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Key Points 1 

1.) Unrealistic lake temperatures and ice result when interpolating from global data 2 

2.) WRF coupled with the FLake model improves Great Lakes temperatures and ice cover 3 

3.) Positive precipitation bias increases despite better representation of lakes 4 

 5 

Abstract 6 

The Weather Research and Forecasting (WRF) model is used to downscale a coarse reanalysis 7 

(National Centers for Environmental Prediction–Department of Energy Atmospheric Model 8 

Intercomparison Project reanalysis, hereafter R2) as a proxy for a global climate model (GCM) 9 

to examine the consequences of using different methods for setting lake temperatures and ice on 10 

predicted 2-m temperature and precipitation in the Great Lakes region.  A control simulation is 11 

performed where lake surface temperatures and ice coverage are interpolated from the GCM-12 

proxy.  Because the R2 represents the five Great Lakes with only three grid points, ice formation 13 

is poorly represented, with large, deep lakes freezing abruptly.  Unrealistic temperature gradients 14 

appear in areas where the coarse scale fields have no inland water points nearby and lake 15 

temperatures on the finer grid are set using oceanic points from the GCM-proxy.  Using WRF 16 

coupled with the Freshwater Lake (FLake) model reduces errors in lake temperatures and 17 

significantly improves the timing and extent of ice coverage.  Overall, WRF-FLake increases the 18 

accuracy of 2-m temperature compared to the control simulation where lake variables are 19 

interpolated from R2.  However, the decreased error in FLake-simulated lake temperatures 20 

exacerbates an existing wet bias in monthly precipitation relative to the control run because the 21 

erroneously cool lake temperatures interpolated from R2 in the control run tend to suppress over-22 

active precipitation. 23 
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1. Introduction 24 

When developing a methodology to downscale global climate model (GCM) projections to finer-25 

scale regional climate model (RCM) simulations, a number of challenging issues must be 26 

considered, including the choice of appropriate physics parameterizations, the placement of 27 

lateral boundaries, and whether to constrain the RCM by using nudging in the domain interior.  28 

However, when downscaling a GCM using an RCM with no oceanic component, it is usually 29 

assumed that surface temperatures from the GCM are adequate to provide lower boundary 30 

conditions over water points in the RCM.  In the standard configuration of the Weather Research 31 

and Forecasting (WRF) model, lake surface temperatures (LSTs) are interpolated from the sea 32 

surface temperature (SST) field in the input data.  However, SST datasets provided by typically 33 

coarse GCMs do not resolve inland lakes well, if at all.  If an inland water point exists on the 34 

finer WRF grid for which no water points are proximate in the GCM, the LST is instead set from 35 

the SST of the nearest water point in the GCM, resulting in lake temperatures that are frequently 36 

erroneous.  Although this problem could be addressed by using an exogenous SST dataset with 37 

resolution sufficient to satisfactorily represent inland lakes, it is desirable to rely only on the 38 

GCM for input data when using WRF as an RCM to simulate future changes in regional climate.   39 

 40 

A number of studies have shown that the Laurentian Great Lakes have a significant influence on 41 

the surrounding region, affecting precipitation, temperature, the intensity of passing cyclones and 42 

anticyclones, water vapor, cloud coverage, the placement of the jet stream and other important 43 

aspects of regional climate [e.g., Wilson, 1977; Bates et al., 1993; Lofgren, 1997; Notaro et al., 44 

2013].  Notaro et al. [2013] conducted a decadal modeling study over the Great Lakes basin 45 

using an idealized simulation in which the lakes were replaced with field and forest land cover 46 
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types, and this run was compared with a simulation containing the lakes.  They found that the 47 

presence of the Great Lakes suppressed variability of the 2-m temperature at diurnal and seasonal 48 

timescales, as was also concluded by Bates et al. [1993].   The effect on precipitation varied 49 

seasonally, enhancing (suppressing) precipitation during September to March (April to August) 50 

when the greater thermal inertia of the lakes has the effect of decreasing (increasing) stability 51 

because water temperatures are warmer (cooler) than temperatures in the overlying atmosphere 52 

[Notaro et al., 2013].  Wilson [1977] found that differences between 850-hPa temperatures and 53 

LSTs in excess of 7 ⁰C result in a substantial increase in downwind precipitation, suggesting that 54 

relatively small errors in LSTs can affect precipitation amounts.  The influence of erroneous 55 

LSTs was studied by Zhao et al. [2012].  They conducted 5-year RCM simulations in the Great 56 

Lakes basin where WRF was driven with high-resolution satellite-derived LSTs and lake ice 57 

coverage, and compared this to a simulation driven with a lower-resolution reanalysis product.  58 

Lake-averaged monthly temperatures in the higher-resolution LST dataset differed from the 59 

analyzed temperatures by as much as 8 ⁰C, and using finer satellite-derived LSTs significantly 60 

reduced erroneous winter precipitation.   61 

 62 

Wright et al. [2013] conducted a case study of lake-effect snow in the Great Lakes region and 63 

assessed the impact of both ice and lake temperatures by comparing a control WRF simulation 64 

using realistic ice and LSTs with idealized runs that featured either complete coverage or no ice 65 

cover, as well as a simulation where LSTs were uniformly increased by 3 K.  They found that the 66 

placement of ice suppressed the formation of lake-effect snow, as expected since increased ice 67 

cover and thickness had been shown to decrease latent and sensible heat fluxes (e.g., Gerbush et 68 

al., 2008; Zulauf and Krueger, 2003).  Wright et al. [2013] also showed that additional warming 69 
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imposed on LSTs increased the intensity and spatial coverage of snowfall.  Overall, past studies 70 

conclude that the representation of the lake state in regional climate simulations can strongly 71 

affect surface temperatures and precipitation in the surrounding region. 72 

 73 

Austin and Colman [2007] discussed the non-linearity of the effects of climate change on the 74 

Great Lakes.  They examined observational records from Lake Superior for a 28-year period and 75 

showed an increased warming trend over a multi-decadal period relative to inland temperatures 76 

due to declining ice coverage and earlier onset of the summer stratification of lake temperatures.   77 

Their findings corroborate other observational studies that link multi-decadal warming trends in 78 

lake temperatures to increased lake-effect precipitation [Burnett et al., 2003; Kunkel et al., 2009] 79 

and others that find long-term decreasing trends in the duration of ice coverage in the Great 80 

Lakes [Assel and Robertson, 1995] and in northern hemispheric lakes and rivers [Magnuson, 81 

2000].  Notaro et al. [2013] speculated that this enhanced warming of lake temperatures could 82 

lessen the springtime stabilizing influence of the Great Lakes.  Lakes are an interactive 83 

component of the climate system, and this aspect of regional climate change presents a challenge 84 

to RCMs that rely on prescribed water temperatures.  Wright et al. [2013] cite accurate 85 

predictions of the timing and extent of lake ice formation as critical aspects of predicting changes 86 

in lake-effect precipitation in future climates.  If the warming of lake temperatures and the 87 

associated effects on ice formation are not captured by the RCM, predictions of lake-effect 88 

precipitation and inland temperatures will be adversely affected. 89 

 90 

The overall purpose of this line of research is to establish a downscaling method in order to 91 

equip environmental managers and decision makers with tools and data to inform decisions 92 
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related to adapting to and mitigating the potential impacts of regional climate change on air 93 

quality, ecosystems, and human health.  One issue that has emerged in using WRF to downscale 94 

coarse-scale global climate fields is the representation of the LSTS and ice cover, particularly for 95 

lakes that are either poorly resolved or not resolved by the global fields.  This study examines the 96 

methods by which LSTs and ice concentration are set in WRF within a downscaling 97 

configuration.  In addition to outlining the options within the existing model capability, a 98 

modified version of WRF that is coupled to the Freshwater Lake (FLake) model is also used.  99 

The resulting ice coverage and LSTs are compared with observations and the effects on 100 

commonly used surface variables from the RCM (2-m temperature and precipitation) are 101 

examined.  This study addresses whether the existing options for setting lake temperatures and 102 

ice coverage negatively affect the simulation of surface variables by WRF and whether WRF-103 

FLake improves their representation. 104 

 105 

2. Methods 106 

a.) Downscaling configuration 107 

Otte et al. [2012] described a series of regional climate simulations, performed with 108- and 36-108 

km nested domains for 1988-2007, in which the National Centers for Environmental Prediction 109 

(NCEP)–Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) 110 

reanalysis [Kanamitsu et al., 2002] (hereafter R2) was used as a proxy for a similarly coarse 111 

GCM.  While it is recognized that several GCMs operate at finer resolution than the R2 (T62, 112 

1.875° × 1.875° at the equator), the resolution of this dataset is comparable to several presently 113 

used GCMs.  Sillmann et al. [2013; their Supplemental Table 1] lists the spectral resolution of 15 114 
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GCMs used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 115 

(AR5).  Nine of them have spectral resolution equivalent to or coarser than T63.      116 

 117 

Overall, the regional climatology and interannual variability simulated by the downscaled runs in 118 

Otte et al. [2012] were found to be realistic. Bullock et al. [2014] described simulations where a 119 

12-km nest was added to the downscaling configuration of this prior study (see their Fig. 1), with 120 

focus on the sensitivity of the 12-km runs to physics and nudging options.  The current study 121 

follows Bullock et al. [2014] by also nesting down to a 12-km domain  covering the eastern U.S. 122 

over the area shown in Fig. 1 with a mesh of 292 by 223 grid cells in the x and y directions, 123 

respectively.  Here, initial and lateral boundary conditions are provided by the inner nest from 124 

the 108- and 36-km domain configuration described in Otte et al [2012].  WRF version 3.4.1 125 

[Skamarock et al., 2008] is used to simulate the two-year period 1 Nov. 2005 to 1 Dec. 2007.  126 

The initial 30 days of this period are taken as spin-up for the WRF model, and additional steps 127 

needed for the spin-up  of the lake state in WRF-FLake are described in section 2e. The model 128 

top is set at 50 hPa, with 34 vertical half-sigma levels. The physics parameterizations chosen are 129 

the WRF Single-Moment 6-class microphysics scheme (WSM6) [Hong and Lim, 2006], Grell 130 

3D ensemble cumulus parameterization [Grell and Dévényi, 2002], the Yonsei University (YSU) 131 

[Hong et al., 2006] planetary boundary layer (PBL) scheme, the Noah land surface model [Chen 132 

and Dudhia, 2001], and the Rapid Radiative Transfer Model for Global Climate Models 133 

(RRTMG) schemes for both longwave and shortwave radiation [Iacono et al., 2008].  Spectral 134 

nudging [Miguez-Macho et al., 2004] of potential temperature, horizontal wind components, and 135 

geopotential height is used to constrain the synoptic scale to the driving fields while allowing 136 

finer-scale features of the simulation to evolve.  In the present study, spectral nudging toward R2 137 
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is applied on the 12-km domain at wavenumber 2 and below, resulting in nudging at wavelengths 138 

above 1800 and 1330 km in the x- and y-directions, respectively. These scales exceed those 139 

resolved by the R2 (using the 4∆x criterion [Grasso, 2000]).  Nudging coefficients of 1 x 10-4 s-1 140 

for each field are used, and no nudging is applied below the PBL. 141 

 142 

b.)  Options for setting LSTs and ice coverage in WRF 143 

The WRF Preprocessing System (WPS) has multiple options for interpolating various fields in 144 

the input dataset onto the WRF grid. When assigning the skin temperature over inland water 145 

points, the default interpolation options dictate that if no nearby water points are available in the 146 

input dataset for bilinear or weighted average interpolation, the closest water point is used 147 

(referred to in the documentation as the “search” option).  This circumstance can occur when 148 

inland water bodies present in the fine resolution RCM are land points in the driving dataset 149 

because the input data are substantially coarser than the WRF grid, as is often the case for 150 

regional climate modeling and downscaling applications.  The search method results in 151 

unrealistically sharp gradients between points, as neither linear interpolation nor any other 152 

averaging is done.   153 

 154 

Figure 1 shows the land masks from R2 and the 12-km WRF domain.  For R2, only three water 155 

points are present in the approximate area of Lakes Superior and Michigan, and the remaining 156 

Great Lakes (Huron, Erie and Ontario) are unresolved.  In the 12-km WRF land mask, several 157 

interior lakes can be seen with no corresponding R2 points. The resulting interpolation of SST 158 

and ice coverage to 12-km grid spacing is also shown in Fig. 1.  Water temperatures in Lakes 159 

Superior, Michigan, Huron, and most of Lake Erie are set from the three points present in the R2 160 
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dataset.  However, at the eastern end of Lake Erie, the temperature abruptly changes, warming 161 

by nearly 20 K between adjacent grid points.  This occurs because there are no surrounding R2 162 

water points and the nearest R2 water point is in the Atlantic Ocean, resulting in oceanic SSTs 163 

being used to set water temperatures in eastern Lake Erie and throughout Lake Ontario.  The use 164 

of this interpolation method also impacts smaller lakes within the domain, especially in the 165 

Southeast U.S. and Plains, where LSTs are set from warmer points in the Gulf of Mexico, 166 

hundreds of kilometers to the south.   167 

 168 

Gao et al. [2012] addressed similar discontinuities in skin temperature by modifying the GCM 169 

land mask in the Great Lakes area, so that temperatures from land points in the GCM were used 170 

to set LSTs on the WRF grid.  This treatment eliminates the need for the search algorithm and 171 

the abrupt LST gradients it produces.  However, by using simulated land points from the GCM 172 

as water temperatures, effects of the contrasting lake and land temperatures are lost and the 173 

climate change feedbacks discussed in previous studies (e.g., Austin and Colman [2007], Kunkel 174 

et al., 2009, Gula and Peltier [2012]) cannot be simulated.  Bullock et al. [2014] also reported 175 

unrealistic surface temperature gradients in the Great Lakes basin using the same domain 176 

configuration as in the present study to downscale R2.  They employed the alternative lake 177 

treatment available in WRF version 3.3, setting LSTs using 2-m temperatures averaged from the 178 

previous month. Because 2-m air temperatures in the Great Lakes region are frequently below 179 

freezing during the winter months, this alternative lakes method resulted in unrealistically cold 180 

LSTs and widespread, persistent ice coverage.   181 

 182 
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Figure 1 also shows a snapshot of wintertime ice fraction using interpolation from R2, with 183 

abrupt and unrealistically large spatial coverage of ice resulting across Lakes Superior and 184 

Michigan.  Large sections of those lakes are represented by only a single point on the R2 grid. As 185 

will be shown later, the remaining lakes have no ice cover because there are no R2 water points 186 

close enough to interpolate ice values from.  This represents somewhat of a change from how 187 

temperatures at inland water points are prescribed because the default interpolation options for 188 

sea ice in WPS do not include the search method.  Instead 0% ice coverage is prescribed when 189 

no neighboring points are available in the coarser dataset from which to interpolate ice 190 

concentrations.   191 

 192 

While using ~1.9⁰ SST data from R2 for a 12-km run is unconventional for a historical 193 

simulation (because higher-resolution observed SSTs are available), using higher-resolution data 194 

in these retrospective runs would be counterproductive to the goal of our experiment: choosing a 195 

methodology to downscale GCM projections.  When applying our methodology to future GCM 196 

projections, we will be constrained to use information at the resolution of the global model.  If 197 

we chose to prescribe high-resolution observed LST analyses or climatologically-derived LSTs 198 

in a future climate, this would introduce an unrealistic stabilizing effect by imposing cooler 199 

present-day surface temperatures in a future warmer environment.  Additionally the use of 200 

climatological LSTs would not account for interannual variability of lake temperatures and ice.  201 

Observational studies such as Austin and Colman [2007] and Burnett et al. [2003] highlight the 202 

importance of feedbacks between lake temperatures, ice and changes in the overlying 203 

atmosphere, while the modeling studies of Wright et al. [2013] and Notaro et al. [2013] cite the 204 
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need for accurate prediction of LSTs and ice by lake models when simulating future climate 205 

states. 206 

 207 

c.) FLake model 208 

Gula and Peltier [2012] described regional downscaling WRF runs with LSTs and ice coverage 209 

simulated by an offline version of the FLake model that was driven using output from a GCM.  210 

When downscaling a GCM for a 30-year historical period, the inclusion of FLake-simulated lake 211 

temperatures and ice coverage improved the representation of rain and snowfall in the lee of the 212 

Great Lakes, relative to using LSTs taken from the GCM.   The present work utilizes a version of 213 

WRF dynamically coupled to FLake.   214 

 215 

FLake is a 1D column model, consisting of a two-layer parametric representation of a time-216 

varying temperature profile [Mironov, 2008].  The top layer consists of a homogenous mixed 217 

layer (ML) and a stratified thermocline extending downward from the bottom of the ML.  The 218 

second layer is representative of a layer of thermally-active sediment.  Self-similarity theory, 219 

which originates from observed ocean ML dynamics [Kitaigorodskii and Miropolsky, 1970], is 220 

used to assign a shape to the thermocline, as well as the temperature profile within the bottom 221 

sediment layer.  An integral energy budget is used for each of the two layers.  Convective 222 

entrainment, wind-driven mixing, and solar heating of the water column are all considered to 223 

compute ML depth.  FLake also has a separate parameterization for simulating lake ice and snow 224 

accumulating on top of the ice; however, snow accumulation on lake ice is not represented in the 225 

current version of the coupled WRF-FLake. 226 

  227 
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The atmospheric variables which must be supplied to FLake from a model or analyzed dataset 228 

are: 10-m windspeed, 2-m temperature and specific humidity, and downwelling shortwave and 229 

longwave radiation at the surface.  Within the dynamical coupling framework of WRF-FLake, 230 

these variables are passed to FLake at every WRF time step and the surface temperature and lake 231 

ice at each lake point are passed back to WRF.  Here, FLake is used with lake depths prescribed 232 

from the Global Lake Dataset [Kourzeneva, 2009].  Following FLake’s documentation, as well 233 

as other studies [e.g., Mironov, 2008; Martynov et al., 2010], lake depth is capped at 60 m and 234 

the layer of thermally-active sediment is disabled at points where actual lake depth exceeds this 235 

cap.  This “virtual bottom solution” is suggested because FLake’s two-layer parametric 236 

representation (which assumes that the thermocline extends from the ML to the lake bottom) 237 

limits its ability to represent large, deep lakes.  FLake accounts for processes, such as convective 238 

and mechanical mixing, which are most active in the upper layer of the lake (epilimnion), but 239 

FLake does not account for the presence of the hypolimnion (bottom layer of dense water 240 

between the thermocline and the lake bottom) which is present in large, deep lakes [Perroud, 241 

2009; Balsamo, 2012].    242 

 243 

FLake is a well-tested model, having been coupled with several different RCMs [e.g., 244 

Kourzeneva et al., 2008; Martynov et al., 2008; Mironov et al., 2010; Samuelsson et al., 2010)] 245 

and evaluated against other comparable lake models [e.g., Martynov et al., 2010; Pour et al., 246 

2012; Semmler et al., 2012].  Martynov et al. [2010] conducted a sensitivity study of lake ice and 247 

temperatures using FLake and another 1D lake model.  They found that both models perform 248 

best for smaller, shallower lakes and that FLake generally outperformed the other 1D model in 249 

the Great Lakes.  However, both lake models failed to capture the typical pattern of springtime 250 
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warming in the deep Great Lakes, suggesting that the absence of 2D and 3D processes (such as 251 

lake currents, ice drift, and the formation of a thermal bar) negatively affect FLake’s 252 

performance as they would any other column model.  Despite this limitation, Martynov et al. 253 

[2010] found that FLake adequately reproduced LSTs and ice coverage, as was also found by 254 

Gula and Peltier [2012], Semmler et al. [2012] and Pour et al. [2012]. 255 

 256 

Coupling the FLake model with WRF is advantageous because it is a column model reliant on 257 

empirical relationships, requiring relatively few atmospheric variables and prescribed lake 258 

depths. It is computationally efficient, requires little information about future lake characteristics, 259 

and its implementation within the source code can be easily modified with future WRF updates.  260 

A more sophisticated lake model may not have these qualities, and the added computational 261 

burden could hamper the ability to use the coupled lake model at finer resolutions for climate 262 

simulations.  263 

 264 

d.) Observations 265 

Observed LSTs are taken from the Advanced Very High Resolution Radiometer (AVHRR) 266 

dataset produced by the Group for High-Resolution SST (GHRSST) at the National Climatic 267 

Data Center [Reynolds et al., 2007].  This is a 0.25⁰ product derived from satellite data that are 268 

bias corrected with ship and buoy observations.  Simulated LSTs at points where lake ice is 269 

present are also validated against a Moderate Resolution Imaging Spectroradiometer (MODIS) 270 

land surface temperature dataset.  This MODIS product (MOD11C2) is available in 8-day 271 

composites at 0.05⁰ (~5.6 km) grid spacing.  MODIS land surface temperatures have been shown 272 

to have an accuracy of better than 1 K over a temperature range of 263 to 300 K when validated 273 
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over lake sites [Wan et al., 2002].  Fractional ice coverage data are taken from the National Ice 274 

Center's (NIC) Great Lakes Ice Analysis charts, which are based on observations from an 275 

ensemble of satellites, including the AVHRR, MODIS, and Geostationary Operational and 276 

Environmental Satellite (GOES) [Wang et al., 2012].  The NIC ice analysis is available twice 277 

weekly at a resolution of 2.5 km during the period simulated here. 278 

 279 

For the purposes of evaluating the effect that different lake representations have on WRF’s 280 

simulation of surface variables, hourly observations of 2-m temperature from the NOAA 281 

Meteorological Assimilation Data Ingest System (MADIS) were used for 2006 and 2007. Over 282 

11,000,000 hourly observations are available in the MADIS dataset within the model domain 283 

during 2006 alone [Bullock et al., 2014].  The Atmospheric Model Evaluation Tool (AMET) is 284 

used to pair point observations with the nearest model grid point and generate various statistical 285 

products for near-surface fields [Appel et al., 2011].  The University of Delaware’s global 286 

rainfall dataset is used for evaluating simulated precipitation.  This 0.5⁰ dataset (version 3.01) 287 

contains monthly mean precipitation values from 1901 to 2010.  For the purposes of evaluation, 288 

the dataset was interpolated to the 12-km model domain. 289 

 290 

e.) Simulations 291 

In this study, three WRF simulations are conducted to examine how choices made in the 292 

downscaling configuration impact the setting of lake variables and the resulting simulation of 293 

important surface variables.  The first, “CTLR2,” uses WRF’s default method for setting LSTs 294 

and lake ice by interpolation from R2.  The result of such interpolation methods are discussed 295 

above and shown in Fig. 1.   296 
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 297 

The “WRF-FLake” simulation uses the same initial and boundary conditions (including oceanic 298 

SSTs and sea ice) as in CTLR2, but with lake ice concentrations and LSTs simulated by the 299 

dynamically-coupled FLake model.  In order to provide the needed spin-up time for the lake 300 

model in a computationally efficient manner, the offline version of the FLake model was driven 301 

by R2 in a 10-cycle perpetual-year simulation, where the atmospheric conditions from 2005 were 302 

repeated until the lake model achieved equilibrium [Mironov et al., 2010].  The resulting LSTs 303 

(valid at 1 Nov 2005) were used to initialize WRF-FLake.   304 

 305 

The third downscaled run examined in this study, “CTLOb,” uses the NIC ice concentrations and 306 

GHRSST only over lake points.  In the CTLOb simulation, R2’s SST and sea ice fields are still 307 

utilized over ocean points in order to maintain consistency with the CTLR2 and WRF-FLake 308 

runs.  The CTLOb run is a “best case scenario,” where available products that are closer to the 309 

scale of the 12-km grid are utilized.  CTLOb serves as a benchmark for the performance of the 310 

WRF model when LSTs and ice are prescribed from historical analyses that resolve the lakes 311 

well.  However, it should be recognized that this option is not available for future climate 312 

simulations.   313 

 314 

3. Results   315 

a.) Lake surface temperatures  316 

Figure 2 shows daily-averaged LSTs within the Great Lakes, taken collectively and separately, 317 

from all three simulations.  The CTLR2 run is consistently too cool throughout the year for four 318 

of the five lakes, when compared with the benchmark CTLOb simulation.  Warmer LSTs are 319 
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prescribed in Lake Ontario, where LSTs are set using an Atlantic SST.  WRF-FLake exhibits a 320 

somewhat exaggerated annual cycle, with LSTs too warm in the boreal summer.  Across Lakes 321 

Superior, Michigan and Huron, FLake-simulated LSTs begin to warm rapidly approximately 1 322 

month earlier than in CTLOb and the resulting overestimated LSTs persist into the summer 323 

months.  The tendency of FLake to warm too early in the spring for large, deep lakes has been 324 

noted by prior RCM studies [Martynov et al., 2010; Samuelsson et al., 2010].  Overestimation of 325 

LSTs by FLake is reduced as the simulation progresses to the fall and winter periods.   326 

 327 

Reynolds et al. [2007] describe the algorithm employed in the GHRSST dataset to produce a 328 

simulated SST at ice-covered points with a prescribed minimum value set at freezing.  In the 329 

CTLOb run, subfreezing water temperatures can occur because WRF adjusts water temperatures 330 

to be consistent with the presence of ice prescribed from the NIC dataset.  When WRF’s 331 

fractional ice setting is used, the model overwrites some water temperature values as a function 332 

of ice cover.  The purpose of this capability is to reconcile ice and SST data which may be 333 

inconsistent because they come from independent datasets (Keith Hines [Byrd Polar Research 334 

Center] and wrfhelp@ucar.edu, personal communication, 2014).  Therefore, MODIS surface 335 

temperatures are used to evaluate simulated LSTs where ice is present.  MODIS surface 336 

temperature over lake sites have been validated at several degrees below freezing and found to 337 

have errors less than 1 K [Wan et al., 2002].  Previously, Pour et al. [2012] used MODIS lake 338 

temperatures to evaluate 1D lake models.  However, MODIS suffers from missing data in cloudy 339 

areas.  Therefore, we use GHRSST (without the previously-described temperature adjustments 340 

by WRF) for validation in non-freezing conditions, and the MODIS product is employed for 341 

evaluation of grid cells with ice cover.   342 
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 343 

Table 1 lists the simulation-average mean absolute error (MAE) relative to GHRSST in open 344 

water conditions (where ice cover is zero) and then relative to MODIS at points with non-zero 345 

ice cover.  WRF-FLake performs best for Lake Erie, the shallowest and smallest lake of the five 346 

studied here, while its MAE is greatest for the deepest and largest lake, Superior. Relative to 347 

CTLR2, WRF-FLake features lower or equal MAE in four out of five lakes and the simulation-348 

averaged MAE over all lakes is reduced by ~0.4 K in open-water conditions (Table 1).  By 349 

contrast, the CTLR2 run performs poorly in Lake Erie (which is unresolved in R2; see Fig. 1), 350 

with large cool biases during the summer; while it is more accurate in Lake Superior, where R2 351 

has at least a partial representation of the lake.  In CTLR2, Lake Ontario’s temperatures have 352 

relatively low MAE (equaling that of WRF-FLake), despite its water temperatures being set from 353 

the Atlantic.  Overall, WRF-FLake’s simulated temperatures show improvement over 354 

interpolated CTLR2 values. 355 

 356 

Under ice conditions, WRF-FLake’s simulation-average MAE over all five lakes is somewhat 357 

larger (~1 K) than for open-water cells. The highest MAE occurs across Lake Superior, with 358 

lower error across Lake Erie (Table 1).  As noted previously, ice spatial coverage in CTLR2 is 359 

unrealistic (Fig. 1), with ice significantly under-represented in temporal averages (see section 360 

3b).  Therefore, we do not compare CTLR2’s ice temperatures.   361 

 362 

b.) Ice coverage 363 
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CTLOb, with fractional ice values prescribed from the NIC ice analysis, is used to evaluate the 364 

other two simulations’ ice coverage. However, in making that comparison, it must be considered 365 

that the FLake model outputs ice thickness rather than fractional ice coverage.  As a column 366 

model, FLake is not configured to simulate partial coverage of the cell.  To account properly for 367 

fractional ice coverage, FLake would need to be modified to simulate two temperature profiles 368 

(representing the open and closed portions of the cell) and conserve the total heat content within 369 

the cell.  In the current implementation of WRF-FLake, any grid point that FLake simulates with 370 

an ice thickness greater than zero is interpreted as having complete 100% ice cover. 371 

 372 

We explored using the empirical relationships of Karvonen et al. (2012) between ice thickness 373 

and concentration for various ice categories based on the World Meteorological Association Egg 374 

code, but this would require keeping track of the ice’s age, and it was decided this was outside 375 

the scope of the present study.  Instead, in order to compare the fractional NIC values and WRF-376 

FLake’s effectively binary ice coverage, the NIC fractional ice concentrations are converted to 377 

binary using two different methods In one method, we apply a 50% threshold, where values 378 

greater or equal to that threshold are rounded up to 100% and values below 50% are rounded 379 

down to zero.  Ice fields derived using this method are referred to as “NIC50” hereafter.  As an 380 

upper bound on the spatial extent of ice, the fractional NIC values are also converted where non-381 

zero values are rounded up to 100%.  This “NIC0” approach is more consistent with FLake’s 382 

treatment of ice, where even very thin ice thicknesses (which realistically should correspond to 383 

small fractional values) are expressed as full 100% coverage of the cell.   384 

 385 
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Observed ice is significantly increased between the 2006 and 2007 ice seasons, providing an 386 

opportunity to assess WRF-FLake’s response and whether it can accurately simulate interannual 387 

variability.  Overall, the model performs well at simulating ice cover in both years across each of 388 

the five Great Lakes (Fig. 3), with basin-wide coverage lying between NIC0 and NIC50 during 389 

both periods.  Ice is somewhat over-predicted in Lake Superior, exceeding even the higher NIC0 390 

averages in March and April of both years.  WRF-FLake performs well in both Lakes Huron and 391 

Michigan, with simulated ice concentrations similar to NIC50 averages during both years.  In 392 

Lake Ontario, simulated ice coverage generally lies between NIC0 and NIC50.  WRF-FLake ice 393 

coverage is consistent with NIC50 averages in Erie during 2006 (the low ice period), while 2007 394 

concentrations are under-predicted relative to NIC0.  WRF-FLake significantly outperforms 395 

CTLR2 at simulating ice coverage; in CTLR2, ice is generally absent aside from three 396 

occurrences spanning six days in total, and occurring only in Lakes Superior and Michigan.   397 

 398 

In order to compare the spatial extent of ice, average winter ice cover for both years is plotted in 399 

Fig. 4 for the WRF-FLake and CTLOb runs, with NIC values averaged in their original 400 

fractional form.  CTLR2 average winter ice values (not shown) have the same spatial coverage as 401 

shown in Fig. 1 but with a maximum value of ~1%.   WRF-FLake’s ice coverage largely 402 

corresponds to the presence of ice in the NIC dataset used to drive CTLOb.  The spatial extent of 403 

ice cover in Lakes Michigan and Ontario is especially well-simulated by WRF-FLake.  In Lake 404 

Superior, ice cover in the interior and along the northern shore is over-predicted, and the extent 405 

of ice coverage in Lakes Erie and Huron is somewhat less than observed, especially during 2007.  406 

However, in each lake, the representation of ice in WRF-FLake is significantly improved over 407 

CTLR2, which prescribed essentially no ice cover across the Great Lakes in either year. 408 
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 409 

c.) 2-m temperature 410 

Lakes are a source of turbulent heat fluxes (which are inhibited by ice cover) and have a 411 

profound impact on regional climate. Therefore, it can be expected that improvement in the 412 

representation of LSTs and ice by WRF-FLake will increase the accuracy of nearby temperatures 413 

inland as well.  The MAE of 2-m temperature is evaluated by comparison to MADIS surface 414 

observations during 2006 for sites in the Great Lakes basin (Fig. 5).  In CTLR2, some near-shore 415 

points have a noticeably higher MAE relative to nearby inland points (see northern Lakes 416 

Michigan and Huron and along Lake Erie’s shore).  Both the CTLOb and WRF-FLake runs show 417 

reduced error in near-shore points relative to CTLR2.  A similar comparison holds for 2007 (not 418 

shown).   419 

 420 

Spatially-averaged plots of 2-m temperature bias taken over the Great Lakes basin and over the 421 

whole domain are shown for each season in Fig. 6.  A systematic cool bias is found which 422 

persists through each season (with the sole exception of the fall of 2006), and is present not only 423 

in the Great Lakes region but in the domain averages as well.  Though all simulations have a 424 

cold bias, CTLR2 generally has the largest bias, most dramatically in spring and summer in the 425 

Great Lakes basin.  The erroneously cool LSTs in CTLR2 (Fig. 2) are likely responsible for the 426 

underestimation of 2-m temperatures, especially at near-shore sites.   427 

   428 

The Great Lakes regional bias and MAE are summarized in Table 2.  Averaged over the two-429 

year simulation, WRF-FLake improves biases by ~0.4 K relative to CTLR2.  CTLOb has the 430 

lowest MAE of the three runs in the Great Lakes area, but WRF-FLake actually outperforms 431 
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CTLOb in terms of bias.  Much of this improvement occurs during the spring and summer 432 

months when the model tends to warm LSTs too aggressively (Fig. 2).  This suggests that the 433 

overestimated LSTs in WRF-FLake are counteracting WRF’s tendency to underestimate 2-m 434 

temperatures in this region. 435 

 436 

d.) Precipitation 437 

Figure 7 shows monthly averaged precipitation over the Great Lakes basin from each of the 438 

simulations compared with observed monthly rainfall from the University of Delaware.  All three 439 

runs consistently overproduce precipitation throughout the simulated period, with WRF-FLake 440 

having an even more pronounced wet bias than the other two runs.  This result is consistent with 441 

the cooler LSTs prescribed in CTLR2. WRF-FLake’s warmer LSTs provide further surface 442 

heating to drive increased evaporation, convection, and precipitation. The fact that the CTLOb 443 

run, which provides the best realization of LSTs and ice, nevertheless has a greater error in 444 

monthly mean rainfall than CTLR2 indicates a pervasive problem in the simulations being 445 

compared here.   Bullock et al. [2014] downscaled the same GCM-proxy, R2, as used here with a 446 

similar model set-up and also found positive biases in monthly rainfall even when employing 447 

different nudging strategies and physics choices.  A number of studies indicate that the 448 

atmosphere analyzed in the R2 dataset is too moist and produces too much rainfall. Amenu and 449 

Kumar [2005] conclude that water vapor in R2 is globally positively biased relative to the 450 

National Aeronautics and Space Administration (NASA) Water Vapor Project (NVAP) data.  451 

Other regional studies have found wetter values (with respect to precipitable water vapor or 452 

precipitation) in the R2 compared with observations and other analyses [Bock and Nuret, 2009; 453 

Lim et al., 2011].  Park et al. [2008] and Winter and Eltahir [2012] both found wet biases in 454 
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precipitation when downscaling the R2 with the Regional Climate Model version 3 (RegCM3). 455 

We speculate that excessive water vapor in the R2 could be contributing to the wet bias found 456 

here, but the validation of water vapor in R2 is beyond the scope of this study.  457 

 458 

Comparison with the University of Delaware rainfall data is dominated by the wet bias of the 459 

three runs, so further discussion will focus on the comparison of the runs to each other in context 460 

with prior studies.  Wright et al. [2013] compared the intensity and spatial extent of precipitation 461 

in a control run driven by observed LSTs and ice with idealized runs with either no ice or total 462 

coverage and a third idealized run where LSTs were increased by 3 K uniformly. They found 463 

that the existence of ice tended to suppress lake-effect snow, while warmer LSTs increased the 464 

spatial extent and intensity of lake-effect precipitation.  In this study, CTLR2 is unrealistically 465 

absent of ice (Fig. 3) but has cooler LSTs than observed (Fig. 2).  The former condition would 466 

lead to more lake-effect precipitation in CTLR2 than in CTLOb, but the latter would suppress 467 

precipitation in CTLR2. As CTLR2 has a lower wet bias than CTLOb, the dominant effect is 468 

from the cooler LSTs here. 469 

 470 

Figure 8 presents the seasonally-averaged differences (taken from both years) between WRF-471 

FLake and CTLR2.  As expected, differences tend to be largest over and in the lee of the lakes 472 

with more precipitation in WRF-FLake, where LSTs are increased relative to the control run 473 

(Fig. 2).  Plots comparing CTLOb and CTLR2 (not shown) are similar, with enhanced 474 

precipitation in CTLOb where lake temperatures are warmer than in CTLR2.  The largest 475 

differences in precipitation are in the summer months.  During this “lake stable” season, lake 476 

temperatures are cooler than overlying air temperatures, suppressing convection in the Great 477 
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Lakes basin.  In early fall, atmospheric temperatures cool while LSTs remain relatively warm, 478 

supplying latent and sensible heat fluxes to the atmosphere and promoting convection during the 479 

“lake unstable” season.  During the winter, these fluxes are impeded as the lakes freeze over.  480 

The capability of FLake to parameterize turbulent fluxes, radiative heating of the water column 481 

and the presence of a convectively-driven ML enables it to simulate such interactions between 482 

the lake and the overlying airmass.  483 

 484 

Figure 9 shows basin-averaged 2-m temperatures and LSTs for each run, with shading to indicate 485 

the climatological lake unstable season.  During the summer, when the region is expected to be 486 

in the lake stabilizing season, the difference between LSTs and 2-m temperatures is greater in the 487 

CTLR2 run than in CTLOb or WRF-FLake. The erroneously cool LSTs in CTLR2 enhance the 488 

stability on the overlying atmosphere in the Great Lakes basin and suppress lake-effect 489 

precipitation.  The early warm-up of spring LSTs in WRF-FLake lessens the difference between 490 

atmospheric and lake temperatures, reducing the imposed stability.  During the fall months, the 491 

relative warmth of lake temperatures compared to air temperatures is more pronounced in WRF-492 

FLake than in CTLR2, enhancing lake-effect precipitation in the former simulation during the 493 

early months of the lake unstable season.  Overall, the cool bias in CTLR2 water temperatures 494 

enables this run to perform better in terms of basin-averaged monthly precipitation, despite 495 

having an inferior representation of the lake state in terms of LSTs and ice coverage.   496 

 497 

4. Summary 498 

The results of downscaling the R2 reanalysis as a representative GCM-proxy are investigated 499 

with regard to how lakes are treated when few inland water points are present in the coarser 500 
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dataset to provide information to a regional WRF simulation.  Two-year simulations are 501 

conducted, one using lake information interpolated from R2 (CTLR2), one using lake 502 

temperatures and ice set from higher-resolution analyses (CTLOb), and one in which a column 503 

lake model, FLake, is dynamically coupled with WRF (WRF-FLake).  In CTLR2, only three 504 

water points are available to set water temperatures across the Great Lakes when downscaling to 505 

a 12-km grid (Fig. 1).  Using the WPS’s default interpolation options, this results in abrupt and 506 

unrealistic gradients in lake temperatures, as some lake grid cell temperatures are set using 507 

temperatures from the nearest water grid cell in the GCM-proxy, even if it represents an oceanic 508 

temperature (Fig. 1).  Ice cover in CTLR2 is also found to be poorly prescribed, as deep lakes 509 

abruptly freeze almost completely.   510 

 511 

The goals of this study are to assess the consequences of using a coarse dataset to set temperature 512 

and ice at inland water points and to examine whether using the FLake model can improve the 513 

simulation.  Overall, it has been demonstrated that the representation of lake surface 514 

temperatures, 2-m temperatures and ice coverage have all been improved by the use of WRF-515 

FLake.  The most dramatic improvement in the representation of inland lakes by WRF-FLake 516 

over CTLR2 is in its simulation of lake ice.  Ice coverage produced by CTLR2 occurs for only 517 

two of the Great Lakes over three short, non-contiguous periods during the entire two-year 518 

simulation (Fig. 3).  When ice does appear, it covers almost the entirety of Lakes Superior and 519 

Michigan and then disappears completely within a 1-hour period (Fig. 1).  Meanwhile, shallower 520 

lakes that often incur some winter freezing (like Erie), remain completely open through two 521 

winters because (in the coarser R2 dataset) no valid water points are close enough to set values 522 

of ice for the eastern-most Great Lakes.    By contrast, WRF-FLake represents the spatial extent 523 
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of ice well and is able to capture the increase in ice from the 2006 to 2007 winter seasons (Figs. 524 

3 and 4).   525 

 526 

Overall, LSTs are better represented in WRF-FLake than in CTLR2, even though the latter is an 527 

analyzed SST that has been prescribed rather than a simulated water temperature.  In open water 528 

conditions, WRF-FLake LSTs have lower or equal MAE relative to CTLR2 in all but one of the 529 

five lakes compared (Table 1).  The temperatures interpolated from CTLR2 are too cool 530 

throughout the year in each lake except Ontario, which has a prescribed water temperature set 531 

from the Atlantic (Figs. 1 and 2).  Consistent with past work [Martynov et al., 2010; Samuelsson 532 

et al. 2010], this study finds that FLake performs best in shallower lakes, but it tends to warm too 533 

strongly in the spring across large, deep lakes (Fig. 2).  Lake Erie is most improved by the use of 534 

the FLake model, while Lake Superior has the largest error in simulated LSTs.   535 

 536 

Simulated 2-m temperatures in the Great Lakes basin are notably improved in WRF-FLake 537 

compared to CTLR2, with reductions in both MAE and mean bias (Table 2, Fig. 6). WRF-FLake 538 

reduces the averaged bias in 2-m temperatures in the Great Lakes basin by approximately 0.4 K.  539 

Conspicuously, the accuracy of simulated precipitation amounts is degraded by the use of the 540 

lake model, and precipitation is not well-simulated even when higher-resolution observational 541 

products are used to set lake variables, indicating systematic problems in either the WRF 542 

configuration used here or the R2 data being downscaled.  Each of the three runs examined here 543 

produces too much precipitation, and the use of temperatures from the lake model increases 544 

WRF’s wet bias (Fig. 7).  CTLR2 has the lowest wet bias because of the compensating error in 545 
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its LSTs, which are consistently cooler than observed.  This imposed surface cooling increases 546 

the stability of the overlying air mass and reduces lake-effect precipitation.   547 

 548 

This study serves to caution regional climate modelers to examine how inland water 549 

temperatures and ice are being set when using a similar methodology, as many currently-used 550 

downscaling procedures may not account for the undesired effects of using coarse datasets to set 551 

variables over inland water points.  Previous studies (e.g., Gula and Peltier [2012], Notaro et al. 552 

[2013] and Wright et al. [2013]) highlight the need for accurate predictions of LST and ice cover.  553 

Past observational studies have shown non-linear effects of climate change in warming lake 554 

temperatures and decreasing ice cover, both of which enhance precipitation [Assel and 555 

Robertson, 1995; Burnett et al., 2003; Austin and Colman, 2007; Kunkel et al., 2009].   The use 556 

of a coupled lake model within an RCM, as done here, potentially enables the simulation of 557 

important feedbacks of climate change on regions affected by the presence of lakes.   558 

 559 
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TABLE 1. Mean absolute error (K) in daily LSTs in open water and ice conditions, averaged 

across each lake and over all five Great Lakes.  Error relative to ice points in CTLR2 is not 

shown because only three days in the two-year simulation feature any ice for the first two lakes 

listed, while the remaining three lakes have no ice at any point in CTLR2.   

 

TABLE 2. Mean bias and MAE in 2-m temperature (K) from each of the simulations, taken over 

the Great Lakes basin and averaged over the 2-year simulation.  
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FIG. 1.  The land mask used in the R2 data, as shown in the area corresponding to the 12-km 

eastern U.S. domain (top left) and the 12-km WRF grid’s land mask (top right, shown with the 

lakes labeled).  The skin temperature (K, bottom left) and ice cover (bottom right) interpolated 

from R2 to the 12-km grid, valid at 12 UTC 9 Jan 2007.   

 

FIG. 2. Daily- and lake-averaged LSTs for all Great Lakes collectively (top left) and for Lakes 

Superior (top right), Michigan (middle left), Huron (middle right), Erie (bottom left) and Ontario 

(bottom right) with the CTLOb run shown in black, CLTR2 in red and WRF-FLake in blue.  

 

FIG. 3. Daily- and lake-averaged ice concentrations for all Great Lakes together and each 

individually are shown in the same order as in the previous figure, for the winter of 2005-2006 

(left) and 2006-2007 (right).  The solid and dotted black lines represent NIC0 and NIC50, 

respectively.  Blue and red lines represent WRF-FLake and CTLR2 ice concentrations, 

respectively. 

 

FIG. 4. Averaged winter (December through February) ice coverage from 2006 (left) and 2007 

(right) from the CTLOb (top) and WRF-FLake (bottom) simulations.  Here, the averages have 

been computed with the NIC values kept as a fractional dataset, so the imposed thresholds used 

to derive NIC0 and NIC50 are not applied.   
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FIG. 5. 2-m temperature MAE (K), computed hourly against MADIS observations in the Great 

Lakes basin, averaged over the year 2006, and shown every 0.25 K from 0.75 to 3 K and every 1 

K between 3 and 4 K. 

 

FIG. 6. Seasonally-averaged bias (K), spatially averaged in the Great Lakes basin (top) and the 

eastern U.S. domain pictured in Fig. 1 (bottom), shown for each of the runs as denoted in the 

legend. 

 

FIG. 7. Monthly average precipitation (shown in mm day-1) taken over the Great Lakes basin for 

each of the model runs and plotted with monthly rainfall from the University of Delaware 

interpolated to the WRF domain. 

 

FIG. 8. Differences (mm day-1) in seasonally-averaged precipitation (averaged over both years) 

between WRF-FLake and CTLR2, where warm (cool) colors indicate more precipitation in the 

WRF-FLake (CTLR2) run. 

 

FIG. 9. Daily LSTs (dashed) and 2-m temperature (solid) averaged over the Great Lakes basin for 

CTLOb (top), CTLR2 (middle) and WRF-FLake (bottom).  The air temperatures have a 10-point 

smoother applied to filter out short term variability.  Gray shading denotes the climatological 

lake unstable season. Note that the use of smoothing, as well as temporal and spatial averaging, 

de-emphasizes differences between the air temperatures simulated by the three runs. 
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TABLE 1. Mean absolute error (K) in daily LSTs in open water and ice conditions, averaged 

across each lake and over all five Great Lakes.  Error relative to ice points in CTLR2 is not 

shown because only three days in the two-year simulation feature any ice for the first two lakes 

listed, while the remaining three lakes have no ice at any point in CTLR2.   

 Open water points Ice points 

 CTLR2 WRF-FLake WRF-FLake 

All Great Lakes 2.95 2.56 4.35 

Lake Superior 2.57 3.00 4.85 

Lake Michigan 3.25 2.46 3.60 

Lake Huron 2.67 2.43 4.12 

Lake Erie 4.40 1.86 3.30 

Lake Ontario 2.30 2.30 3.6 
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TABLE 2. Mean bias and MAE in 2-m temperature (K) from each of the simulations, taken over 

the Great Lakes basin and averaged over the 2-year simulation.  

Run Bias MAE 

CTLOb -0.88 2.19 

CTLR2 -1.12 2.29

WRF-FLake -0.76 2.23
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 FIG. 1.  The land mask used in the R2 data, as shown in the area corresponding to the 12-km 

eastern U.S. domain (top left) and the 12-km WRF grid’s land mask (top right, shown with the 

lakes labeled).  The skin temperature (K, bottom left) and ice cover (bottom right) interpolated 

from R2 to the 12-km grid, valid at 12 UTC 9 Jan 2007.   
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FIG. 2. Daily- and lake-averaged LSTs for all Great Lakes collectively (top left) and for Lakes 

Superior (top right), Michigan (middle left), Huron (middle right), Erie (bottom left) and Ontario 

(bottom right) with the CTLOb run shown in black, CLTR2 in red and WRF-FLake in blue.  
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FIG. 3. Daily- and lake-averaged ice concentrations for all Great Lakes together and each 

individually are shown in the same order as in the previous figure, for the winter of 2005-2006 

(left) and 2006-2007 (right).  The solid and dotted black lines represent NIC0 and NIC50, 

respectively.  Blue and red lines represent WRF-FLake and CTLR2 ice concentrations, 

respectively.  
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FIG. 4. Averaged winter (December through February) ice coverage from 2006 (left) and 2007 

(right) from the CTLOb (top) and WRF-FLake (bottom) simulations.  Here, the averages have 

been computed with the NIC values kept as a fractional dataset, so the imposed thresholds used 

to derive NIC0 and NIC50 are not applied.   
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FIG. 5. 2-m temperature MAE (K), computed hourly against MADIS observations in the Great 

Lakes basin, averaged over the year 2006, and shown every 0.25 K from 0.75 to 3 K and every 1 

K between 3 and 4 K.  
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FIG. 6. Seasonally-averaged bias (K), spatially averaged in the Great Lakes basin (top) and the 

eastern U.S. domain pictured in Fig. 1 (bottom), shown for each of the runs as denoted in the 

legend. 
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FIG. 7. Monthly average precipitation (shown in mm day-1) taken over the Great Lakes basin for 

each of the model runs and plotted with monthly rainfall from the University of Delaware 

interpolated to the WRF domain. 
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FIG. 8. Differences (mm day-1) in seasonally-averaged precipitation (averaged over both years) 

between WRF-FLake and CTLR2, where warm (cool) colors indicate more precipitation in the 

WRF-FLake (CTLR2) run. 
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FIG. 9. Daily LSTs (dashed) and 2-m temperature (solid) averaged over the Great Lakes basin for 

CTLOb (top), CTLR2 (middle) and WRF-FLake (bottom).  The air temperatures have a 10-point 

smoother applied to filter out short term variability.  Gray shading denotes the climatological 

lake unstable season. Note that the use of smoothing, as well as temporal and spatial averaging, 

de-emphasizes differences between the air temperatures simulated by the three runs.  


