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Abstract 24 

Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to 25 

account for variability of residential infiltration of outdoor pollutants can lead to exposure 26 

misclassifications and add error to risk estimates. The residential air exchange rate (AER), which 27 

is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-28 

house (spatial) and temporal variations of air pollution infiltration. Our goal was to perform a 29 

cross validation, and then apply mechanistic models to predict AERs for 213 homes in the Near-30 

Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-31 

related air pollution exposures and respiratory effects in asthmatic children living near major 32 

roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER 33 

from meteorology and questionnaire data on building characteristics related to air leakage, and 34 

an extended version of this model (LBLX) that includes natural ventilation from open windows. 35 

As a critical and novel aspect of our AER modeling approach, we performed a cross validation, 36 

which included both parameter estimation (i.e., model calibration) and model evaluation, based 37 

on daily AER measurements from a subset of 24 study homes on five consecutive days during 38 

two seasons. The measured AER varied between 0.09 and 3.48 h-1 with a median of 0.64 h-1. For 39 

the individual model-predicted and measured AER, the median absolute difference was 29% 40 

(0.19 h-1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 41 

61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during 42 

the three year study (2010 – 2012) showed considerable house-to-house variations from building 43 

leakage differences, and temporal variations from outdoor temperature and wind speed 44 

fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to 45 

apply calibrated and home-specific AER models, and to include the spatial and temporal 46 
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variations of AER for over 200 individual homes across multiple years into an exposure 47 

assessment in support of improving risk estimates.   48 

49 
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Introduction 50 

Numerous air pollution epidemiology studies have found associations between ambient 51 

concentrations and adverse health effects.1,2 These health studies often estimate exposures using 52 

data provided by ambient air monitors, which can lead to exposure misclassification due to time 53 

spent in indoor microenvironments with pollutant concentrations that can be substantially 54 

different from local ambient concentrations. This exposure misclassification can lead to error and 55 

bias in health effect estimates.2,3 To reduce exposure misclassification, we are developing an air 56 

pollution exposure model for individuals (EMI) in health studies.4-7 The EMI predicts personal 57 

exposures based on outdoor concentrations, meteorology, questionnaire information (e.g., 58 

building characteristics, occupant behavior related to building operation), and time-location 59 

information. A critical aspect of EMI is the air exchange rate (AER) of individual homes, which 60 

is the rate of exchange of indoor air with outdoor air. In addition, AERs have been applied as a 61 

covariate or modifying factor in air pollution epidemiology studies, showing the importance of 62 

this variable.8,9   63 

This study addresses the cross-validation and application of residential AER models, and 64 

specifically the AER predictions for the Near-Road Exposures and Effects of Urban Air 65 

Pollutants Study (NEXUS).4 The goal of NEXUS is to examine traffic-related air pollution 66 

exposures and respiratory effects in asthmatic children living near major roads in Detroit, 67 

Michigan (MI).  68 

The AER affects both the steady-state (i.e., long-term average) and dynamic (i.e., time-69 

varying) behaviors of indoor air pollutant concentrations, and the resulting exposures.10 For 70 

example, assume that outdoor concentrations, Cout_ss are under steady-state conditions (i.e., short-71 
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term changes of concentrations are considered negligible compared with long-term average 72 

concentrations), then the steady-state indoor concentrations Cin_ss can be described by  73 

Cin_ss = Finf Cout_ss      (1) 74 

where Finf is the fraction of Cout_ss that enters and remains airborne indoors (infiltration factor) 75 

defined as  76 

Finf = P AER/(AER+kd)     (2) 77 

where P is the penetration coefficient, and kd is the indoor loss rate. Setting P=0.9 and kd=1.0 h-1 78 

based on reported values for particulate matter (diameter = 2.5 µm; PM2.5), Cin_ss for a tight 79 

(AER=0.1 h-1) and leaky (AER=3.0 h-1) building is 0.08 and 0.68 times Cout_ss, respectively. 80 

Therefore, the AER can substantially affect Cin_ss. Furthermore, studies examining particulate 81 

matter show that the AER can explain a substantial amount of the variability of Finf .11-13 For 82 

time-varying outdoor concentrations Cout (e.g., traffic), indoor concentrations Cin can be 83 

described by the dynamic mass balance equation 84 

dCin/dt = P AER Cout – (AER+ kd)Cin     (3) 85 

Measurements of Cout and Cin for time-varying traffic pollutants show that the dynamic behavior 86 

of Cin depends on the AER;14 for example, Cin increases more slowly and reaches lower peak 87 

levels for tighter buildings.15  88 

 For gaseous pollutants with kd >0 (e.g., ozone), Finf depends on AER.16 For gases with 89 

negligible kd (e.g., carbon monoxide) compared with AER, Cin_ss can be considered independent 90 

of the AER based on Equation 2 (Finf=P).17 However, for outdoor pollutants that vary with time 91 

(e.g., traffic), time-varying Cin (Equation 3) depends on AER even when kd is negligible 92 

compared with AER.14 93 
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A residential AER model has several benefits for exposure assessments in health studies. 94 

First, the AER is a key determinant for the entry of outdoor-generated air pollutants and the 95 

removal of indoor-generated air pollutants.10,18 Since people in the United States spend 96 

approximately 66% of their time indoors at home,19,20 the residential AER is a critical parameter 97 

for air pollution exposure models. Costs and participant burden often limit the number of AER 98 

measurements. Therefore, a residential AER model integrated within exposure models can be a 99 

feasible method to predict exposure metrics for epidemiological analysis. Second, an AER model 100 

can reduce the uncertainty of exposure models by accounting for factors that influence the house-101 

to-house (spatial) and temporal variability of the AER. These factors include the physical driving 102 

forces of the airflows (e.g., indoor-outdoor temperature differences, wind speed), building 103 

characteristics (e.g., local wind sheltering, building height, tightness of the building envelope), 104 

and occupant behavior (e.g., opening windows). Spatial and temporal differences in weather, 105 

building characteristics, and occupant behavior can produce substantial AER variations. The 106 

resulting spatial and temporal variations in exposure may help explain the impact of AER for 107 

individuals with exceptionally high and low exposures. Also, predicting the AER variability can 108 

help reduce exposure misclassifications, and the resulting errors in health effect estimates.    109 

 Various AER models are described in the literature.10 The Lawrence Berkeley Laboratory 110 

(LBL) model is widely used to predict residential AER.21 The LBL model predicts the AER due 111 

to airflow through small unintentional openings (i.e., leakage), but does not account for the 112 

airflow through large controllable openings (i.e., natural ventilation), such as open windows. 113 

Previously, we addressed this limitation by extending the LBL model (LBLX) to predict natural 114 

ventilation airflow.6 In this study, we used the previously developed LBL and LBLX models, 115 

which were linked with a leakage area model, to predict the AER from questionnaire and 116 
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weather data.6 The LBL model was used for all homes, and the LBLX model was used for a 117 

subset of homes with window opening data, as described below. 118 

 The NEXUS design includes the development of various tiers of modeled exposure 119 

metrics for traffic-related air pollutants, and the use of measurements from a subset of homes for 120 

model calibration (i.e., parameter estimation) and evaluation.4 This paper focuses on modeling 121 

the residential AER. We used NEXUS questionnaires and airport weather data as inputs for the 122 

AER models, and AER measurements from a subset of homes for parameter estimation and 123 

model evaluation. Below, we first describe the NEXUS design, and then describe the AER 124 

models, methods for parameter estimation and model evaluation, and development of daily AER 125 

predictions for the three year health study.   126 

 127 

Methods 128 

NEXUS Design  129 

NEXUS was designed to examine the relationship between exposures to traffic-related air 130 

pollutants and respiratory outcomes in a cohort of children with asthma living near major roads 131 

in Detroit, MI.4 For this community-based participatory research study, children from 6 to 14 132 

years of age with asthma or symptoms of asthma were recruited based on the proximity of their 133 

home to major roads according to three traffic categories: (1) high diesel/high traffic (HTHD), 134 

(2) high traffic/low diesel (HTLD), and (3) low traffic/low diesel (LTLD).4 A total of 147 135 

children participated in the study from September 2010 to December 2012. Since children moved 136 

during the study, a total of 213 residences were considered, which included 203 detached homes, 137 

nine apartments, and one townhome. The study population consisted of 98 homes in the high 138 

traffic categories (52 in HTHD, 46 in HTLD) and 115 homes in the low traffic category (LTLD).   139 
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An overview of the exposure assessment method in NEXUS has been previously 140 

described.4 Residential indoor, residential outdoor, school outdoor, and near-highway air 141 

monitoring was performed during two seasonal intensive field sampling periods: September 25 142 

to November 11, 2010 (Fall 2010) and March 28 to May 4, 2011 (Spring 2011). The fall and 143 

spring are peak seasons for respiratory viruses that can induce asthma symptoms. A subset of 24 144 

homes was selected for residential monitoring during the seasonal intensives based on the traffic 145 

characteristics of nearby roads, and consisted of 12 homes in the high traffic categories (7 in 146 

HTHD, 5 in HTLD) and 12 homes in the low traffic category (LTLD). A maximum of four 147 

residences were monitored simultaneously during a 5 day period. 148 

Daily 24 h average AERs were measured for 5 consecutive days during the season 149 

intensives in the 24 homes using a perfluorocarbon tracer (PFT) method.22,23 The Brookhaven 150 

National Laboratory (BNL; Upton, NY) prepared the tracer sources and receptor tubes, and 151 

provided guidance on the number of tracers sources required in each home. Sources were placed 152 

in the homes 24 h before the first day of measurement to allow for sufficient distribution. The 153 

reported accuracy (based on known AER), precision (based on replicate measurements), and 154 

limits on the PFT-derived AER measurements for occupied homes are estimated to be 20-25%, 155 

5-15%, and 0.2-5.0 h-1, respectively.18,24,25  156 

These AER measurements were used for parameter estimation and evaluation of the AER 157 

model, as described below. Input data for the AER models were obtained for meteorology, 158 

housing characteristics, household income, and occupant behavior. Meteorological 159 

measurements included local airport temperature and wind speed. During the seasonal intensives 160 

on days with residential measurements, indoor temperatures were measured and occupants 161 
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recorded when certain activities related to housing operation were performed, including opening 162 

windows. 163 

 164 

AER Model Overview  165 

The exchange of outdoor air with air inside occupied spaces of buildings can be separated into 166 

three categories: leakage, natural ventilation, and mechanical ventilation.18 Leakage is the 167 

airflow through unintentional opening in the building envelope (e.g., small cracks around 168 

windows, exterior doors, joints between exterior walls and floors). Natural ventilation is the 169 

intentional airflow through controlled openings in the building envelope (e.g., open windows and 170 

doors). Mechanical ventilation is the airflow induced by outdoor-vented fans. For this study, we 171 

used two AER models, one model that includes leakage (LBL) and another model that includes 172 

both leakage and natural ventilation (LBLX) .6,10 Mechanical ventilation was not considered 173 

since detailed information on the specific type and operation of outdoor-vented fans was 174 

unavailable from NEXUS. 175 

 The driving mechanism for airflows are pressure differences across the building 176 

envelope.10,18 The pressure differences for leakage and natural ventilation are driven by indoor-177 

outdoor temperature differences (stack effect) and wind (wind effect). For this study, the LBL 178 

and LBLX models include the stack and wind effects based on local airport temperature and 179 

wind speed, and building characteristics (e.g., building height and wind sheltering from nearby 180 

structures) that modify the stack and wind effect-driving forces.  181 

 Mechanistic AER models, which account for the physical driving forces of the airflows 182 

(i.e., stack and wind effect) can be classified as single-zone and multizone models.10 Single-zone 183 

models predict the AER for a whole building represented as a single, well-mixed compartment. 184 
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Multizone models are required for buildings that need to be represented by a series of 185 

interconnected compartments with distinct pressures and temperatures. The LBL and LBLX 186 

models are single-zone models that are appropriate for buildings with no internal resistance to 187 

airflow, such as the homes included in this study. 188 

 We developed a computer simulation for the LBL and LBLX models linked to a leakage 189 

area model. First, parameters for the leakage area model were estimated using the LBLX model 190 

and the AER measurements and window opening data from a subset of homes. Then, daily (24 h 191 

average) AER predictions were developed for every home for the three year health study. Since 192 

window opening data was not available for the three year study, we used the LBL model to 193 

develop AER predictions for the health study. Below, we first describe the AER models, and the 194 

method for parameter estimation and model evaluation. The complete method and subsequent 195 

analysis were implemented using MATLAB software (version R2014a, Mathworks, Natick, 196 

MA).   197 

 198 

LBL Leakage Model 199 

The LBL and LBLX models were previously described and evaluated for homes in central North 200 

Carolina.6 Briefly, the LBL model predicts the AER due to leakage, and assumes the building is 201 

a single, well-mixed compartment. The leakage airflow QLBL is calculated as 202 

| |     (4) 203 

where Aleak is the effective air leakage area, ks is the stack coefficient, kw is the wind coefficient, 204 

Tin and Tout are the average indoor and outdoor temperatures over time interval of calculation, 205 

respectively, and U is the average wind speed over time interval of calculation. The stack and 206 
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wind effects are the first and second terms within the square root in Equation 4, respectively. The 207 

AER is calculated as QLBL divided by the building volume V. 208 

The AER has two parameters (ks and kw) and five inputs (Aleak, Tin, Tout, U, and V). 209 

Parameters ks and kw were set to literature-reported values based on house-specific information 210 

on house height (number of stories) and local wind sheltering (Supplementary Material Table 211 

S1-S3). The number of stories and local wind sheltering were determined from aerial and 212 

street-level images in Google Earth (version 7.1.2.2041; Google, Mountain View, CA, USA). 213 

We used house numbers visible in street-level images to verify the study participant homes. To 214 

determine V, we multiplied the floor area Afloor by the measured ceiling height (typically 2.44 m, 215 

8 ft). The Afloor were both measured and obtained from online city and real estate databases of 216 

property records (BS&A Software, Bath, MI, USA; Zillow, Seattle WA, USA; Trulia, San 217 

Francisco, CA, USA).  218 

We determined Tout and U (10 m elevation) from hourly measurements at the Detroit 219 

Metro Airport in Detroit, MI. For parameter estimation, we calculated the 24 h average Tout and 220 

U time-matched to the 24 h average AER measurements. To develop AER predictions for all 221 

homes across the three year study period, we used hourly Tout and U to predict hourly AER, and 222 

then calculated daily (24 h average) AER.  223 

We determined Tin from continuous (5 min) indoor measurements. For parameter 224 

estimation, we calculated the 24 h average Tin time-matched to the 24 h average AER 225 

measurements. For developing AER predictions for all homes across the three year study period, 226 

we set Tin to the 24 ºC, which is the overall median of 1 h average Tin from a subset of 59 homes 227 

across 6 seasons. We used a constant value for Tin since the seasonal medians of the Tin did not 228 
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vary substantially (24, 24, 24, 25, 23, 23 ºC in fall 2010, winter 2010, spring 2011, summer 229 

2011, fall 2011, winter 2011; respectively). 230 

We estimated Aleak with a literature-reported leakage area model.6,26 The Aleak is 231 

calculated as  232 

  Aleak = NL/NF     (5) 233 

where NL is the normalized leakage and NF is the normalization factor. NL was estimated from 234 

the year built Ybuilt and Afloor as described by   235 

  NL=exp(β0 + β1Ybuilt + β2Afloor)    (6) 236 

where β0, β1, and β2 are the regression parameters. The NF is defined as 237 

  NF=(1000/Afloor )(H/2.5)0.3     (7) 238 

where H is the building height. We set H to the number of stories multiplied by a story height of 239 

2.5 m and adding a roof height of 0.5 m.6 The Afloor was obtained as described above and Ybuilt 240 

was obtained from online city and real estate databases of property records (BS&A Software, 241 

Bath, MI, USA; Zillow, Seattle WA, USA; Trulia, San Francisco, CA, USA).  242 

 243 

LBLX Leakage + Natural Ventilation Model 244 

The LBLX model predicts the AER due to leakage and natural ventilation. The airflow is 245 

calculated as   246 

     (8) 247 

Where QLBL is the leakage airflow as defined above, and Qnat is the natural ventilation airflow 248 

through open windows.6 The AER is calculated as QLBLX divided by V.  249 

The airflow for natural ventilation Qnat is calculated as 250 

_ _                       (9)  251 
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where Qnat,wind and Qnat,stack are the airflows from the wind and stack effects, respectively. The 252 

Qnat_wind is defined as  253 

Qnat_wind = CvAnatU     (10) 254 

where Cv is the effectivene ss of the openings, and Anat is the area of the inlet openings. Using the 255 

literature-reported method, we set Cv to 0.30 and Anat to one-half of the total area of window 256 

openings.6 We calculated the 24 h average total area of window openings from daily window 257 

opening data (number of windows opened multiplied by fraction of day) multiplied by window 258 

opening area of 0.06 m2 (derived from literature-reported window width of 0.6 m and height of 259 

0.1 m) .6 The Qnat,stack is defined as  260 

_ 	
,

   (11)  261 

 where CD is the discharge coefficient for the openings, g is the gravitational acceleration, ΔHNPL 262 

is the height from midpoint of lower window opening to the neutral pressure level (NPL) of the 263 

building, and max{Tin,Tout} is the maximum value between Tin and Tout. Using literature-reported 264 

values, we set CD to 0.65, the midpoint of lower window opening to 0.91 m, and the NPL to one-265 

half of the building height.6 The building height is set to the number of stories multiplied by a 266 

story height of 2.5 m and adding a roof height of 0.5 m. 267 

 268 

Parameters for Aleak and Cross Validation 269 

We estimated the parameters (β0, β1, and β2) for Aleak (Equation 6) using the AER measurements. 270 

The subset of homes with measured AERs consisted of a cluster of 23 older homes built between 271 

1900 and 1969 (median 1942), and one newer home built in 1997 (Supplementary Material 272 

Figure S1). Since the cluster of 23 homes were substantially older than the home built in 1997, 273 

we used the cluster of 23 homes for parameter estimation. We then applied the estimated 274 
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parameters for all homes built in 1979 or before. For homes built after 1979, we used literature-275 

reported parameters.6 This cutoff of 1979 was based on 10 years after 1969, which is the upper 276 

range of the cluster of homes used for parameter estimation.   277 

The literature-reported parameters (β0, β1, β2) were previously estimated for low-income 278 

homes and conventional homes.6,26 Low-income homes are residences with household incomes 279 

below 125% of the poverty guideline. In this study, household incomes were collected for all 280 

homes.  281 

We performed a leave-one-out jackknife method to estimate parameters (β0, β1, β2) and 282 

cross validation for model evaluation.27-29 Since the subset of homes with AER measurements 283 

had daily window opening data, the LBLX model was used for parameter estimation, and both 284 

the LBLX and LBL models were evaluated. We estimated parameters with a subsample of data 285 

(training sample) and evaluated the models with the remaining data (validation sample). We 286 

removed all samples from one home at a time (validation sample) and estimated parameters with 287 

the remaining subsample of data (training sample). We then evaluated the models with the 288 

validation sample. This process was performed independently for the low-income homes (n=17) 289 

and conventional homes (n=6) to yield two sets of parameters. Each of the 23 homes was used as 290 

a validation sample to yield 17 and 6 parameter sets for low-income and conventional homes, 291 

respectively. The jackknife estimates were then determined for the low-income homes and the 292 

conventional homes (Supplementary Material).  293 

 Each parameter set was estimated using the least-squares method. Let Y(x, d; β) be the 294 

LBLX model-predicted AER in the xth home on the dth day with parameter set β = (β0, β1, β2). Let 295 

Yx,d be the measured AER in the xth home on the dth day. Then, the least squares estimate, 296 

β* = (β0
*, β1

*, β2
*) is the parameter values β which minimize the cost function 297 
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∑ ∑ 	 , ; ,     (12) 298 

where N is the number homes, and M is the number of days with AER measurements in the xth 299 

home.  300 

 Parameters were estimated with an iterative optimization algorithm. We chose the 301 

Nelder-Mead simplex method for its relative insensitivity to the initial parameters values 302 

compared with other common methods, such as Newton’s method, and its robustness to 303 

discontinuities.30 Initial parameter values were set to literature-reported parameters.6 304 

Convergence to the solution was confirmed after the parameter search terminated.  305 

 306 

Model Evaluation Metrics 307 

For model evaluation, we evaluated the differences between individual model-predicted AER 308 

( , ; ∗ ) and measured AER ( ,   using two metrics: relative difference ε (%) and absolute 309 

difference Δ (1/h). These metrics are calculated as  310 

ε 100
, ; ∗

,

,
     (13) 311 

Δ , ; ∗
,      (14) 312 

The absolute difference Δ provides the amount of deviation, and the relative difference ε 313 

indicates whether Δ is small or large relative to the measured AER. However, for measured AER 314 

with low values, a minor deviation could yield a large ε. In this case, Δ is more meaningful than 315 

ε for model evaluation. Therefore, both ε and Δ are used in this study. A positive value for ε and 316 

Δ indicates that the model overestimated the measured AER, while a negative value indicates 317 

underestimation. Since ε and Δ indicate the bias (i.e., overestimation or underestimation), we 318 

also calculated the absolute values |ε| and |Δ| to quantify the magnitude of deviation.    319 
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To compare the modeled and measured AER, we also calculated Pearson and Spearman 320 

correlation coefficients. To account for the repeated AER measurements at the homes, we 321 

calculated weighted correlation coefficients.31 First, each measurement for a given home is 322 

replaced with the average measurement for that home. Then, the correlation coefficients were 323 

calculated from with the revised values. To determine the amount of variation explained by the 324 

AER models, we calculated the coefficient of determination (R2) as defined by the square of the 325 

Pearson correlation coefficient.     326 

 327 

RESULTS 328 

For the subset of 24 homes with AER measurements, summary statistics are provided for 329 

the number of homes, number of days windows opened, daily measured AER in the two seasons 330 

and three road type classifications (Table 1), and building characteristics (Supplementary 331 

Material Table S4). Across the 24 homes in the fall and spring, the measured AER varied 332 

between 0.09 h-1 (minimum) to 3.48 h-1 (maximum) with a median of 0.64 h-1. Between the fall 333 

and spring, there was no substantial difference in the median AER (0.63 h-1 in fall, 0.67 h-1 in 334 

spring). For the road types, the median AER were highest for HTHD (0.79 h-1) and lowest for 335 

HTLD (0.49 h-1).   336 

The estimated leakage area (Aleak) model parameters for older homes are shown in 337 

Table 2. The literature-reported parameters β0 (low-income and conventional), β1 (low-income) 338 

and β1 (conventional) for newer homes (Table 3) were different (at 95% confidence level) from 339 

the corresponding estimated parameters for the older homes (Table 2).  340 

 341 

Model Evaluation   342 
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 Overall, the modeled AERs matched the measured AERs. Summary statistics are 343 

provided for the distributions of the modeled and measured AER (Table 1, Supplementary 344 

Material Table S6-S7). For the LBLX model, the modeled and measured AER had similar 345 

overall medians of 0.64, 0.65 h-1, 25th percentiles of 0.45, 0.42 h-1, and 75th percentiles of 0.99, 346 

0.99 h-1, respectively. For the LBL model, the AER had overall median of 0.64 h-1, 25th and 75th 347 

percentiles of 0.43 and 0.97 h-1, respectively, which were slightly lower than the LBLX model.  348 

A comparison of the individual modeled and measured AERs is shown for each season 349 

and road type (Figure 1, Supplementary Material Figure S3). Overall, the weighted Pearson and 350 

Spearman correlation coefficients were 0.78 (R2=0.61) and 0.81 for the LBLX model, and 0.77 351 

(R2=0.59) and 0.79 for the LBL model, respectively. Scatter plots of the modeled and measured 352 

AER for each home are shown (Supplementary Material Figure S5). The LBLX and LBL 353 

showed similar results with the same overall median |ε| of 29%, and median |Δ| of 0.19 h-1 354 

(Figure 1, Supplementary Material Figure S2). The overall median |ε| for the AER models were 355 

4% above the estimated PFT measurement uncertainty of 25% (Williams 2009).   356 

The LBLX and LBL models showed similar |ε| quartiles for each season and road type 357 

(Figure 1, Supplementary Material Figure S3). The LBLX model generally overestimated the 358 

AER with overall median ε of 6% and median Δ of 0.03 h-1 (Supplementary Material Figure S2). 359 

The LBL model also tends to overestimate the AER, but with a slightly smaller overall median ε 360 

of 5%. For the HTHD road type, the LBLX and LBL models underestimated the AER with 361 

overall median ε of -14% and -17%, respectively. For the two seasons and the HTLD and LTLD 362 

road types, the LBLX and LBL model tended to overestimate the AER.  363 

We evaluated the models for the older homes and the one newer home (Figure 2, 364 

Supplementary Material Figure S4). For the older homes, the LBLX and LBL models showed 365 
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similar results with overall median |ε| of 29% and 29%, and median ε of 6% and 5%, 366 

respectively. Since windows were not opened in the newer home, the LBLX and LBL models 367 

had identical results with median |ε| of 17% and median ε of 6%. 368 

A comparison of the individual modeled and measured AERs is shown for different 369 

window openings (Figure 2, Supplementary Material Figure S4). The LBLX and LBL models 370 

are equivalent for days with windows closed, and therefore show identical results with median |ε| 371 

of 29% and median ε of 6%. For days with windows opened, the LBLX and LBL models showed 372 

similar results with identical overall median |ε| of 26%, and median |Δ| of 0.24 h-1. However, the 373 

LBLX model tends to bias the AER less than the LBL model with ε medians of 1% and -14%, 374 

respectively.  375 

 376 

Model Predictions for NEXUS     377 

For applying the LBL model for the health study, we predicted the daily AER (24 h 378 

average) for all 213 homes across three years. Summary statistics are provided for the building 379 

characteristics (Supplementary Material Table S5). The variability of the daily indoor-outdoor 380 

temperature difference, outdoor temperature and wind speed is shown across three years (Figure 381 

3B-3D).   The modeled AER varied between 0.11 h-1 (minimum) and 3.04 h-1 (maximum) with 382 

25th, 50th, and 75th percentiles of 0.66, 0.95, and 1.28 h-1, respectively (Figure 4). The modeled 383 

AER time-course is shown for two homes: homes with highest and lowest median AER 384 

predictions (Figure 3A). The slow AER oscillations correspond to variations of the indoor-385 

outdoor temperature differences (Figure 3). The brief AER transients (i.e., positive and negative 386 

spikes) correspond primarily to the wind speed variations, and secondarily to indoor-outdoor 387 

temperature difference variations (Figure 3). The AER variability is shown for each season and 388 
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road type (Figure 4). The median modeled AER was highest in the winters (1.36, 1.41, 1.31, and 389 

1.24 h-1 for the 4 consecutive winters) and lowest in the summers (0.59, 0.60, 0.63 h-1 for the 3 390 

consecutive summers). This seasonal variation corresponded to the median indoor-outdoor 391 

temperature differences highest in the winters (26.7, 27.8, 23.3, 22.2 ºC for the 4 consecutive 392 

winters) and lowest in the summers (0.8, 0.6, 0.0 ºC for the 3 consecutive summers), but did not 393 

correspond to the wind speeds, which did not vary between seasons The median wind speeds in 394 

winter (12.9, 14.5, 12.9, 12.9 km h-1 for the 4 consecutive winters) and spring (12.9, 12.9, 12.9 395 

km h-1 for the 3 consecutive springs) were similar and often slightly higher than the wind speeds 396 

in the summer (11.3, 9.7, 11.3 km h-1 for 3 consecutive summers) and fall (11.3, 12.9, 11.3 km 397 

h-1 for the 3 consecutive falls). For the HTHD, HTLD, and LTLD road types, the modeled AER 398 

were similar with medians of 0.99, 0.89, and 0.96 h-1, and interquartile ranges of 0.64, 0.60, and 399 

0.62 h-1, respectively. 400 

The variability of the AER predictions is shown for the individual homes within each 401 

road type (Figure 5). Across all road types, the modeled AER varied between 0.11 and 0.50 h-1 402 

for the minimums, 0.36 and 1.64 h-1 for the medians, and 0.64 and 3.04 h-1 for the maximums.  403 

The temporal AER variability of individual homes decreases with decreasing median AER 404 

(Figure 3A, Figure 5). Therefore, homes with tighter building envelopes tend to have smaller 405 

AER fluctuations from the temporal variability of stack and wind effects.  406 

 407 

DISCUSSION 408 

Our goal was to develop daily AER predictions for each NEXUS participant home to provide 409 

improved exposure estimates for the health study. We used cross-validation to evaluate two 410 

models (LBL and LBLX), which predict residential AER from questionnaires and meteorology, 411 
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with measured AERs from a subset of NEXUS homes. The daily modeled AER closely 412 

correspond to the measured AER with the same overall |ε| median of 29% for both the LBL and 413 

LBLX models. These results demonstrate that it is possible to apply these models for individual-414 

level air pollution exposure assessments that require daily predictions of house-specific AER.  415 

We found considerable variation in measured AERs (range: 0.09 - 3.48 h-1) and modeled 416 

AERs (range: 0.11 - 3.04 h-1). Another study in central North Carolina showed similar variation 417 

in measured AERs (range: 0.09 – 3.17 h-1) across 31 homes on seven consecutive days during the 418 

same two seasons (spring, fall) as the seasonal intensives in NEXUS.6 This suggest that AER 419 

differences may be an important source of heterogeneity in the infiltration of outdoor air 420 

pollutants into homes and the resulting exposures, even for studies focused on within-city 421 

variations and for studies in different geographical locations. Using questionnaire and weather 422 

data, the LBLX and LBL models explained a substantial amount of the measured AER variation 423 

(R2=61% and 59%, respectively).  424 

There is substantial temporal variation in the modeled AER that differs for each home 425 

based on the building envelope tightness. The home with the largest Aleak (i.e., leakiest building 426 

envelope) had the highest median AER (1.64 h-1) and largest AER range (0.50 - 3.04 h-1) across 427 

time.  The home with the smallest Aleak (i.e., tightest building envelope) had the lowest median 428 

AER (0.36 h-1) and smallest AER range (0.11 – 0.64 h-1) across time.  429 

This study demonstrates a novel health study design and modeling method designed to 430 

improve residential AER predictions for individual exposure assessments in health studies. This 431 

study is the first to use daily AER measurements and window opening data from a subset of 432 

homes for parameter estimation (i.e., model calibration) and model evaluation, and then apply 433 

the calibrated model to predict the spatial and temporal variations of the AER for each 434 
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participant’s home in a health study. This approach allowed us to identify where the relative 435 

error and bias in the predicted AERs may be important when used in the health effect analyses. 436 

For example, the model tended to underestimate AERs for the HTHD homes, while 437 

overestimating AERs for the HTLD and LTLD homes. 438 

We can compare our model performance using two alternative approaches for parameter 439 

estimation of Aleak. First, we estimated parameters using both the older and newer homes instead 440 

of estimating parameters using the older homes and using literature-reported parameters for the 441 

newer home, as described in the methods. Using this alternative method, the median |ε| for the 442 

newer home increased from 17% to 91% (Supplementary Material Figure S2, Figure 2). Second, 443 

we used the literature-reported parameters for both the older and newer homes instead of only for 444 

the newer home, as described in the methods. Using this alternative approach, the median |ε| for 445 

the older homes increased from 29% to 43%, the 25th percentile increased from 12% to 19%, and 446 

the 75th percentile increased from 63% to 131% (Supplementary Material Figure S2, Figure 2). 447 

This demonstrates the benefit of including AER measurements from a subset of homes, which 448 

represent the housing stock in the study, to reduce the AER model uncertainty.  449 

We can compare the AER model evaluation with other studies. LBL model evaluations 450 

using whole-building pressurization measurements to determine the leakage area showed mean 451 

|ε| of 26-46% 32 and 25% 33 for detached homes. For our implementation of the AER models, 452 

which uses a leakage area model, the LBL and LBLX models had mean |ε| of 43% and 48%, 453 

respectively for 31 detached homes across four seasons in central North Carolina.6 In this study, 454 

the LBL and LBLX models both had a mean |ε| of 45%. Given the limitations of single-zone 455 

AER models (e.g., no internal resistance to airflow, no internal temperature or pressure 456 
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differences) and the AER measurement error of the PFT method (accuracy of 20-25%, precision 457 

of 5-15% for occupied homes),18,24,25 our LBL and LBLX model evaluations are reasonable.   458 

On days with open windows, similar model evaluation results were obtained for the 459 

LBLX model, which includes both leakage and natural ventilation, and the LBL model, which 460 

includes only leakage. Another study showed similar results for the LBLX and LBL models with 461 

AER measurements and window opening data from 31 homes in central North Carolina.6 For 462 

253 days with open windows across 4 consecutive seasons, the median |ε| was 41% and 48% for 463 

the LBLX and LBL models, respectively. The LBL and LBLX models may perform similarly 464 

since windows may be opened more often on comfortable days with small indoor-outdoor 465 

temperature differences. Thus, the stack effect may be small on days with windows opened. 466 

Also, the stack effect can be reduced after windows are opened from a thermal equilibrium 467 

created between indoor and outdoor temperatures. These results suggest that our application of 468 

the LBL model, instead of the LBLX model, for the NEXUS health study is reasonable. In 469 

certain geographical locations (e.g., coastal regions) with high and persistent winds, comfortable 470 

outdoor temperatures across seasons, and frequent window opening; the LBLX model may 471 

provide substantially improved estimates as compared to the LBL model. 472 

The temporal resolution of the AER is determined by the meteorological data. In this 473 

paper, we used hourly outdoor temperature and wind speed measurements to predict hourly 474 

AER, and then calculated 24 h averages to compare with the 24 h average AER measurements. 475 

To account for the diurnal variation of traffic-related air pollutants, we plan to use the hourly 476 

AER predictions combined with hourly residential outdoor concentration predictions to predict 477 

every NEXUS participant’s hourly residential indoor concentrations based on the dynamic mass 478 

balance model (Equation 3).4 479 
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Since the AER is the key parameter for Finf (Equation 2), we can compare our AER 480 

models with a previously reported model used to predict Finf of outdoor PM2.5 for individual 481 

homes in a health study.12 The reported Finf model is an empirical model that does not include 482 

the stack and wind effects, which are the driving forces for leakage and natural ventilation 483 

airflows. This infiltration model also does not account for differences in the leakage area 484 

between homes. In our study, the LBL and LBLX models include the stack and wind effects, and 485 

the building characteristics that modify the stack effect (i.e., building height) and wind effect 486 

(i.e., local wind sheltering and building height). Also, these AER models are linked to a building-487 

specific leakage area model (Equation 5). 488 

A limitation of this study is that mechanical ventilation could not be included in the AER 489 

predictions for the three year health study since it was not collected due to cost and participant 490 

burden considerations. We expect bathroom fans, outdoor-vented kitchen range hoods, and 491 

clothes dryers, which have low-intermediate airflows and are used intermittently, to have a small 492 

AER effect. Central heating and air conditioning (HVAC) systems in homes re-circulate indoor 493 

air with no outdoor air intake, but can have air duct leaks in unconditioned spaces (e.g., 494 

basements, attics) when operated.34 However, none of the NEXUS homes had HVAC systems. 495 

Window/wall air conditioners also re-circulate indoor air, but can be operated with open outdoor 496 

vents. Other types of outdoor-vented fans include window fans and whole-house fans, which 497 

move outdoor air into the living space through open windows. Overall, we expect a large AER 498 

effect from window fans, whole-house fans, and window/wall air conditioners operated with 499 

open outdoor vents. Attic fans, which ventilate the attic space and not the living space with soffit 500 

or gable vents, are expected to have a small AER effect.  501 
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Another limitation of this study is that the AER were measured in the spring and fall, 502 

with no measurements from the summer or winter due to cost. However, the leakage area model 503 

parameters, which were estimated from the AER measurements, are independent of the stack and 504 

wind effects that can vary seasonally. Therefore, we expect AER measurements from different 505 

seasons to have a small effect on the estimate parameters. In addition, a previous study that 506 

compared AER measurements with LBL and LBLX model predictions showed similar results in 507 

all four seasons.6 Therefore, we expect the model performance in this study to be similar across 508 

the four seasons.       509 

This study demonstrates the ability of using a novel method of integrating AER 510 

measurements and models to predict the large home-to-home (spatial) and temporal variability of 511 

residential AERs, which is an important determinant of exposure heterogeneity in air pollution 512 

health studies. Using AER measurements from a subset of homes, we calibrated, evaluated, and 513 

applied mechanistic AER models that agree closely to daily AER measurements and explain a 514 

substantial amount of the AER variation. Using this novel approach, NEXUS will be one of the 515 

first epidemiology studies to apply calibrated and home-specific AER models, and to include the 516 

spatial and temporal variations of AER for over 200 individual homes across multiple years into 517 

an exposure assessment. This capability will help to provide more accurate exposure estimates 518 

for epidemiological studies in support of improving risk estimates.    519 

 520 

ACKNOWLEDGMENTS 521 

The NEXUS study involves a community-based participatory research partnership, which was 522 

conducted with input from several partners, including the Community Action Against Asthma 523 

(CAAA) Steering Committee. We thank the CAAA its member organizations including the Arab 524 



25 
 

Community Center for Economic and Social Services, Community Health and Social Services 525 

Center Inc., Detroit Hispanic Development Corporation, Detroiters Working for Environmental 526 

Justice, Friends of Parkside, Detroit Department of Health and Wellness Promotion, Latino 527 

Family Services, Southwest Detroit Environmental Vision, Warren/Conner Development 528 

Corporation, the University of Michigan School of Medicine, the University of Michigan School 529 

of Public Health, and an independent community activist. We also thank Thomas Robins and 530 

Toby Lewis, and our field laboratory and data management staff including Leonard Brakefield, 531 

Sonya Grant, Laprisha Berry Vaughn, Graciela Menz, and Irme Cuadros (University of 532 

Michigan). We also thank Gary Norris for his help with the study design, and Robert Devlin and 533 

Michelle Oakes (US Environmental Protection Agency) for their reviews and helpful 534 

suggestions. The US Environmental Protection Agency through its Office of Research and 535 

Development partially funded the research under cooperative agreement R834117 (University of 536 

Michigan) and contract EP-D-10-070 (Alion Science and Technology). Although this manuscript 537 

was reviewed by the U.S. Environmental Protection Agency and approved for publication, it may 538 

not necessarily reflect official Agency policy. The study was conducted as part of NIEHS grants 539 

5-R01-ES014677-02 and R01 ES016769-01. Mention of trade names or commercial products 540 

does not constitute endorsement or recommendation for use. 541 

 542 

SUPPLEMENTARY MATERIAL 543 

The supplementary material includes details of the jackknife method for parameter estimation 544 

and additional tables and figures. 545 

 546 

CONFLICTS OF INTEREST 547 



26 
 

The authors declare no conflict of interest. 548 

 549 

REFERENCES 550 

 551 
1. Integrated Science Assessment for Particulate Matter (Final Report); EPA/600/R-08/139F; 552 

United States Environmental Protection Agency, Washington, DC, 2009. 553 

 554 

2. HEI panel on the health effects of traffic-related air pollution: a critical review of the literature 555 

on emissions, exposure, and health effects. HEI Special Report 17. Health Effects Institute, 556 

Boston, MA, 2010.  557 

 558 

3. National Research Council. Epidemiology and Air Pollution. The National Academies Press: 559 

Washington, DC, 1985.  560 

 561 

4. Vette A, Burke J, Norris G, Landis M, Batterman S, Breen M et al. Community Action 562 

Against Asthma Steering Committee. The near-road exposures and effects of urban air 563 

pollutants study (NEXUS): study design and methods. Sci. Total. Environ. 2013; 448: 38-47. 564 

 565 

5. Breen MS, Long TC, Schultz BD, Crooks J, Breen M, Langstaff JE et al. GPS-based 566 

microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air 567 

pollution exposure assessments: model evaluation in central North Carolina. J Exp Sci 568 

Environ Epidemiol. 2014; 24: 412-420. 569 

 570 



27 
 

6. Breen MS, Breen M, Williams RW, Schultz BD. Predicting residential air exchange rates from 571 

questionnaires and meteorology: model evaluation in central North Carolina. Environ. Sci. 572 

Technol. 2010; 44: 9349-9356. 573 

 574 

7. United States Environmental Protection Agency. Exposure Model for Individuals (EMI). 575 

Available at http://www.epa.gov/heasd/emi. 576 

 577 

8. Sarnat JA, Sarnat SE, Flanders WD, Chang HH, Mulholland J, Baxter LK, Isakov V, 578 

Ozkaynak H. Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-579 

related morbidity in Atlanta. J Expo Sci Environ Epidemiol 2013; 23: 606-615. 580 

 581 

9. Hodas N, Turpin BJ, Lunden MM, Baxter LK, Ozkaynak H, Burke J, Ohman-Strickland P, 582 

Thevenet-Morrison K, Kostis JB, Rich DQ. Refined ambient PM2.5 exposure surrogates and 583 

the risk of myocardial infarction. J Expo Sci Environ Epidemiol 2013, 23: 573-580. 584 

 585 

10. Breen MS, Schultz BD, Sohn MD, Long T, Langstaff J, Williams R et al. A review of air 586 

exchange rate models for air pollution exposure assessments. J Exp Sci Environ Epidemiol. 587 

2013; doi:10.1038/jes.2013.30 [Epub ahead of print] 588 

 589 

11. Meng QY, Spector D, Colome S, Turpin B. Determinants of indoor and personal exposure to 590 

PM2.5 of indoor and outdoor origin during the RIOPA study. Atmos Environ 2009; 43: 5750-591 

5758. 592 

 593 



28 
 

12. Allen RW, Adar SD, Avol E, Cohen M, Curl CL, Larson T, et al. Modeling the residential 594 

infiltration of outdoor PM2.5 in the multi-ethnic study of atherosclerosis and air pollution 595 

(MESA Air). Environ Health Perspect 2012; 120: 824-830. 596 

 597 

13. Wallace, L.; Williams, R.; Suggs, J.; Jones, P. Estimating contributions of outdoor fine 598 

particles to indoor concentrations and personal exposures: effects of household characteristics 599 

and personal activities. EPA/600/R-06/023; United States Environmental Protection Agency: 600 

Washington, DC, 2006. 601 

 602 

14. Ekberg LE. Relationship between indoor and outdoor contaminants in mechanically 603 

ventilated buildings. Indoor Air 1996; 6: 41-47 604 

 605 

15. Chan WR, Nazaroff WW, Price PN, Gadgil AJ. Effectiveness of urban shelter-in-place-I: 606 

idealized conditions. Atmos Environ 2007; 41: 4962-4976. 607 

 608 

16. Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Final 609 

Report); EPA/600/R-10/076F; United States Environmental Protection Agency, Washington, 610 

DC, 2013. 611 

 612 

17. Integrated Science Assessment for Carbon Monoxide (Final Report); EPA/600/R-09/019F; 613 

United States Environmental Protection Agency, Washington, DC, 2010. 614 

 615 



29 
 

18. American Society of Heating, Refrigerating, and Air Conditioning Engineers. The 2009 616 

ASHRAE Handbook-Fundamentals; ASHRAE: Atlanta, GA, 2009.  617 

 618 

19. Klepeis, N. E.; Nelson, W. C.; Ott, W. R.; Robinson, J. P.; Tsang, A. M.; Switzer, P.; Behar, 619 

J. V.; Hern, S. C.; Engelmann, W. H. The National Human Activity Pattern Survey (NHAPS): 620 

a resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. 621 

Epidemiol. 2001, 11, 231-252. 622 

 623 

20. Leech, J. A.; Nelson, W. C.; Burnett, R. T.; Aaron, S.; Raizenne, M. E. It's about time: a 624 

comparison of Canadian and American time-activity patterns. J. Expo. Anal. Environ. 625 

Epidemiol. 2002, 12, 427-432. 626 

 627 

21. Sherman, M. H.; Grimsrud, D. T. Infiltration-pressurization correlation: simplified physical 628 

modeling. ASHRAE Transactions 1980, 86, 778-807. Lawrence Berkeley Laboratory Report, 629 

LBL-10163.  630 

 631 

22. Dietz, R. N.; Goodrich, R. W.; Cote, E. A.; Wieser, R. F. Detailed description and 632 

performance of a passive perfluorocarbon tracer system for building ventilation and air 633 

exchange measurements, measured air leakage of buildings. Eds. Trechsel H.R., and Lagus 634 

P.L.; ASTM STP 904. American Society for Testing and Materials: Philadelphia, PA, 1986, 635 

203-264. 636 

 637 



30 
 

23. Dietz, R. N.; Cote, E. A. Air infiltration measurements in a home using a convenient 638 

perfluorocarbon tracer technique. Environ. Int. 1982, 8, 419-433. 639 

   640 

24. Williams, R.; Rea, A.; Vette, A.; Croghan, C.; Whitaker, D.; Stevens, C.; McDow, S.; 641 

Fortmann, R.; Sheldon, L.; Wilson, H.; Thornburg, J.; Phillips, M.; Lawless, P.; Rodes, C.; 642 

Daughtrey, H. The design and field implementation of the Detroit Exposure and Aerosol 643 

Research Study. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 643-659. 644 

 645 

25. Sherman, M.; Wilson, D. Relating actual and effective ventilation in determining indoor air 646 

quality. Bldg. Envir. 1986, 21, 135-144. 647 

 648 

26. Chan, W. R.; Nazaroff, W. W.; Price, P. N.; Sohn, M. D.; Gadgil, A. J. Analyzing a database 649 

of residential air leakage in the United States. Atmos. Environ. 2005, 39, 3445-3455. 650 

 651 

27. Efron, B., Nonparametric estimates of standard error: The jackknife, the bootstrap and other 652 

methods. Biometrika 1981, 68, (3), 589-599. 653 

 654 

28. Efron, B.; Gong, G., A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. 655 

The American Statistician 1983, 37, (1), 36-48. 656 

 657 

29. Miller, R. G., The jackknife-a review. Biometrika 1974, 61, (1), 1-15. 658 

 659 



31 
 

30. Nelder JA, Mead R. A simplex method for function minimization. Comput. J. 1965; 7, 308-660 

313. 661 

 662 

31. Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: Part 663 

2- correlation between subjects. BMJ 1995; 310:633. 664 

 665 

32. Palmiter L.; Francisco, P.W. Modeled and measured infiltration phase III: A detailed case 666 

study of three homes (Technical Report); Ecotope Inc., Seattle, WA, 1996. 667 

 668 

33. Wang, W.; Beausoleil-Morrison, I.; Reardon J. Evaluation of the Alberta air infiltration 669 

model using measurements and inter-model comparisons. Bldg. Envir. 2009, 44, 309-318.   670 

 671 

34. Persily A; Musser, A.; Emmerich S. Modeled infiltration rate distributions for U.S. housing. 672 

Indoor Air 2010, 20: 473-485.  673 

 674 

FIGURE LEGENDS 675 

Figure 1. Comparison of absolute differences |Δ| (A) and relative differences |ε| (B) between 676 

individual modeled and measured AER for each model. Results are separated by season, road 677 

type, and across all days. Shown are medians with 25th and 75th percentiles.   678 

 679 

Figure 2. Comparison of absolute differences for |Δ| (A) and |ε| (B) between individual modeled 680 

and measured AER for the LBLX and LBL models. Results are separated by house age and 681 

window status. Shown are medians with 25th and 75th percentiles.  682 
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  683 

Figure 3. AER predictions for 213 homes across 3 years of health study with results for each 684 

season and road type. Boxes correspond to median, 25th and 75th percentiles; and whiskers 685 

correspond to minimum and maximum values. Winter includes December, January, and 686 

February; spring includes March, April, May; summer includes June, July, August; fall includes 687 

September, October, and November. AER oscillations correspond to indoor-outdoor temperature 688 

differences. AER transients of positive or negative spikes correspond primarily to wind speeds 689 

and secondarily to indoor-outdoor temperature differences. 690 

 691 

Figure 4. AER predictions for 213 homes across the 3 years of the health study with results for 692 

individual homes grouped by the 3 traffic categories for the homes: HTHD (A), HTLD (B), and 693 

LTLD(C). Box plots show median, 25th and 75th percentiles, and minimum and maximum values 694 

of 24 h average AER.   695 

 696 
Figure 5. Time-course of AER predictions (A), absolute indoor-outdoor temperatures (B), 697 

outdoor temperatures (C), and wind speeds (D) across the 3 years of health study. Two AER 698 

time-course plots correspond to homes with highest and lowest median AER predictions. Plots 699 

show daily 24 h average values across 3 years of health study from January 1, 2010 to December 700 

31, 2012. 701 



size   Mean     SD      Min       p5       p10      p25      p50      p75      p90      p95     Max

Season:year1 or   
road type 
classification of 
home

Table 1. Number of homes, number of days windows opened, and summary statistics for measured 24 h average air exchange rates

Fall:2010

Spring:2011

HTHD3

HTLD3

LTLD3

All

119    0.74     0.56     0.09     0.12     0.17     0.41     0.63     0.97     1.21     1.69     3.48

78    0.83     0.48     0.25     0.32     0.35     0.45     0.67     1.06     1.66     1.81     2.05

55    1.00     0.73     0.11     0.14     0.39     0.53     0.79     1.17     2.01     2.70     3.48

44    0.65     0.41     0.09     0.13     0.16     0.35     0.49     0.96     1.18     1.52     1.82

98    0.70     0.39     0.09     0.20     0.25     0.43     0.64     0.91     1.23     1.51     1.80

197    0.77     0.53     0.09     0.16     0.25     0.42     0.64     0.99     1.43     1.81     3.48

Number of 
homes

24 

17 

7

5

12

24

1 Fall: September, October, and November; spring: March, April, and May

2 Percentage of days windows opened relative to corresponding sample size are shown in parentheses

3 HTHD: high traffic high diesel, HTLD: high traffic low diesel, LTLD: low traffic low diesel

Air Exchange Rates (h-1)
Number of 

days 
windows 
opened2

19 (16%)

9 (12%)

12 (22%)

2 (5%)

14 (14%)

28 (14%)

Sample



House-type

Table 2. Estimated leakage area model parameters for older homes (built in 1979 or before)

Low-Income

Conventional

Parameter1

β0

β1

β2 

β0

β1

β2 

1 β0 and β1 are dimensionless, β2 expressed in units of m-2

Estimate (95% CI)

6.55 x 101 (2.90 x 101, 1.02 x 102)

-3.40 x 10-2 (-5.29 x 10-2, -1.51 x 10-2)

-7.33 x 10-4 (-9.34 x 10-3, 7.88 x 10-3)

5.69 x 101 (1.77 x 101, 9.62 x 101)

-2.91 x 10-2 (-4.91 x 10-2, -9.07 x 10-3)

-5.65 x 10-3 (-1.39 x 10-2, 2.58 x 10-3)

House-type

Table 3. Literature-reported leakage area model parameters 
for newer homes (built after 1979)

Low-Income

Conventional

Parameter1

β0

β1

β2 

β0

β1

β2 

1 β0 and β1 are dimensionless, β2 expressed in units of m-2

Value

11.1 

-5.37 x 10-3

-4.18 x 10-3

20.7 

-1.07 x 10-2

-2.20 x 10-3

Description

Intercept

Year built

Floor area

Intercept

Year built

Floor area

Description

Intercept

Year built

Floor area

Intercept

Year built

Floor area
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