 

obtained for previous higher-tier SHEDS applications; however, these are chemical-specific inputs 298 

to the model and other distributions could be used. Mean and variability (i.e., coefficient of 299 

variation) of consumer product chemical compositions were derived from the CPCPdb and HPDB 300 

datasets; these distributions were also assumed to be lognormal. The variables quantifying 301 

consumer product use patterns were assumed to be more uncertain. These parameters were given 302 

lognormal distributions with mean values as described above and a coefficient of variation of 303 

100%. 304 

A sensitivity analysis was conducted to determine the impact of key model inputs on resulting 305 

total intake doses (mg/kg/day). This analysis explored one model input variable at a time using a 306 

percentile-scaling method previously employed for other SHEDS analyses.33 Briefly, a set of 307 

candidate model parameters were selected for analysis, and base case SHEDS-HT runs were 308 

performed with these parameters fixed at their median values, while all other parameters were 309 

allowed to vary probabilistically. Two more additional runs were performed for each candidate 310 
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input, using lower and higher values than the base case and chosen to represent the range covered 311 

by the variability distribution for each input, namely the 5th percentile and the 95th percentile for 312 

each. Finally, ratios of the high-to-median and low-to-median model results were calculated, 313 

allowing ranking of the parameter influence associated with the full range of estimated variability 314 

and uncertainty.  315 

Evaluation of SHEDS-HT  316 

A model-to-model comparison with SHEDS-MM was performed to confirm that the exposure 317 

distributions generated by SHEDS-HT for average daily exposures reproduced those predicted by 318 

the higher-tier model. These comparisons were done for a case study of permethrin exposure 319 

following a crack-and-crevice application in the home, using previously-developed inputs.31 320 

SHEDS-HT exposures were compared with the fourth day post-application of the chemical 321 

treatment in SHEDS-MM. This comparison included only the indirect pathways, as direct 322 

exposure scenarios are not considered in SHEDS-MM. 323 

SHEDS-HT results were also compared with available biomonitoring-based exposure data. 324 

Predictions were compared to oral equivalent intake doses recently estimated from biomarker data 325 

from NHANES using reverse pharmacokinetic modeling.9  326 

RESULTS 327 

SHEDS-HT Performance 328 

Runs for the 2507-chemical case study (for a population of 10,000 individuals), performed on a 329 

Windows-based system desktop with an Intel Xeon 2.66 GHz processor and 4.0 GB RAM, 330 

required approximately 8 hours (10-20 seconds/chemical). However, the time per chemical was 331 

influenced by the number of active exposure scenarios. In contrast, a SHEDS-MM variability run 332 
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of only 1000 individuals for a single chemical on a similar machine requires about one hour (for 333 

the residential module alone).69 Thus, SHEDS-HT can perform large runs (e.g. large numbers of 334 

chemicals, large populations, or sensitivity and uncertainty analyses) that would take prohibitively 335 

long using SHEDS-MM. 336 

Comparison of SHEDS-HT with SHEDS-Multimedia  337 

SHEDS-HT was able to reproduce distributions of SHEDS-MM average daily exposures and 338 

mean intake dose (Figure S2). The very high end (99th percentile) of dose (mg/kg/day) was about 339 

20% larger in SHEDS-HT, probably because a single sampled high-percentile value from a 340 

distribution (e.g. an exposure factor) can apply for the entire day in SHEDS-HT. The contributions 341 

to the mean daily intake dose from the various pathways for SHEDS-HT vs. SHEDS-MM were 342 

also comparable: 91.3% versus 90.0% for hand-to-mouth ingestion, 0.2% versus 0.2% for 343 

inhalation, 6.8% versus 6.7% for dermal, and 2.9% versus 3.0% for object-to-mouth ingestion.  344 

However, we note that we plan in the future to make similar comparisons for additional chemicals, 345 

as different chemical properties and chemical sources will likely result in different exposure 346 

patterns. 347 

Exposure Predictions for Case Study Chemicals 348 

Final intake dose predictions (mg/kg/day) for the 2507 chemicals are shown in Figure 2. The 349 

predicted nonzero intake doses spanned 13 orders of magnitude, due to significant impact of high 350 

variability and uncertainty in the model inputs but indicating also that a good discrimination among 351 

chemicals for the purpose of prioritization remains feasible.  352 

The distributions of intake dose were highly skewed, with the mean dose falling between the 353 

75th and the 95th percentile. The mean doses ranged from 0 to 6.88 mg/kg/day, with means for 85% 354 

of the chemicals falling between 1.0E-7 and 0.1 mg/kg/day. The highest population median intake 355 
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dose for any chemical was 0.18 mg/kg/day (for glycerol, which was present in 90 different 356 

consumer product categories); the 25 chemicals having the highest predicted median doses are 357 

given in Table S10.  Note that for some chemicals, the mean exceeded even the 99th percentile.  358 

This was due to being an ingredient of products with very low population prevalences and/or 359 

frequencies, but with large potential exposures, resulting in relatively high values for a few 360 

individuals driving the population mean. An example is isobutyl alcohol, which was only found in 361 

finishes and paints. While 40% of adults use interior or exterior paint, the mean of the use 362 

frequency was only 2/year, so in this cross-sectional analysis only 0.2% of people will use it on a 363 

given day, resulting in zero exposure for the 99th percentile.  This highlights that care needs to be 364 

taken in interpreting percentiles for chemicals in infrequently-used products, and that separate 365 

analyses for subpopulations with specific product-use habits will be important. 366 

Distributions of predicted intake doses for different cohorts are ranked in Figure 2 (bottom) by 367 

mean exposures for children age 0-5. In general, greater intake doses were seen in females than in 368 

males, due to lower mean body weights and higher prevalence of use of personal care products by 369 

women. Children age 0-5 typically had the highest intakes, due to having lowest body weights, 370 

highest hand-to-mouth activities, and highest percentages of time spent in the residence. The 371 

chemicals at the right of the panel are those to which no children were exposed in the 10,000 372 

person simulation, due to zero prevalence of use of corresponding products for children.  373 

Intake dose predictions by pathway-scenario are given in Figure S3 of the SI. In general, 374 

chemicals having the highest mean intake doses exhibited high intakes from direct dermal, direct 375 

ingestion, and indirect scenarios. Intakes from these scenarios were major contributors across a 376 

wide range of chemicals. This predicts importance of indirect near-field sources, which are 377 

neglected in many screening-level models.   378 
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Dietary intakes were significant contributors (for chemicals having the pathway), while direct 379 

inhalation intakes (aerosol and vapor) were typically several orders of magnitude lower. Route-380 

specific contributions to intakes associated with direct dermal and indirect scenarios are given in 381 

Figure S4.  For most chemicals with these scenarios, non-dietary ingestion (e.g., via the hand-to-382 

mouth route) was a larger contributor to intake dose than dermal absorption or inhalation (in the 383 

case of indirect scenarios). 384 

Mean predicted exposures by category are given in Figures S5 (aggregated consumer product 385 

categories) and S6 (subset of specific categories having the highest exposures). The boxplots 386 

examine the distribution of population means across chemicals for both children 0-10 and adults. 387 

Pesticides exhibited the highest mean exposures for children, while personal care products 388 

produced the highest exposures for adults (due to higher prevalence of use and reduced hand-to-389 

mouth activities when compared to children). The highest individual categories for adults were 390 

products with high probabilities of non-intentional ingestion in combination with high frequency 391 

of use (e.g. toothpaste, lip products, denture creams) whereas for children, dermal products with 392 

high frequencies of use (e.g. sunscreen, diaper creams) were highest, due to increased hand-to-393 

mouth behaviors. 394 

Sensitivity Analysis 395 

The results of the initial sensitivity analysis for total intake dose are provided in Figure S7. The 396 

boxplots characterize the distribution of the sensitivity indices across chemicals; all sensitivity 397 

indices were less than one order or magnitude. The index for mass applied is a point, since the 398 

model is linear in mass when this variable is varied uniformly across consumer product categories 399 

(as here). Given the estimated variability/uncertainty in the model parameters, the intake dose is 400 

most influenced by consumer product use variables (i.e. mass applied and frequency of use), 401 
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consumer product composition, and variables describing the magnitude of the hand-to-mouth 402 

exposure pathway (e.g. hand-to-mouth frequency, dermal transfer coefficient, and hand washing 403 

frequency). This indicates a need to better characterize these variables. The chemical degradation 404 

rate on indoor surfaces had a small impact compared to other variables, but this parameter is still 405 

highly uncertain (i.e. the use of estimated soil and sediment half-lives may be inadequate), and 406 

better characterization of degradation rates indoors is a need for future research. 407 

Comparison of SHEDS-HT Results against Predicted Exposures from NHANES 408 

Median predicted intake doses are plotted against values for 39 chemicals estimated from 409 

NHANES biomarker data9 in Figure 3. The median SHEDS-HT intake doses were significantly 410 

correlated with the predicted NHANES median oral equivalent doses (p<0.0001, R2=0.39; 411 

R2=0.47 when the observed outlier for chlorpyrifos-methyl is ignored). Overall, the SHEDS-HT 412 

distributions (bottom panel) were higher than the NHANES values; this overestimation of 413 

exposure is not unexpected, as current factors that contribute to this overestimation may include 414 

1) assumption of 100% prevalence of chemicals in formulations within consumer product 415 

categories, 2) assumption that mass used in indirect scenarios is retained on indoor surfaces post-416 

application (not wiped up), and 3) selection of conservative default values for some critical use 417 

pattern variables (e.g., frequency of use, percent of product ingested).  In addition, the NHANES-418 

based exposure numbers are also model estimates and thus subject to variability and uncertainty. 419 

DISCUSSION 420 

  Exposure-Based Chemical Prioritization 421 

The SHEDS-HT framework described herein provides an efficient platform for HT, screening-422 

level simulations of exposure to chemicals via multiple scenarios and routes for use in chemical 423 

prioritization. The unique advantage of this exposure model is its ability to identify and quantify 424 
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the major sources, pathways and assumptions that influence prediction of chemical-specific 425 

exposures or dose. Moreover, SHEDS-HT relies upon real-world human use, physical 426 

transport/transformation, and contact processes that frequently have stochastic and chemical-427 

specific characteristics. The model structure facilitates sub-modular and full model evaluation, 428 

thereby facilitating flexible and quick updates to input data steams used, model parameters chosen, 429 

and refinements to exposure algorithms currently employed. Its modular design also allows for 430 

expansion beyond the current exposure scenarios without any major code restructuring. We 431 

anticipate the model will be made available to the public following the conclusion of USEPA 432 

administrative review.  433 

Model Limitations and Uncertainties 434 

The intake dose predictions presented here should be interpreted in a manner consistent with the 435 

high uncertainties associated with the various model input data (e.g., limitations of using QSAR-436 

based chemical properties, such as those noted by Arnot et al.7)  Simplifying algorithmic choices 437 

(e.g., the use of dermal absorption fractions rather than loading-dependent models that incorporate 438 

flux,70  ignoring dissociation) contribute additional uncertainty.  A key area of future research will 439 

be the incorporation of improved route-specific absorption algorithms. In the future we also plan 440 

to investigate the effect of separating variability from uncertainty and to apply a bootstrap-based 441 

uncertainty analysis technique.33 We are also refining the key model inputs and algorithms to the 442 

extent possible to reduce the uncertainty built into our modeling assumptions related to consumer 443 

products by developing appropriate information both chemical prevalence within consumer 444 

product categories and market share information for product formulations.  Another area of future 445 

research should be the continued evaluation of the indoor fugacity model against available media 446 

measurements and further assessment of the impact of the simplifying assumptions of the reduced 447 

model (e.g., combination of carpet and vinyl compartments) on resulting indirect exposures.  448 
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However, even considering these limitations, a significant portion of the variance in the 449 

predicted NHANES medians was explained by the SHEDS-HT results. Chemicals for which the 450 

NHANES predictions were higher (diethyl pthalate, chlorpyrifos methyl) were likely indicative of 451 

missed sources (e.g. exposure from articles) or related to biases created by the assumption of 0 452 

concentrations for non-detects in foods from the PDP database. Adding additional exposure 453 

sources and pathways to SHEDS and refined handling of non-detects in input databases should 454 

allow for improved quantification of these biases.  455 

Further Evaluation  456 

We are now performing a more detailed comparison of the SHEDS-HT exposures (and other 457 

near-field exposure predictions) to the biomonitoring-based exposure data within a systematic 458 

empirical evaluation framework,9,71 which will allow 1) iterative evaluation of the predictive power 459 

of the model across different chemical classes, 2) quantification of the value added by model 460 

refinements (e.g. addition of new chemical sources and scenarios or improved chemical-specific 461 

intake algorithms), and 3) estimation of uncertainties. This evaluation is critical in understanding 462 

and quantifying the utility of any SHEDS-HT predictions in light of the numerous limitations of 463 

this HT model.  Ultimately, the evaluation framework also allows for the combination of SHEDS-464 

HT results with results from other near-field and far-field exposure models to produce consensus 465 

predictions for large numbers of chemicals, and provides a means by which to evaluate the 466 

suitability of such models for rapid risk-based prioritization. 467 
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  699 
Figure 1. SHEDS-HT input data streams and modules.  700 
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 702 
 703 

Figure 2.  SHEDS-HT results for 2507 organic chemicals with near-field sources. Top: 704 

Percentiles of total intake dose for all ages. Bottom: Mean total intake dose by age/gender 705 

cohort, sorted by the mean values for children ages 0-5 years. 706 

  707 
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 710 

Figure 3.  SHEDS-HT predicted chemical intake doses compared to oral equivalent intake doses 711 

inferred from NHANES biomarker data for 39 chemicals.  Top: SHEDS median intake dose 712 

versus biomonitoring-based predicted median intakes. Bottom: SHEDS median predictions 713 

(whiskers indicate population 5th and 90th percentiles) compared to median predictions inferred 714 

using NHANES9 (whiskers indicate uncertainty in median prediction). 715 

  716 
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Table 1. SHEDS-HT exposure pathways, scenarios, and routes with required input data. Not all 717 

scenarios must be modeled for all chemicals. 718 

Pathway Scenarios Routes Required Data Streams 

Near-field 

direct 

Dermal exposure (either via direct 

application of personal care 

products to the body or 

incidentally during household use 

of other products) 

Inhalation of vapor during use of 

consumer products 

Inhalation of aerosol mass during 

use of consumer products 

 

Dermal 

Inhalation  

Ingestion (direct 

ingestion plus 

incidental non-

dietary ingestion 

via hand-to-mouth 

transfer of 

chemical in 

product applied 

directly to skin) 

Consumer product chemical 

composition 

Consumer product use 

patterns 

Chemical properties 

Time-activity data (determine 

ventilation rates) 

Various exposure factor 

distributions (including hand-

to-mouth behavior and other 

microactivities) 

Near-field 

indirect 

Application of consumer products 

to household surfaces, air, or pets  

Emission of chemicals from 

consumer articles or building 

products 

Dermal 

Inhalation  

Ingestion 

(incidental non-

dietary ingestion 

via object to mouth 

and hand-to-mouth 

transfer of 

chemical found on 

indoor objects and 

surfaces, including 

in dust) 

Consumer product chemical 

composition 

Chemical emission rates from 

articles or building materials 

Consumer product use 

patterns 

Consumer product article or 

building material use patterns 

Chemical properties 

Fate-related properties of the 

indoor environment (e.g. air 

exchange rates, dust loadings) 

Time-activity data (determine 

time spent in residence and 

ventilation rates) 

Various exposure factor 

distributions (including hand-

to-mouth behavior and other 

microactivities) 

Dietary Consumption of contaminated food 

or drinking water (from 

agricultural chemical use or 

leaching from food packaging) 

Dietary ingestion Chemical concentrations in 

foods and drinking water 

Population food and water 

intakes 

719 



 35 

  720 

 721 

 722 


