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Abstract 
 
The quality of exposure assessment is a major determinant of the overall quality of any 
environmental epidemiology study.  The use of biomonitoring as a tool for assessing exposure to 
ubiquitous chemicals with short physiologic half-lives began relatively recently.  These 
chemicals present several challenges, including their presence in analytical laboratories and 
sampling equipment, difficulty in establishing temporal order in cross-sectional studies, short- 
and long-term variability in exposures and biomarker concentrations, and a paucity of 
information on the number of measurements required for proper exposure classification.  To 
date, the scientific community has not developed a set of systematic guidelines for designing, 
implementing and interpreting studies of short-lived chemicals that use biomonitoring as the 
exposure metric or for evaluating the quality of this type of research for WOE assessments or for 
peer review of grants or publications.  We describe key issues that affect epidemiology studies 
using biomonitoring data on short-lived chemicals and propose a systematic instrument – the 
Biomonitoring, Environmental Epidemiology, and Short-Lived Chemicals (BEES-C) Instrument 
- for evaluating the quality of research proposals and studies that incorporate biomonitoring data 
on short-lived chemicals.  Quality criteria for three areas considered fundamental to the 
evaluation of epidemiology studies that include biological measurements of short-lived 
chemicals are described: 1) biomarker selection and measurement, 2) study design and 
execution, and 3) general epidemiological study design considerations.  We recognize that the 
development of an evaluative tool such as BEES-C is neither simple nor non-controversial.  We 
hope and anticipate that the instrument will initiate further discussion/debate on this topic.  
 
Key words: BEES-C, biomonitoring, ubiquitous chemicals, short physiologic half-life, 
evaluation instrument, environmental epidemiology 
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1. INTRODUCTION 
 
Epidemiological research plays a critical role in assessing the effects of various chemical, 
physical, biological, radiological, and behavior-related exposures on human health. However, 
even well-designed and rigorously implemented epidemiological studies that are specifically 
designed to test causal hypotheses in humans often report conflicting results. Regulatory bodies 
and consensus panels charged with recommending health policy typically rely on weight-of-
evidence (WOE) approaches for evaluating epidemiological research findings. A WOE 
assessment may be incomplete or misleading if it does not evaluate study quality to ensure that 
the conclusions are based on the strongest evidence available.  In addition, study quality 
assessments during peer reviews of grant proposals and manuscripts serve to enhance the overall 
quality of human exposure and health research. 
 
While determination of study quality will always to some extent involve professional judgment, 
there appears to be an emerging consensus that any evaluation of the strength of epidemiological 
evidence should rely on agreed-upon criteria that are applied systematically (Vandenbroucke, 
2007). These considerations motivated the development and refinement of several study quality 
assessment tools. Some of these tools (e.g., STROBE [Vandenbroucke et al., 2007]; CONSORT 
[Moher et al., 2001]) address general issues that apply across disciplines. Other tools were 
developed specifically for various areas of medicine or life sciences (e.g., STREGA for genetic 
studies [Little et al., 2009], GRADE for comparative treatment effectiveness research [Owens et 
al., 2010], and STARD for studies of diagnostic accuracy [Bossuyt et al., 2004]).  
 
In view of the current tendency towards standardization of WOE assessment that incorporates 
study quality, the relative paucity of instruments for evaluating environmental epidemiology 
studies – either during development of study design or in review of manuscripts - is notable and 
difficult to explain.  An evaluative scheme focusing on assessing study quality for weight of 
evidence assessments (Harmonization of Neurodevelopmental Environmental Epidemiology 
Studies) (Youngstrom et al., 2012) used the Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS) as the basis for a coding tool (Whiting et al., 2003), but as the name implies, this 
instrument centered on neurodevelopmental studies.  The National Toxicology Program recently 
developed an approach for assessing study quality (NTP, 2013) and used this to examine the 
literature on environmental chemicals and diabetes (Kuo et al., 2013); this scheme included 
assessments of both epidemiologic and toxicology literature and included non-persistent and 
persistent chemicals but did not incorporate issues specific to biomonitoring of short-lived 
chemicals.  
 
The lack of a tool that provides systematic guidance on best practices for environmental 
epidemiological research is an important limitation to regulatory decisions which rely on 
population-based studies. WOE assessments based on environmental epidemiology data are 
unique because, unlike other areas of research, experimental studies designed to elicit an adverse 
outcome in humans are rarely, if ever, ethically possible. Thus, environmental epidemiology 
studies are almost always observational and are subject to unavoidable uncertainty stemming 
from various sources. An important source of uncertainty in environmental epidemiology, but 
also an area of rapid progress, relates to exposure science. 
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Exposure assessment is a major determinant of the overall data quality in any environmental 
epidemiology study (Hertz-Picciotto, 1998), including chemicals with short physiologic half 
lives.  Short-lived chemicals are those for which the time required to eliminate one-half of the 
chemical mass from the body or from a given matrix is on the order of minutes to hours or days.  
The quality of the exposure assessment for short-lived chemicals is intimately tied to the data’s 
utility in assessing associations with health outcomes as well as to studies using biomonitoring to 
examine various aspects of exposure.  In recent years, exposure science methods have 
particularly benefited from improvements in the ability to detect environmental chemicals 
through biomonitoring.  Biomonitoring is the measurement of chemicals in various human 
matrices such as blood, urine, breath, milk and hair.  Biomonitoring data integrate exposure from 
all routes (oral, inhalation, dermal, trans-placental) and are valuable for: (1) establishing 
population reference ranges; (2) identifying unusual exposures for subpopulations; (3) evaluating 
temporal variability and trends within a population; (4) validating questions designed to estimate 
individual exposure; and (5) examining associations with health outcomes in epidemiologic 
studies.  
 
Epidemiologic research with biomonitoring as the basis for measuring exposure for persistent 
organic pollutants and metals has been conducted for decades.  By contrast, biomonitoring of 
ubiquitous chemicals with short physiologic half-lives (e.g., benzene, phthalates, certain 
pesticides) began relatively recently, and these chemicals present several new challenges as 
interpretation of data on these chemicals is complicated by variability in exposure and the 
ubiquitous nature of many of these chemicals, including in analytical laboratories and sampling 
equipment.  These chemicals also present challenges when selecting the matrix to be used in the 
research.  To date, the scientific community has not developed a set of systematic guidelines for 
implementing and interpreting biomonitoring studies of these chemicals.  Similarly, there is no 
published method for evaluating the quality of this type of research for WOE assessments or for 
peer review of grants or publications.  
 
This knowledge gap was the specific focus of the 2013 international workshop “Best Practices 
for Obtaining, Interpreting and Using Human Biomonitoring Data in Epidemiology and Risk 
Assessment: Chemicals with Short Biological Half-Lives.”  The workshop brought together an 
expert panel from government, academia, and private institutions specializing in analytical 
chemistry, exposure and risk assessment, epidemiology, medicine, physiologically-based 
pharmacokinetic (PBPK) modeling, and clinical biomarkers.  The aims of the workshop were to 
(i) describe the key issues that affect epidemiology studies using biomonitoring data on 
chemicals with short physiologic half lives, and (ii) develop a systematic scheme for evaluating 
the quality of research proposals and studies that incorporate biomonitoring data on short-lived 
chemicals.  
 
Quality criteria for three areas considered to be fundamental to the evaluation of epidemiology 
studies that include biological measurements of short-lived chemicals are described in this paper: 
1) biomarker selection and measurement, 2) study design and execution, and 3) general 
epidemiological study design considerations.  Key aspects of these topic areas are discussed and 
are then incorporated into a proposed evaluative instrument – the Biomonitoring, Environmental 
Epidemiology, and Short-Lived Chemicals (BEES-C) instrument - organized as a tiered matrix 
(Table 1).  Some aspects of the proposed evaluative instrument include study design elements 
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that are relevant to epidemiology studies of both persistent and short-lived chemicals.  In fact, 
aspects of widely accepted instruments such as STROBE have intentionally been weaved into 
the evaluative instrument proposed here (Little et al., 2009; Vanderbrouchke et al., 2007; Gallo 
et al., 2011).  (STROBE offers guidance regarding methods for improving on reporting of 
observational studies and for critically evaluating these studies; STROBE is designed to be used 
by reviewers, journal editors and readers [(Vandenbroucke et al., 2007)].)  While both 
established and novel aspects of this instrument are critical to assessing the quality of a study 
using biomonitoring of short-lived chemicals as an exposure assessment approach, the primary 
objective of this communication is to cover critical aspects of studies of short-lived chemicals; 
these are described more fully in the text.  
 
The list of quality issues that could be used to evaluate a given study is long; a tension exists 
between the development of an all-inclusive but unwieldy instrument versus a more 
discriminating and utilitarian instrument that includes only the most important issues (focusing 
on those research aspects that are unique – or of particular importance - to short-lived 
chemicals). We opted for the latter in developing the proposed BEES-C Instrument.  The 
instrument can be applied to studies that examine the relation between exposure and health 
outcome as well as to studies using biomonitoring data to various aspects of exposure (e.g., 
temporal and spatial trends).  The issues raised here and addressed by the BEES-C instrument cut 
across multiple disciplines that involve biological measurements of short-lived chemicals, 
including occupational studies and nutritional epidemiology. 
 
The features of short-lived chemicals in environmental epidemiology studies that require special 
attention are: the number and timing of samples taken in order to represent the relevant exposure 
window for the health outcome of interest; the ubiquitous use of many of these chemicals in 
currently manufactured products, including personal care products, laboratory equipment, dust, 
food, etc., which introduces special needs for avoidance of sample contamination; choice of 
appropriate biological matrix; and the ability to measure a large number of chemicals in one 
sample, increasing the need for attention to full reporting and issues related to multiple 
comparisons. These are discussed more fully in the following sections, with examples given for 
each issue. While most of the instrument topics pertain to biomarkers of exposure, biomarkers of 
effect are described when relevant. 
 
2. USING THE BEES-C INSTRUMENT  
 
The BEES-C instrument can serve multiple purposes including: aiding researchers in the 
development of study design, reviewing grant proposals, peer reviewing manuscripts, and 
conducting WOE assessments.  
 
2.1 Intended uses of BEES-C 
 
The ultimate goal of the BEES-C tool is to assist researchers in improving the overall body of 
literature on studies of short-lived chemicals in humans. The BEES-C instrument is not intended 
to be used: (i) to discourage researchers from conducting hypothesis-generating research, or (ii) 
to preclude lower-tiered studies from being included in WOE assessments. 
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As with any type of evaluative instrument, professional judgment must be part of the evaluative 
process, both in terms of tiering and for determining which aspects of the instrument are relevant 
to a given study. 
 
In the sections below, we describe the key aspects of BEES-C along with examples.  Here we 
discuss recommendations for utilizing BEES-C.  While the preponderance of the topics covered 
by this instrument would pertain to human biomonitoring studies that are part of epidemiological 
research on associations between biomarkers of exposure and some measure of effect (e.g., 
biomarker of effect, physician-diagnosed disease), only a portion of the BEES-C instrument will 
be applicable to human biomonitoring studies designed for other purposes (e.g., exposure 
assessment for temporal or spatial trend analyis).  
 
2.2 How to use BEES-C 
 
Table 1 is organized according to aspects of study design (rows) and evaluative tiers (columns).  
For each study under review, critical aspects are assessed row by row and the appropriate cell is 
color-coded (Figure 1), with Tier 1 indicating the highest quality.  This allows the 
researcher/reviewer to obtain an overall picture of study quality.  The user of this instrument 
should provide justification for each decision made (Table 1); this will enhance transparency in 
the process.  The BEES-C instrument can be used: (i) as an instrument by researchers evaluating 
their proposed study design to ensure that the study quality is maximized; (ii) by reviewers of 
manuscripts and publications to systematically assess the quality of the research and identifying 
areas where quality could be improved; (iii) by those performing systematic reviews for 
evaluating study quality in order to inform decision-making (e.g., Is a study of sufficiently high 
quality to use in developing regulatory standards? Should a study be included in a meta-
analysis?); and (iv) by others wishing to incorporate BEES-C into their currently existing review 
schemes.  For example, many of the issues in our proposed approach that are specifically 
applicable to short-lived chemicals are not yet part of the draft Office of Health Assessment and 
Translation Approach (NTP, 2013) but could be incorporated into their approach for conducting 
“literature-based evaluations to assess the evidence that environmental chemicals, physical 
substances, or mixtures (collectively referred to as "substances") cause adverse health effects.” 
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Table 1: Biomonitoring, Environmental Epidemiology, and Short-Lived Chemicals (BEES-C) Instrument: Evaluative instrument for 1 
assessing quality of epidemiology studies involving biomonitoring of chemicals with short physiologic half-lives.  Evaluative criteria 2 
cover several aspects of environmental epidemiology research with biomonitoring as the exposure metric (acronyms defined at bottom 3 
of table). The justification column is used to increase transparency in the process of decision-making.  4 
 5 
STUDY ASSESSMENT 
COMPONENTS 

TIER 1 TIER 2 TIER 3 Justification 

Biomarker Selection and Measurement  
Biological relevance 
(Parent/surrogate 
relationship) 
Exposure biomarker 
 
 
 
 
 
 
 
 
Effect biomarker 

 
 
 
Biomarker in a specified 
matrix has accurate and 
precise quantitative 
relationship with external 
exposure, internal dose, or 
target dose.  
 
 
 
Bioindicator of a key event 
in an AOP. 

 
 
 
Evidence exists for a 
relationship between 
biomarker in a specified 
matrix and external 
exposure, internal dose, or 
target dose. 
 
 
 
Biomarkers of effect 
shown to have a 
relationship to health 
outcomes but the 
mechanism of action is not 
understood.  

 
 
 
Biomarker in a specified 
matrix is a poor surrogate 
(low accuracy and precision) 
for exposure/dose. 
 
 
 
 
 
Biomarker has undetermined 
consequences (e.g., 
biomarker is not specific to a 
health outcome). 

 

Specificity Biomarker is derived from 
exposure to one parent 
chemical. 

Biomarker is derived from 
multiple parent chemicals 
with similar adverse 
endpoints. 

Biomarker is derived from 
multiple parent chemicals 
with varying types of adverse 
endpoints. 

 

Method sensitivity 
(detection limits) 

Limits of detection are low 
enough to detect chemicals 
in a sufficient percentage of 
the samples to address the 
research question.  

NA   Frequency of detection too 
low to address the research 
hypothesis. 

 

Biomarker stability Samples with a known Samples have known Samples with either unknown  
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history and documented 
stability data or those using 
real-time measurements.  

losses during storage but 
the difference between 
low and high exposures 
can be qualitatively 
assessed.  

history and/or no stability 
data for analytes of interest.  

Sample contamination 
 

Samples are contamination-
free from time of collection 
to time of measurement 
(e.g., by use of certified 
analyte-free collection 
supplies and reference 
materials, and appropriate 
use of blanks both in the 
field and lab).  Research 
includes documentation of 
the steps taken to provide 
the necessary assurance that 
the study data are reliable.  

Study not 
using/documenting these 
procedures.  
 

There are known 
contamination issues and no 
documentation that the issues 
were addressed. 

 

Method requirements 
 

Instrumentation that 
provides unambiguous 
identification and 
quantitation of the 
biomarker at the required 
sensitivity (e.g., GC-
HRMS, GC-MS/MS, LC-
MS/MS). 

Instrumentation that 
allows for identification of 
the biomarker with a high 
degree of confidence and 
the required sensitivity 
(e.g., GC-MS, GC-ECD).  

Instrumentation that only 
allows for possible 
quantification of the 
biomarker but the method 
has known interferants (e.g., 
GC-FID, spectroscopy). 

 

Matrix adjustment Study includes results for 
adjusted and non-adjusted 
concentrations if adjustment 
is needed. 

Study only provides 
results using one method 
(matrix-adjusted or not). 

No established method for 
adjustment (e.g., adjustment 
for hair) 

 

Study Design and Execution  
Temporality  Established time order 

between exposure and 
outcomes; relevant interval 
between the exposure and 
the outcome or 

Established time order 
between exposure and 
outcome, but no 
consideration of relevant 
exposure windows.  

Study without an established 
time order between exposure 
and outcome. 
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reconstructed exposure and 
appropriate consideration of 
relevant exposure windows.  

Exposure variability and 
misclassification 

Sufficient number of 
samples.  
Error considered by 
calculating measures of 
accuracy (e.g., sensitivity 
and specificity) and 
reliability (e.g., ICC).   
If one sample is used, there 
is evidence that errors from 
a single measure are 
negligible. 

More than one sample 
collected, but without 
explicit evaluation of 
error. 

Exposure based on a single 
sample without considering 
error. 

 

General Epidemiological Study Design Considerations   
Study rationale Studies designed 

specifically to evaluate an a 
priori formulated 
hypothesis. 

Studies using existing 
samples or data to evaluate 
an a priori formulated 
hypothesis. 

Data mining studies without 
a pre-specified hypothesis; 
multiple simultaneous 
hypothesis testing.  

 

Study participants  Population-based unbiased 
selection protocol; high 
response rate and/or low 
loss to follow-up. 

Population-based unbiased 
selection protocol; low 
response rate and/or high 
loss to follow-up. 

Methods of sample selection, 
and response/loss to follow-
up rates are not reported. 
 

 

Data analysis Clear distinction between 
causal and predictive 
models; adequate 
consideration given to 
extraneous factors with 
assessment of effect 
modification and 
adjustment for confounders; 
sensitivity analyses. 

Adequate consideration of 
extraneous factors, but 
without sensitivity 
analyses. 

Inadequate control for 
extraneous factors. 

 

Reporting Study clearly states its aims 
and allows the reader to 
evaluate the number of 
tested hypotheses (not just 

Conclusions appear 
warranted, but the number 
of tested hypotheses is 
unclear (either not 

Studies that selectively report 
data summaries and lack 
transparency in terms of 
methods or selection of 
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the number of hypotheses 
for which a result is given).  
If multiple simultaneous 
hypothesis testing is 
involved, its impact is 
assessed, preferably by 
estimating PFP or FP:FN 
ratio.  There is no evidence 
of outcome reporting bias, 
and conclusions do not 
reach beyond the observed 
results.  

explicitly stated or 
difficult to discern) and/or 
there is no consideration 
of multiple testing.  

presented results. 

AOP = adverse outcome pathways; FP = false positive; FN = false negative; GC-HRMS = gas chromatography/high-resolution mass 6 
spectrometry; GC-MS = gas chromatography/mass spectrometry; GC-ECD = gas chromatography-electron capture detector; GC-FID 7 
= gas chromatography-flame ionization detector], ICC = intra-class correlation coefficient; NA = not applicable; PFP = probability of 8 
false positive 9 
 10 

 11 
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Figure 1. Example of quality comparison of two hypothetical studies with biomonitored short-12 
lived chemicals using the BEES-C instrument.  For each hypothetical study under review, critical 13 
aspects are assessed row by row and the appropriate cell is color-coded, allowing the 14 
researcher/reviewer to obtain an overall picture of study quality.  Text in cells has been removed 15 
for readability. 16 
 17 
 Hypothetical Study 1       Hypothetical Study 2 18 

STUDY 
ASSESSMENT 
COMPONENTS

TIER 1 TIER 2 TIER 3

Biomarker Selection and Measurement
Biological relevance 
Exposure biomarker 
Effect biomarker

Specificity
Method sensitivity
Biomarker stability

Sample contamination

Method requirements

Matrix adjustment

Study Design and Implementation
Temporality

Exposure variability 
and misclassification

General Epidemiological Study Design 
Considerations
Study rationale
Study participants 
Reporting
Data analysis

STUDY 
ASSESSMENT 
COMPONENTS

TIER 1 TIER 2 TIER 3

Biomarker Selection and Measurement
Biological relevance

Exposure biomarker
Effect biomarker

Specificity
Method sensitivity
Biomarker stability

Sample contamination

Method requirements

Matrix adjustment

Study Design and Implementation
Temporality

Exposure variability 
and misclassification

General Epidemiological Study Design 
Considerations
Study rationale
Study participants 
Reporting
Data analysis

19 
Implicit in this study quality evaluative instrument is that the manuscript or proposal will 20 
explicitly report on each of the issues below.  In other words, in order to assess whether the study 21 
meets the criteria for a given tier, the information on that issue must be clearly described.  For 22 
studies relying on previously-published biomonitoring data (e.g., US National Health and 23 
Nutrition Examination Survey [NHANES]), the same reporting requirements must be met.  24 
Authors should be explicit in their description of methods, including pertinent details such as 25 
limit of detection for the study, relative standard deviation and relevant quality control 26 
parameters. 27 
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 28 
The lack of numeric scoring for this process is intentional.  There will no doubt be instances 29 
where a study is of high quality for most components, but has not addressed a key issue that 30 
substantially reduces confidence in the study results.  An overall high “score” would mask this 31 
problem.  Instead, we propose a qualitative approach that increases flexibility.  32 
 33 
A final note: We are unaware of studies that would be categorized as Tier 1 for all aspects of the 34 
evaluation.  While a study that falls into Tier 1 for all aspects is certainly a goal and would 35 
provide robust data, it is the case that most studies will contain aspects that would be considered 36 
Tier 2 or 3. Depending on the users’ intent for the study data, this may not be problematic for 37 
certain evaluative issues.  On the other hand, there are some issues for which a Tier 3 designation 38 
would render the study of low utility (e.g., inability to demonstrate samples were free of 39 
contamination). 40 
 41 
3. COMPONENTS OF BEES-C 42 
 43 
We first describe BEES-C components specifically related to short-lived biomarkers.  This is 44 
followed by aspects of BEES-C that pertain to more general epidemiological study design issues.  45 
 46 
3.1 Biomarker Selection and Measurement 47 
 48 
A biomarker/biological marker has been defined as an "indicator of changes or events in 49 
biological systems. Biological markers of exposure refer to cellular, biochemical, analytical, or 50 
molecular measures that are obtained from biological media such as tissues, cells, or fluids and 51 
are indicative of exposure to an agent" (Zartarian et al., 2005).  Thus, biomarkers can be used to 52 
assess exposure to a chemical by measuring the amount of that chemical or its metabolite in the 53 
body.  In addition, biomarkers can be used as indicators of health effects.  Many biomarkers of 54 
exposure and effect are short-lived, and both types of biomarkers are commonly used in human 55 
research on exposure to – and health effects from – environmental chemicals. While this 56 
evaluative tool is predominantly focused on biomarkers of exposure, many of the principles 57 
elucidated here also apply to biomarkers of effect.  58 
 59 
As a general rule, studies designed to observe associations between exposure and health effects 60 
are more defensible if appropriate and well-established biomarkers are used as exposure and/or 61 
health endpoint surrogates.  There is general consensus on certain criteria that should be met for 62 
biomarkers to be considered high-quality (NRC, 2006; Zelenka et al., 2011).  Some of these 63 
criteria are based on the inherent qualities of the biomarkers (e.g., its relevance to chemical 64 
exposure and/or biological relevance).  Other criteria pertain to the measurement of the 65 
biomarker – that is, the accuracy and precision of methods used to quantify the biomarker, the 66 
stability of the biomarker during storage, the possibility for sample contamination leading to 67 
errors in biomarker quantitation, and the need to adjust for biological matrix effects that might 68 
introduce measurement error.  Critical aspects of biomarker selection and measurement are 69 
described in the following subsections and the proposed tiering scheme for BEES-C is shown in 70 
Table 1. 71 
 72 
3.1.1 Relevance 73 
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Source-to-outcome continuums are frequently used to demonstrate the path of a chemical from 74 
generation, to human contact, to target dose and subsequent molecular, cellular, organ, organism, 75 
and population response.  Biomarkers are sometimes used as a means to empirically characterize 76 
exposure, dose, and biological response.  In this section we consider both biomarkers of 77 
exposure (i.e., a parent chemical, metabolite, or interaction product at a target [WHO, 2001]) and 78 
biomarkers of effect (i.e., a measureable biochemical or physiological alteration that is 79 
associated with a health outcome [WHO, 2001]) as important components of epidemiological 80 
studies of associations between exposure and health outcome.  81 
 82 
Biomarkers of exposure: Epidemiologic research can be hypothesis-driven or more geared 83 
towards hypothesis-generation.  In the latter case, the most suitable biomarker of exposure is one 84 
that is an accurate and precise surrogate of external exposure or internal dose.  When a strong 85 
biological rationale exists, and a biological “target” is known, the most suitable biomarker is one 86 
that is directly measured at the target (molecular, cellular, or organ level), or is an accurate and 87 
precise surrogate of target dose.  88 
 89 
Ideally, a clear understanding of the quantitative linkages between exposure, dose, and 90 
biomarker levels will exist for any biomarker that is used in an epidemiological study.  91 
Considering the invasive nature of target tissue sampling, most biomarker-based epidemiological 92 
studies utilize samples of blood, urine, hair, or other easily-accessible matrices.  Elucidating 93 
quantitative relationships between biomarker measurements from these matrices and 94 
exposure/dose levels requires an understanding of chemical absorption, distribution, metabolism, 95 
and elimination (ADME); these processes are frequently described using pharmacokinetic (PK) 96 
models, or physiologically-based pharmacokinetic (PBPK) models.  Prior to the use of 97 
biomarkers in an epidemiological study, a solid understanding of chemical ADME should exist, 98 
as well as the intrinsic (e.g., genetics, life-stage, pregnancy, gender) and extrinsic (e.g., diet, 99 
medication, medical conditions) factors that are likely to affect ADME.  Furthermore, for short-100 
lived biomarkers, it is important to know specific timing details (e.g., time of day, time since last 101 
meal for those chemicals associated with dietary exposure, time since last urine void) in relation 102 
to sample collection.  Ideally, the relationships between biomarker concentration and 103 
exposure/dose levels, and the effects of intrinsic, extrinsic, and timing factors on these 104 
relationships, will be thoroughly evaluated before the biomarker is used in an epidemiological 105 
study.  Critical information that is needed to properly interpret the biomarker (with respect to 106 
exposure/dose) should then be collected and carefully evaluated as part of the study. The costs 107 
and benefits of each biomarker of exposure should be carefully examined and interpreted as part 108 
of any epidemiological evaluation. 109 
 110 
It is important to note that matrix selection is an integral component of exposure and/or 111 
epidemiology research, and multiple factors must be considered including measurement 112 
capability, contamination issues, and target analyte association with exposure or health outcome.  113 
BEES-C addresses each of these issues separately. 114 
 115 
Short-lived chemical example : Bisphenol A (BPA) is measured in urine in the free form 116 
(parent), as sulfate- or glucoronide-bound conjugates, or as a combination (total BPA) of the free 117 
and conjugated forms (Harthé et al. 2012; LaKind et al., 2012a; Völkel et al. 2008; Ye et al. 118 
2005).  Several recent studies have examined endocrine-related health outcomes associated with 119 
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BPA exposure.  The most biologically-relevant biomarker is the free (parent) BPA, because only 120 
parent BPA is considered active in terms of estrogenicity (EPA, 2013; WHO, 2011).  The 121 
quantification of free BPA in urine is analytically challenging, however, as only a small fraction 122 
of BPA is present in the non-conjugated form (Ye et al., 2005).  Given this limitation, 123 
measurements of conjugated or total BPA may be useful surrogates of free BPA.  Specifically, if 124 
there is small variation in the ratio of free to conjugated BPA within and between individuals 125 
(with respect to the variation in exposure levels), then conjugated or total BPA may be an 126 
accurate and precise surrogate of free BPA, and of BPA exposure in general.  This example 127 
underscores the importance of understanding relationships between exposure and biomarkers, 128 
different types of biomarkers (parent vs. metabolites in their respective matrices), and 129 
biomarkers and biological targets, while ensuring that the appropriate research question is 130 
addressed.  It further highlights the possibility of trade-offs when selecting an individual 131 
biomarker of exposure (for BPA, biological relevance could be optimized at the expense of 132 
ability to detect the chemical).   133 
 134 
Study evaluation (Table 1): A Tier 1 biomarker of exposure in a specified matrix is an accurate 135 
and precise surrogate of target dose (for hypothesis-driven studies with a known target) or of 136 
external exposure (for studies without a known target).  For a Tier 2 biomarker, evidence exists 137 
for a relationship between the biomarker in a specified matrix and external exposure, internal 138 
dose, or target dose.  A Tier 3 biomarker in a specified matrix is a poor surrogate (low accuracy 139 
and precision) for exposure/dose. 140 
 141 
Biomarkers of effect: It can be challenging in epidemiological studies to perform meaningful 142 
comparisons of short-lived biomarker measurements and long-term health outcomes.  143 
Particularly in cross-sectional studies, a key assumption is that current biomarker levels reflect 144 
past exposures during time windows that were relevant for disease onset.  Biomarkers of effect 145 
offer a means to evaluate exposure-response relationships in target populations, during critical 146 
time windows, prior to disease onset.  Findings are interpreted based on the strength of 147 
association between biomarkers of exposure and effect, and between biomarkers of effect and the 148 
adverse health outcome. 149 
 150 
The progression from an exposure event to an adverse health effect can be defined using adverse 151 
outcome pathways (AOPs) (Ankley et al., 2010).  The AOP for a particular health outcome 152 
begins with a molecular initiating event at a target within the body.  Effects at the molecular 153 
target, initiated by exposure events, progress to effects at the cellular, tissue, and organ levels, 154 
and ultimately to the whole organism.  “Key events” are intermediate steps along the AOP that 155 
can be experimentally monitored to evaluate progression along the AOP.  Measurements of these 156 
key events in accessible biological media from living intact organisms are called bioindicators.  157 
Bioindicators are considered ideal biomarkers of effect because they reflect a biological function 158 
linked to a specific adverse outcome; they “provide a high degree of confidence in predicting the 159 
potential for adverse effects in an individual or population” 160 
(www.epa.gov/pesticides/science/biomarker.html).  Biomarkers of effect categorized as 161 
“Undetermined Consequences” reflect a less certain pathway linking alterations to any specific 162 
disease outcome (www.epa.gov/pesticides/science/biomarker.html).  Predictions of outcomes 163 
therefore, for either individuals or populations, are less certain when using these biomarkers in 164 
place of bioindicators.  165 

http://www.epa.gov/pesticides/science/biomarker.html�
http://www.epa.gov/pesticides/science/biomarker.html�
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 166 
Study evaluation (Table 1): A Tier 1 biomarker of effect is a bioindicator of a key event in an 167 
AOP.  A Tier 2 biomarker of effect has been shown to have a relationship to health outcomes but 168 
the mechanism of action is not understood.  Biomarkers of effect that have undetermined 169 
consequences are considered Tier 3.  170 
 171 
3.1.2 Specificity 172 
A single biomarker of exposure may be derived from multiple parent chemicals, making 173 
assessments of exposure to the parent chemical difficult to ascertain (Barr et al., 1999, 2006; 174 
Barr and Needham 2002).  In terms of exposure assessment and interpretation of epidemiological 175 
research, this is especially problematic if the parent chemicals have different toxicities or modes 176 
of action.  Further, an example of interference with assessing exposure to a parent chemical is the 177 
situation in which one of the metabolites also can be found in the environment (an exogenous 178 
source). 179 
 180 
Short-lived chemical example: 3-phenoxybenzoic acid (3PBA) is an example of a short-lived 181 
chemical that highlights the importance of evaluation of specificity when assessing study quality.  182 
3PBA is a metabolite of at least 18 synthetic pyrethroids (Barr et al., 2010; Leng et al., 1997) and 183 
is also a potential metabolite of the 3PBA environmental degradate 3-phenoxybenzyl alcohol.  184 
Thus, urinary 3PBA measurements represent exposure to multiple insecticides with varying 185 
degrees of neurotoxicity, in addition to exposure to an environmental degradate that is not known 186 
to be neurotoxic (Barr et al., 2010).  Urinary 3PBA measurements can therefore provide a 187 
conservative estimate of pyrethroid exposure; however, it likely would not provide an accurate 188 
exposure estimate for neurotoxic effects related to pyrethroid insecticide exposure in the absence 189 
of additional exposure data.  Thus, finding a relation between neurotoxicity and exposure would 190 
be more difficult since the true exposures are unknown.  191 
 192 
Study evaluation (Table 1): A Tier 1 study includes a biomarker of exposure that is derived from 193 
exposure to one parent chemical. A Tier 2 study includes a biomarker derived from multiple 194 
parent chemicals with similar types of adverse endpoints.  A Tier 3 study includes a biomarker 195 
derived from multiple parent chemicals with varying types of adverse endpoints.  196 
 197 
3.1.3 Method sensitivity 198 
The biomarker should be appreciably present in the matrix being analyzed (Calafat and 199 
Needham, 2008).  A biomarker that is frequently non-detectable in a matrix - irrespective of 200 
exposure - is undesirable in environmental epidemiologic research as the results may be of 201 
limited utility.  202 
 203 
Short-lived chemical example: Several polycylic aromatic hydrocarbons (PAHs) with four or 204 
more rings are suspected or known human carcinogens (e.g., benzo[a]pyrene).  Standard 205 
analytical methods (e.g., GC-MS [gas chromatography/mass spectrometry] or LC-MS/MS 206 
[liquid chromatography-tandem mass spectrometry]) are often not sufficiently sensitive for 207 
quantifying metabolites of these PAHs in accessible media (e.g., urine) (Bouchard and Viau, 208 
1997), thus hindering epidemiological investigations.  Biomarkers of smaller PAHs, including 209 
naphthalene, phenanthrene and pyrene, have been evaluated as surrogates of the larger 210 
carcinogenic species (Bouchard et al., 1998, Viau et al., 1999; Sobus et al., 2009; Withey at al., 211 
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1991).  These surrogates offer a means to overcome analytical limitations, but must be 212 
thoroughly evaluated for their ability to reflect exposure to the target species, to gauge co-213 
occurrence among the PAHs, and to evaluate information on correlates of exposure sources. 214 
 215 
Study evaluation (Table 1): A Tier 1 study method has limits of detection low enough to detect 216 
chemicals in a sufficient percentage of the samples to address the research question (e.g., 50-217 
60% detectable values if the research hypothesis requires estimates of both central tendencies 218 
and upper tails of the population concentrations) (Barr et al., 2010; Zota et al., 2014).  There is 219 
no Tier 2 for this component. A Tier 3 study has too low a frequency of detection to address the 220 
research hypothesis.  221 
 222 
3.1.4 Biomarker stability 223 
The biomarker should be stable in a given matrix over the time of storage and use (Barr et al., 224 
2005a).  Stability of the sample should be documented.  Studies using samples that have 225 
undergone freeze/thaw cycles should demonstrate the stability of those samples.  Time from 226 
collection of sample to measurement should be documented.   227 
 228 
Short-lived chemical example: While persistent organic pollutants are usually stable in blood 229 
products stored indefinitely if frozen at -20ºC or below, non-persistent chemicals may be less 230 
stable in blood.  For example, current-use pesticides are highly reactive and can easily degrade in 231 
blood enzymatically (Barr et al., 1999).  Blood preserved with EDTA minimizes esterase activity 232 
but the measurement should be made within a few months after collection.  Thaw/refreeze cycles 233 
or thawing samples in hot water can also cause degradation. The use of long-archived urine or 234 
blood samples may provide data on historically collected samples (e.g., NHANES III samples) 235 
but many have experienced thaw/refreeze cycles that can result in degradation of sensitive 236 
chemicals or contamination of the sample itself.  Small, multiple aliquots of a single sample 237 
should be stored to be able to confirm the stability of historic samples.  Losses of biomarkers can 238 
also occur from binding to the walls of the containers and from volatilization.  While plastic 239 
containers are inexpensive and easy to handle and freeze compared to glass, they can be a source 240 
of contamination of some chemicals. In addition, they can absorb both metals and organic 241 
compounds resulting in underestimation of chemical concentration.  Storage studies using spiked 242 
matrices at levels consistent with those expected to be found in the actual sample or the addition 243 
of stable isotopically labeled compounds to samples prior to storage should be done to validate 244 
that there are no losses during storage or in thaw-refreeze cycles.  245 

 246 
Study evaluation (Table 1): A Tier 1 study would include samples with a known history and 247 
documented stability data.  Tier 2 studies have known losses during storage but the difference 248 
between low and high exposures can be qualitatively assessed (i.e., for the purposes of the study, 249 
it is sufficient to bin study participants as having either low or high exposure). Tier 3 studies use 250 
samples with either unknown history and/or no stability data for the analyte(s) of interest. 251 
 252 
3.1.5 Sample contamination 253 
This BEES-C evaluative criterion is one of the most critical criteria for evaluating studies 254 
measuring ubiquitous short-lived chemicals.  This is because the likelihood of sample 255 
contamination from the time of collection to the time of measurement has been demonstrated for 256 
many of these chemicals, this in spite of great lengths taken to avoid contamination.  A wide 257 
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range of chemicals with short physiologic half lives are not only environmentally ubiquitous but 258 
may also be present in the sampling and analytical equipment used in epidemiological research.  259 
Thus, extreme care is necessary in order to avoid/prevent sample contamination during all phases 260 
of a study from sample collection to sample measurement (Barr et al., 1999; Calafat and 261 
Needham, 2008, 2009; Needham et al., 2007).  During sample collection, supplies containing the 262 
target chemical or exposing the collection materials or matrix to environmental media (e.g., air 263 
or water) can falsely elevate the measured concentrations.  Even with precautions, studies have 264 
reported difficulties with analytic contamination, contributing to uncertainty in interpretation of 265 
study results.  266 

 267 
Short-lived chemical example : Ye et al. (2013) note that despite their best efforts, samples at the 268 
Centers for Disease Control Prevention laboratory were contaminated with triclosan; the source 269 
of the contamination was ultimately identified as a triclosan-containing handsoap used by a 270 
technician.  Similarly, several research groups have noted the difficulties in attempting to 271 
measure BPA in blood samples, in part, because of contamination (including in solvents and 272 
reagents) despite great care taken to avoid such contamination (Calafat et al., 2013; Markham et 273 
al., 2010; Teeguarden et al., 2011; Ye et al., 2013).  274 
 275 
Study evaluation (Table 1): A Tier 1 study ensures the samples are contamination-free from time 276 
of collection to time of measurement (e.g., by use of certified analyte-free collection supplies and 277 
reference materials, and appropriate use of blanks both in the field and lab).  The research will 278 
include documentation of the steps taken to provide the necessary assurance that the study data 279 
are reliable and accurate.  Any study not using/documenting these procedures is categorized as 280 
Tier 2. In a Tier 3 study, there are known contamination issues and no documentation that the 281 
issues were addressed. 282 
 283 
3.1.6 Method requirements 284 
The quality of a biomarker for assessing exposure is largely dependent upon the quality of the 285 
method used for measurement.  This can be a difficult aspect of biomarker measurement to 286 
evaluate.  For example, a laboratory’s participation and success in a proficiency testing exercise 287 
may seem to be a reasonable test for a Tier 1 study; however, many proficiency testing studies 288 
have tolerance ranges that can vary by 200% (i.e., an “acceptable” analyte concentration value 289 
can be +/- 200% of the true value).  In general, the study methods should have appropriate 290 
instrumentation and describe the accompanying procedures (e.g., QC, method robustness, 291 
presence of confirmation ions, use of isotope dilution). 292 
 293 
Study evaluation (Table 1): A Tier 1 study includes instrumentation that provides unambiguous 294 
identification and quantitation of the biomarker at the required sensitivity (e.g., GC-HRMS [gas 295 
chromatography/high-resolution mass spectrometry], GC-MS/MS, LC-MS/MS).  A Tier 2 study 296 
uses instrumentation that allows for indentification of the biomarker with a high degree of 297 
confidence and the required sensitivity (e.g., GC-MS, GC-ECD [gas chromatography-electron 298 
capture detector]).  A Tier 3 study uses instrumentation that only allows for possible 299 
quantification of the biomarker but the method has known interferants (e.g., GC-FID [gas 300 
chromatography-flame ionization detector], spectroscopy).  301 
 302 
3.1.7 Matrix adjustment 303 
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Biomarkers are most commonly measured and reported in units of concentration; that is, mass of 304 
biomarker/volume of biological media.  There are strong effects of variable urine output (driven 305 
by diet, exercise, hydration, age, disease state, etc.) on urinary biomarker concentration, and of 306 
blood volume and fat content on blood biomarker concentration.  Urine biomarker 307 
concentrations have been normalized across and within subjects to correct for variable urine 308 
dilution using creatinine concentration (derived from creatine phosphate breakdown in muscle), 309 
specific gravity, urine output, and other methods, though uncorrected urinary levels in spot 310 
samples without auxiliary information are commonly reported and utilized in assessments of 311 
exposure and relationship to health outcomes (Barr et al., 2005b; LaKind and Naiman, 2008, 312 
2011; Lorber et al., 2011; Meeker et al., 2005).  There is no current consensus on the best 313 
method(s) for “correcting” urinary biomarkers measurements for variable urine dilution.  314 
Minimally, both the volume-based and a corrected (creatinine and/or other method) 315 
concentrations should be provided to allow appropriate comparison across studies.  It is also 316 
instructive to obtain a full volume void and elapsed time between voids.  317 
 318 
Blood-based biomarker levels have been reported in whole blood, serum, plasma and as lipid-319 
adjusted values.  The method used to determine the lipid correction or to separate the different 320 
components of the blood fluid should be provided and all concentrations, when available, should 321 
be reported (e.g., whole volume and lipid-adjusted).   Similarly, issues related to fasting samples 322 
and serum lipid adjustment in measures of lipophilic chemicals must be considered (Schisterman 323 
et al., 2005).  The validity of lipid and other tissue component adjustments have not been 324 
established for certain short-lived chemicals such as current use pesticides.  In these instances, 325 
the whole-volume concentrations and adjusted concentrations should be reported with a notation 326 
that adjustment validity has not been established.  In addition, plasma volume increases in 327 
pregnancy (and may also increase for some pre-existing diseases or underlying health conditions) 328 
and may also need to be considered when comparing plasma concentrations across pregnancy or 329 
populations (Hytten, 1985).  330 
 331 
Information about the sample collection requirements and matrix treatment is important when 332 
comparing data across studies or to reference ranges.  Studies by different governmental agencies 333 
(e.g., the European Union, specific European countries, US NHANES, Canadian Health 334 
Measures Survey, Consortium to Perform Human Biomonitoring on a European Scale, state-335 
based HANES) and other large biomonitoring data repositories may have different protocols for 336 
collecting and processing samples that can alter the matrix and reported biomarker 337 
concentrations.  For example, instructions given to the participant about fasting prior to sample 338 
collection can minimize the lipid content in blood thus minimizing a lipophilic biomarker 339 
concentration in a sample (Barr et al., 2005a), and these instructions are not necessarily the same 340 
from country to country (LaKind et al., 2012a).  Similarly, collection of a first morning urine 341 
void may be more concentrated in matrix components than a simple spot sample which may alter 342 
our ability to detect or differentiate an analyte (Kissel et al., 2005; Scher et al., 2007).  Further, 343 
first morning void collection can result in a bias (systematic error) in the data due to the 344 
relationship between previous exposure and sample collection and measurement; this is especially 345 
important for chemicals for which diet is a predominant route of exposure as the void would be 346 
collected after overnight fasting.  Blood plasma collected with EDTA versus heparin as an 347 
anticoagulant may alter the properties of the matrix (Barr et al., 2005a).  Differences in collection 348 
requirements and sample processing (as well as health conditions of study participants - such as 349 
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kidney disease - that could affect biomarker concentrations) need to be reported, considered and 350 
weighed accordingly when results are compared across studies. 351 
 352 
Study evaluation (Table 1): We recognize that the best practice for matrix adjustment is 353 
intimately associated with the hypothesis to be tested and the specific chemical of interest, and 354 
that consensus in this area has not yet been reached.  However, adjustment can have a significant 355 
effect on study outcome.  We therefore propose that a Tier 1 study would provide results for 356 
adjusted and non-adjusted concentrations (if adjustment is needed), thereby allowing the reader 357 
to reach their own conclusions about the impact of matrix adjustment.  A Tier 2 study is one that 358 
only presents the results using one method (matrix-adjusted or not).  A Tier 3 study includes 359 
measurements of a chemical in a matrix that does not yet have a validated adjustment method.   360 
 361 
3.2 Study Design and Execution  362 
 363 
Considerations of both study design and exposure variability and misclassification are especially 364 
important for short-lived chemicals.  365 
 366 
3.2.1 Epidemiology study design 367 
Studies that explore associations between biomonitoring data on short-lived chemicals and 368 
disease present a unique set of challenges because blood or urine levels of biomarkers typically 369 
reflect recent exposures that occurred just hours or at most days ago, and the timing of the 370 
exposure relative to the biomarker sample collection is usually not known.  Yet most health 371 
outcomes of interest are chronic conditions (e.g., obesity, hypertension, or measures of 372 
reproductive function) that may require years to decades to develop.  For this reason, evaluation 373 
of causal hypotheses in studies that measure short-lived chemicals is complicated, and in some 374 
circumstances, may not be feasible.  A critical and, perhaps the only inarguable, property of a 375 
causal association is temporality, meaning that a claim of causation must be supported by an 376 
observation of the putative causal exposure preceding the outcome (Potischman and Weed, 1999; 377 
Rothman and Greenland, 2005; Weed and Gorelic, 1996; Weed, 1997).  378 
 379 
Establishing temporality is only possible in “incidence” studies, which identify health-related 380 
events such as new cases of disease at the time of onset or a change in a health-related measure 381 
compared to baseline (Pearce, 2012).  Incidence studies may be experimental (e.g., clinical trials) 382 
or observational (cohort or case-control with ascertainment of incident cases).  Regardless of 383 
design, however, the main feature of incidence studies is the ability to establish the time of 384 
disease onset (or at least the time of diagnosis), which may then allow for an assessment of the 385 
sequence of exposure and outcome.  In a situation when exposure levels may rapidly change over 386 
time, a useful approach is a longitudinal study that assesses the relation between repeated 387 
measures of exposure and repeated measures of health biomarkers.  388 
 389 
Although the ability to establish the temporal relation is critical for assessing causation, a 390 
separate study design issue in environmental epidemiology research is the interval between the 391 
exposure and the outcome under study.  In order to use human biomonitoring data in etiologic 392 
research, exposures should be measured at times which are relevant for disease onset.  While this 393 
is not a simple task, there are examples of successful biomonitoring studies that have examined 394 
exposures of persistent chemicals during relevant time windows and correlated those exposures 395 
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with development of specific adverse outcomes.  For example, blood lead levels reflect 396 
exposures during the preceding 5-6 weeks; and well-conducted epidemiological studies have 397 
been able to link the blood levels in children to adverse effects on cognitive capacity (Lanphear 398 
et al. 2000). For chemicals with short half-lives, however, the interval between the relevant 399 
exposure and disease development is often difficult to assess.  Study design – along with 400 
exposure misclassification discussed later in this paper – are the most critical and underexplored 401 
aspects of biomonitoring studies of short-lived chemicals.  402 
 403 
Establishing temporality is much more difficult in a "prevalence" study compared to an 404 
"incidence" study, which makes it challenging to draw conclusions about causal associations.    405 
A typical prevalence study relies on cross-sectional design, which ascertains the exposure and 406 
disease information simultaneously (Rothman and Greenland, 1998).  When research is focused 407 
on short-lived chemicals, many case-control studies - even if they use incident cases - are 408 
difficult to interpret because the biomarker levels reflect recent exposures that typically follow 409 
rather than precede disease onset.  The notable exception is a study that uses samples collected 410 
and stored for future use, as is done in nested case-control or case-cohort studies (Gordis, 2008). 411 
 412 
Short-lived chemical example: In a recent review of the epidemiology literature on phthalate 413 
metabolites (Goodman et al., 2014) and their association with obesity, diabetes, and 414 
cardiovascular disease, most of the studies were cross-sectional in design.  The study results 415 
were inconsistent across outcomes and lack of temporality was identified as a key limiting factor 416 
in the ability to discern relationships between prior exposures to phthalate metabolites and 417 
consequent health outcomes.  418 
 419 
Study evaluation (Table 1): Tier 1 studies are incidence studies that involve a follow-up time 420 
period or a longitudinal analysis of repeated measures and allow the establishment of both the 421 
time order and the relevant interval between the exposure and the outcome (Table 1).  A Tier 2 422 
study would include incidence studies in which exposure preceded the outcome, but the specific 423 
relevant windows of exposure are not considered.  The least informative (Tier 3) studies are 424 
those that examine the association between current exposure (e.g., blood level of a chemical) and 425 
frequently measured outcomes (e.g. BMI) that are likely associated with chronic rather than 426 
acute exposures.  (Note that this evaluative criterion is not applicable to studies focused on 427 
exposure only, such as those examining temporal or spatial relationships within or across 428 
populations.) 429 
 430 
3.2.2 Exposure variability and misclassification 431 
For many short-lived chemicals, there can be large intra-individual temporal variability; 432 
attempting to find associations between one measure of such a chemical with disease is not 433 
supportable.  Differences in biomonitored levels of short-lived chemicals due to changes in an 434 
individual’s diet, health, product use, activity and/or location are expected (Pleil and Sobus, 435 
2013).  As noted by Meeker et al. (2013): “Characterizing temporal variability in exposure 436 
metrics, especially for biomarkers of nonpersistent compounds…, is a critical step in designing 437 
and interpreting an epidemiology study related to the potential for exposure measurement error.” 438 
 439 
Many published studies of short-lived chemicals seeking to estimate chronic or average exposure 440 
are subject to error because they rely on one measure of exposure using a one-time sample of 441 
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urine or blood (Goodman et al., 2014; LaKind et al., 2012b, 2014; Preau et al., 2010; Wielgomas, 442 
2013). The ability to estimate exposure can be improved by taking multiple samples from the 443 
same individual at different times to average temporal variations in the biomarker levels (NRC, 444 
2006). The reliability is typically measured by calculating the intra-class correlation coefficient 445 
(ICC).  The ICC can be estimated by measuring the chemical in repeated samples collected over 446 
several hours, days or weeks and calculating the between-person variance divided by the total 447 
variance.  ICCs range from 0 to 1; an ICC value equal to or approaching 1 suggests good 448 
reliability in estimating longer-term exposure for the population from a single sample.  Symanski 449 
et al. (1996) used mixed-effects modeling to account for non-stationary behavior in occupational 450 
exposures, and found that estimates of variance components (used to compute ICC) may be 451 
substantially biased if systematic changes in exposure are not properly modeled.  The following 452 
question still must be raised: if an ICC is developed from taking repeated samples over weeks or 453 
even months, will the value be relevant to exposures over years, which is the timeframe for 454 
development of many chronic diseases of interest?  The research on this subject for many of the 455 
short-lived chemicals of interest is currently undeveloped. 456 
 457 
Another problem with using a single measure of a short-lived chemical is error that may result in 458 
exposure misclassification.  Exposure misclassification occurs when the assigned exposures do 459 
not correctly reflect the actual exposure levels or categories.  It has been shown that exposure 460 
misclassification is difficult to predict in terms of both direction and magnitude (Cantor et al., 461 
1992; Copeland et al., 1977; Dosemeci et al., 1990; Sorahan and Gilthorpe, 1994; Wacholder et 462 
al., 1995).  The effect of exposure error and exposure misclassification on the dose-response 463 
relationship is problematic (Rhomberg et al., 2011).  Exposure misclassification can occur from 464 
many sources of measurement error, including timing of sample collection relative to when a 465 
critical exposure occurs.  For example, many volatile organic compounds have half-lives on the 466 
order of minutes; exposures may occur daily but for short time intervals.  Thus, the concentration 467 
of the biomarker of exposure is highly dependent on when the sample is collected relative to 468 
when the exposure occurred and may not properly reflect the longer-term level in the body.  469 
 470 
Use of multiple samples or prolonged (e.g., 24-hour) sample collection may help decrease error 471 
by diminishing the effects of temporal variation, study sub-population characteristics, and 472 
sample-related issues (Scher et al., 2007).  If error cannot be avoided (e.g., if all available 473 
samples were obtained post-fast), it is important to assess accuracy of exposure characterization 474 
by calculating sensitivities and specificities (Jurek et al., 2006).  Sensitivity is the probability of 475 
correctly classifying an individual as having high level of exposure, if that person truly belongs 476 
in the high exposure category.  Specificity is the probability of correctly assigning low exposure 477 
to a participant who truly has a low level of exposure.  Estimates of sensitivity and specificity 478 
may be calculated for a single urine sample, using multiple samples per subject as gold standard, 479 
since the true sensitivity and specificity for many measures is unknown. This can be achieved by 480 
randomly selecting a single sample from among each individual’s repeated samples collected 481 
over the study (as demonstrated for phthalates in Adibi et al., 2008).  482 
 483 
Short-lived chemical example: In a recent systematic review of the epidemiology literature on 484 
phthalates and associations with obesity, diabetes, and cardiovascular disease, Goodman et al. 485 
(2014) found that of 26 available studies, all but three relied on a single measure of phthalates.  486 
Similarly, in a systematic review of BPA and obesity, diabetes, and cardiovascular disease, 487 
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LaKind et al. (2014) found that of 45 available studies, all but four relied on a single measure of 488 
BPA.  Yet the intra-individual variability for BPA is large (with ICCs ranging from 0.10 to 0.35 489 
(Lassen et al., 2013; Teitelbaum et al., 2008), and multiple measures of exposure are needed to 490 
describe a person’s long-term exposure.  The ICCs for phthalates have been reported to be higher 491 
than for BPA (e.g., ICC values range from 0.18 to 0.61 for mono-ethyl phthalate, from 0.21 to 492 
0.51 for mono-isobutyl phthalate, and from 0.08 to 0.27 for mono-(2-ethylhexyl) phthalate 493 
[reviewed in Goodman et al., 2014], but intra-person variability is still large.  Recently, Attfield 494 
et al. (2014), in a study of variability of urinary pesticide measures in children, observed that a 495 
study with only a small number of samples from each study participant “…may lead to a high 496 
probability of exposure misclassification by incorrect quantile assignment and offer little assurance 497 
for correctly classifying the exposure into a specific category.”  498 
 499 
Study evaluation (Table 1): The above considerations permit dividing the available body of 500 
literature into the following tiers (Table 1).  Tier 1 includes studies in which exposure assessment 501 
is based on sufficient number of samples per individual to estimate exposure over the appropriate 502 
duration, or through the use of adequate long-term sampling (e.g., multiple 24-hour urine 503 
collections).  To be included in Tier 1, studies should assess error by calculating measures of 504 
accuracy (e.g., sensitivity and specificity) and reliability (e.g., ICC).  It is possible that for some 505 
chemicals, one sample may be sufficient to fully characterize exposure.  If this is the case, a Tier 506 
1 study needs to provide evidence that errors of a single measurement can be considered 507 
sufficiently small.  We realize this is not always feasible but there are circumstances where 508 
researcher will find it necessary to perform a validation study (Teeguarden et al. 2011).  Tier 2 509 
includes studies that use more than one sample, but provide no rationale for their choice of the 510 
number of measurements, and do not include an explicit evaluation of error.  Tier 3 is reserved 511 
for studies in which exposure assessment is based on a single sample without considering error. 512 
 513 
3.3 General Epidemiological Study Design Considerations  514 
 515 
In this section, we discuss aspects of study design that are not necessarily specific to short-lived 516 
chemicals but are important in any assessment of overall study quality. Some of these issues are 517 
more applicable to those studies examining associations between exposure and health outcome 518 
while others may be applied to studies focused on exposure only. 519 
 520 
3.3.1 Research Rationale 521 
This section applies to hypothesis-testing studies examining associations between biomonitoring 522 
data and health outcome data.  A well-formulated hypothesis arising from a clinical observation 523 
or from a basic science experiment is the cornerstone of any epidemiological inquiry regardless 524 
of the specific research field (Boet et al., 2012; Fisher and Wood, 2007; Moher and Tricco, 525 
2008).  Current recommendations in a variety of disciplines emphasize the importance of posing 526 
a research question that is structured to convey information about the population of interest, 527 
exposure (or corresponding marker) under investigation, and the outcome of concern (Sampson 528 
et al., 2009; Walker et al., 2012).  529 
 530 
Biomonitoring studies – and in particular those involving short-lived chemicals where one 531 
sample can provide data on a multitude of chemicals - often generate data that contain multiple 532 
variables with an opportunity for multiple simultaneous hypothesis testing.  This feature of 533 
biomonitoring studies can be viewed as a strength as in situations when significant associations 534 
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are observed for several related outcomes (Lord et al., 2004); e.g., if a hypothesized obesogen 535 
exerts similar effects on body mass index, waist circumference or percent body fat.  On the other 536 
hand, the ability to assess multiple exposure-outcome associations complicates the interpretation 537 
of findings, particularly when dealing with previously collected data (Clarke et al., 2003; Lee 538 
and Huang, 2005; Marco and Larkin, 2000).  Among studies that use previously collected data, it 539 
is important to distinguish those that were guided by an a priori formulated hypothesis from 540 
those that were conducted without a strong biological rationale, although the latter category has 541 
been proven helpful in formulating new hypotheses (Liekens et al., 2011; Oquendo et al., 2012).  542 
A study with a well-formulated hypothesis indicates that the study builds on previous 543 
knowledge, which is an important consideration for a WOE assessment.  Studies specifically 544 
designed to add to the existing knowledge base can be more readily incorporated into WOE. 545 
 546 
Study evaluation (Table 1): Studies evaluating an a priori formulated hypothesis with a 547 
biomonitoring strategy specifically designed to address this hypothesis should be considered the 548 
highest quality (Tier 1).  Tier 2 studies would be those using existing samples or data to evaluate 549 
an a priori formulated hypothesis, where the biomonitoring strategy was not specifically 550 
designed for this purpose.  In Tier 3 studies, the research relies on existing samples or data 551 
without a pre-specified hypothesis or involves multiple simultaneous hypothesis testing.  We 552 
recognize that at present, the research rationale for most biomonitoring studies involving short-553 
lived chemicals will be described as Tier 3 studies.  554 
 555 
3.3.2 Study Participants 556 
Evaluative schemes for participant selection apply to studies of both persistent and short-lived 557 
chemicals.  The goal of participant selection in epidemiological research is to build a “bridge” 558 
between information that is obtainable from the sample and information sought about the target 559 
population (Kalsbeek and Heiss, 2000).  The actual process of selecting an unbiased population 560 
sample is an ongoing challenge in case-control, longitudinal (cohort) and cross-sectional studies 561 
(Vandenbroucke et al., 2007).  562 
 563 
The issue of participant selection is not unique to epidemiological research of short-lived 564 
chemicals.  Yet biomonitoring studies may not pay sufficient attention to this problem.  Previous 565 
reviews of biomonitoring studies presented evidence that selection bias may represent an 566 
important threat to internal validity (Bull et al., 2006; Faust et al., 2004).  The same concerns are 567 
also applicable to biomonitoring studies of short-lived chemicals such as phthalates (Durmaz et 568 
al., 2010; Wang et al., 2013; Wirth et al., 2008). 569 
 570 
Study evaluation (Table 1): Tier 1 studies include an unbiased selection and/or follow up 571 
protocol with a high (e.g., over 80%) response rate in cross-sectional or case-control studies, or 572 
low (e.g., less than 20%) loss to follow up in cohort studies. Tier 2 studies have an unbiased 573 
selection/follow up protocol and a low (e.g., 50%-80%) response rate in cross-sectional or case-574 
control studies, or high (e.g., 20%-50%) loss to follow up in cohort studies.  Tier 3 studies are 575 
those that include less than 50% of eligible participants, or fail to report methods of sample 576 
selection and/or rates of non-response or loss to follow up.  A study that does not report this 577 
information should be assumed to be a Tier 3 study. 578 
 579 
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It is important to keep in mind that a low response rate or a high frequency of loss to follow-up 580 
should not be equated with selection bias.  Selection bias occurs when the proportions of persons 581 
included in the final dataset (a.k.a. selection probabilities) differ by both exposure and outcome 582 
(e.g., among exposed cases, non-exposed cases, exposed non-cases and non-exposed non-cases.)  583 
Although the actual selection probabilities are usually unknown, one can expect that in a study 584 
that is missing only 10% of otherwise eligible participants, the magnitude of possible bias is 585 
much lower than the corresponding magnitude in a study that is missing 50% or more of its 586 
subjects.  587 
 588 
3.3.3 Data Analysis 589 
Essential aspects of data analysis in epidemiologic research have been reviewed elsewhere and 590 
are not specific to chemicals with short physiologic half lives.  However, for completeness of the 591 
proposed tiered evaluative system, these considerations are described here in brief.  The overall 592 
analytic strategy in observational research depends on the main goal of the study.  Generally, 593 
statistical models fall into two categories – predictive and explanatory (Shmueli, 2010).  For 594 
predictive analysis, selection of variables into the model is data-driven and may differ from 595 
dataset to dataset.  The goal of this approach is to maximize the model fit and a decision on 596 
whether to retain a particular covariate of interest is based on statistical tests and goodness-of-fit 597 
without a specified exposure of interest (Bellazzi and Zupan, 2008).  In an explanatory 598 
(hypothesis testing) analysis, this approach may be inappropriate because it may wrongly 599 
eliminate potentially important variables when the relationship between an outcome and a risk 600 
factor is confounded or may incorrectly retain variables that do not act as confounders 601 
(Kleinbaum and Klein 2002).  602 
 603 
More importantly, for an explanatory model, which is focused on a pre-defined exposure-604 
outcome association, inclusion and exclusion of control variables (confounders, mediators or 605 
effect modifiers) should be driven, at least in part, by a priori reasoning (Concato et al., 606 
1993; Hernan et al., 2002; Beran and Violato, 2010).  607 
 608 
It is important to keep in mind that the results of observational studies are inevitably subject 609 
to uncertainty.  This uncertainty may be attributable to various sources of unaccounted bias 610 
and to various data handling decisions and assumptions.  The magnitude of uncertainty can 611 
be formally assessed through quantitative sensitivity analyses. The methods of addressing 612 
residual bias through sensitivity analyses are now well developed both in terms of basic 613 
theory (Greenland, 1996) and with respect to practical applications (Goodman et al., 2007; 614 
Lash and Fink, 2003; Maldonado et al., 2003).  With respect to sensitivity analyses of 615 
alternative decisions and assumptions, much can be learned from previous experience in 616 
economics, exposure assessment and quantitative risk analysis (Koornneef et al., 2010; 617 
Leamer, 1985; Spiegelman, 2010).  618 
 619 
Study evaluation (Table 1): Tier 1 studies include those that clearly distinguish between causal 620 
and predictive models and demonstrate adequate consideration of extraneous factors with 621 
assessment of effect modification and adjustment for confounders.  To qualify for Tier 1, a study 622 
should also perform formal sensitivity analyses.  When consideration of extraneous factors is 623 
considered adequate and the model selection is appropriate, a study may still be considered 624 
incomplete without a sensitivity analysis.  Those studies are placed in Tier 2.  Tier 3 studies are 625 
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those that did not adequately control for extraneous factors due to inappropriate methods of 626 
covariate selection, failure to consider important confounders, or inability to take into account 627 
effect modification. 628 
 629 
The term “extraneous factors” describes participant characteristics other than exposure and 630 
outcome of interest that need to be taken into consideration in the design or the analysis phase of 631 
the study because they may act as cofounders or effect modifiers or both (Kleinbaum et al. 632 
2007).  633 
 634 
3.3.4 Reporting of Results 635 
We consider three aspects of reporting: transparency, multiple testing and reporting bias. 636 
 637 
Reporting transparency: As noted in the STROBE statement, reporting of results should “ensure 638 
a clear presentation of what was planned, done, and found in an observational study” 639 
(Vandenbroucke et al., 2007).  While these considerations are applicable to all studies, there are 640 
aspects of study reporting that are of particular relevance to biomonitoring research of short-641 
lived chemicals.  642 
 643 
Biological sample analyses are increasingly optimized for rapid analysis of multiple analytes in a 644 
single run.  These developments in technology increase the importance of complete reporting of 645 
the data including a full list of exposure (and if applicable, outcome) biomarkers, as well as 646 
presentation of summary statistics, such as measures of central tendency and dispersion. Other 647 
critical information elements should include a description of patterns and handling of missing 648 
data and measures below LOD, all of which may influence interpretation of study results (Albert 649 
et al., 2010; Barnes et al., 2008; LaKind et al., 2012b).  In addition, information should be 650 
provided on any power calculations used in determining the number of study participants and on 651 
the exposure gradient, which impacts the ability to identify significant associations.  Although 652 
some of this information may not be included in the article due to space constraints, it can be 653 
incorporated in supplementary materials or made available upon request.  654 
 655 
Considerations for multiple testing: The main concern with multiple hypothesis testing is 656 
increased likelihood of false positive (FP) results (Boffetta et al., 2008; Ioannidis, 2014; Jager 657 
and Leek, 2014; Rothman, 1990; Sabatti, 2007).  Others have argued that a problem of FP results 658 
is no more important than the corresponding problem of false-negatives (FN) (Blair et al., 2009).  659 
A decision of what type of error (FP or FN) presents a greater concern is chemical- and outcome-660 
specific, and should be made on a case-by-case basis. Recent advances in genetic and molecular 661 
epidemiology led to the development of novel approaches towards reducing the probability of FP 662 
(PFP) without increasing the risk of FN results (Datta and Datta, 2005; Wacholder et al., 2004).  663 
Even more recently, these approaches were further extended to allow calculating the FP:FN ratio 664 
(Ioannidis et al., 2011).  665 
 666 
Reporting bias: When evaluating a body of research for a meta-analysis or WOE assessment, one 667 
must consider two specific sources of bias that may influence both analysis and synthesis of the 668 
available data: publication and outcome reporting bias.  Publication bias is defined as the 669 
“tendency on the parts of investigators or editors to fail to publish study results on the basis of 670 
the direction or strength of the study findings” (Dickersin and Min, 1993).  A closely related 671 
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concept is selective within-study reporting (a.k.a. outcome reporting bias), which is defined as 672 
“selection on the basis of the results of a subset of the original variables recorded for inclusion in 673 
a publication” (Dwan et al., 2008).  674 
 675 
Publication bias is not specific to research involving short-lived chemicals.  Outcome reporting 676 
bias, however, is potentially more problematic in studies of short-lived chemicals for reasons 677 
listed above.  Specifically, better accessibility of sophisticated analytical platforms allows more 678 
analytes to be measured in a larger number of samples.  679 
 680 
Study evaluation: A Tier 1 study clearly states its aims and allows the reader to evaluate the 681 
number of tested hypotheses (not just the number of hypotheses for which a result is given).  If 682 
multiple simultaneous hypothesis testing is involved, its impact is assessed, preferably by 683 
estimating PFP or FP:FN ratio.  There is no evidence of outcome reporting bias, and conclusions 684 
do not reach beyond the observed results. In a Tier 2 study, the conclusions appear warranted, 685 
but the number of tested hypotheses is unclear (either not explicitly stated or difficult to discern) 686 
and/or there is no consideration of multiple testing. Studies that selectively report data 687 
summaries and lack transparency in terms of methods or selection of presented results are 688 
included in Tier 3. 689 
 690 
4. DISCUSSION/CONCLUSIONS  691 
 692 
The need for a systematic approach to evaluating the quality of environmental epidemiology 693 
studies is clear.  Two earlier efforts to develop evaluative schemes focused on epidemiology 694 
research on environmental chemical exposures and neurodevelopment (Amler et al., 2006; 695 
Youngstrom et al., 2011).  Many of the concepts put forth in these proposed schemes are 696 
valuable to any evaluation of study quality and communicating study results when considering 697 
biomonitoring of chemicals with short physiologic half lives.  For example, fundamental best 698 
practices/criteria proposed by Amler et al. (2006) include: a well-defined, biologically plausible 699 
hypothesis; the use of a prospective, longitudinal cohort design; consistency of research design 700 
protocols across studies; forthright, disciplined, and intellectually honest treatment of the extent 701 
to which results of any study are conclusive and generalizable; confinement of reporting to the 702 
actual research questions, how they were tested, and what the study found; recognition by 703 
investigators of their ethical duty to report negative as well as positive findings, and the 704 
importance of neither minimizing nor exaggerating these findings. 705 
 706 
Chemicals with short physiologic half-lives present several important challenges, including their 707 
presence in analytical laboratories and sampling equipment, difficulty in establishing temporal 708 
order in cross-sectional studies, short- and long-term variability in exposures and biomarker 709 
concentrations, and a paucity of information on the number of measurements is required for 710 
accurate exposure classification.  The BEES-C instrument is designed to evaluate these issues 711 
within a study or proposal.  712 
 713 
We recognize that the development of an evaluative tool such as BEES-C is neither simple nor 714 
non-controversial, and we further expect that this will be an iterative process, similar to the data 715 
quality scheme that has been part of CONSORT and other existing methods or evaluating quality 716 
of clinical data.  We also note that this type of evaluative scheme is not useful for exploratory 717 
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research; rather, the focus here is on designing and identifying those studies that have the 718 
greatest utility for furthering our understanding of associations between exposure to chemicals 719 
with short half lives and adverse health outcomes.  We hope and anticipate that the instrument 720 
developed from this workshop will initiate further discussion/debate on this topic.  721 
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