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Abstract  

 Epidemiological studies have observed between city heterogeneity in PM2.5-mortality risk 
estimates. These differences could potentially be due to the use of central-site monitors as a 
surrogate for exposure which do not account for an individual’s activities or ambient pollutant 
infiltration to the indoor environment.  Therefore, relying solely on central-site monitoring data  
introduces exposure error in the epidemiological analysis.  The amount of exposure error 
produced by using the central-site monitoring data may differ by city. The objective of this 
analysis was to cluster cities with similar exposure distributions based on residential infiltration 
and in-vehicle commuting characteristics. 
 Factors related to residential infiltration and commuting were developed from the 
American Housing Survey (AHS) from 2001 – 2005 for 94 Core-Based Statistical Areas 
(CBSAs). We conducted two separate cluster analyses using a k-means clustering algorithm to 
cluster CBSAs based on these factors.  The first only included residential infiltration factors (i.e. 
percent of homes with central air conditioning (AC) mean year home was built, and mean home 
size) while the second incorporated both infiltration and commuting (i.e. mean in-vehicle 
commuting time and mean in-vehicle commuting distance) factors. 
 Clustering on residential infiltration factors resulted in 5 clusters, with two having 
distinct exposure distributions. Cluster 1 consisted of cities with older, smaller homes with less 
central AC while homes in Cluster 2 cities were newer, larger, and more likely to have central 
AC.  Including commuting factors resulted in 10 clusters. Clusters with shorter in-vehicle 
commuting times had shorter in-vehicle commuting distances.  Cities with newer homes also 
tended to have longer commuting times and distances. 
 This is the first study to employ cluster analysis to group cities based on exposure factors. 
Identifying cities with similar exposure distributions may help explain city-to-city heterogeneity 
in PM2.5 mortality risk estimates. 
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1 Introduction 

Multi-city population-based epidemiological studies have observed heterogeneity 

between community- or city-specific PM2.5-mortality effect estimates (Dominici et al., 2006; 

Franklin et al., 2007).  One potential reason for these differences is the use of central-site 

monitors as a surrogate for exposure.   This may introduce bias into the observed risk estimates if 

the central-site monitor-exposure relationship varies by city. 

Previous studies have hypothesized and reported higher air pollution risks for cities with 

higher overall air exchange rates (AERs) or pollutant infiltration efficiencies (Bell and Dominici, 



3 
 

2008; Hodas et al., 2012; Janssen et al., 2002; Levy et al., 2005; Medina-Ramon et al., 2006). A 

number of factors related to home characteristics can influence the infiltration of ambient air into 

the home. Some of the most important factorsinclude age of construction (Allen et al., 2003; 

Chan et al., 2005), housing type  (i.e., multi- vs. single-family home) (Koenig et al., 2005; 

Pandian et al., 1993), and central air conditioning (AC) (Johnson and Long, 2005). In addition 

people may spend time away from their home (e.g. at work) or in other near-source 

environments (e.g. in vehicles), where the composition and toxicity of pollutants can vary. In-

vehicle air pollution measurement studies have also indicated that concentrations of pollutants 

inside cars and buses are considerably higher than those recorded at nearby central-site monitors 

(Riediker et al., 2003) and exposure  models suggest that even a small amount of time spent in 

vehicles may contribute significantly to the average daily personal PM exposure (Burke et al., 

2001).  Recently exposure to traffic pollution while in-vehicle has been shown to result in 

changes in heart rate variability (Shields et al., 2013).  Estimating exposures based on 

community-average pollution concentrations also does not account for time spent at other 

locations outside the assigned community, and thus can add bias (Setton et al., 2011).   

. This analysis continues our attempt to better understand the heterogeneity in PM2.5- 

mortality effect estimates across cities.  Our objective is to group cities with similar central-site 

monitor – exposure relationships by clustering them using a k-means cluster analysis based on 

residential infiltration and commuting characteristics.  Exposure variables related to infiltration 

and commuting patterns were developed from the American Housing Survey (AHS) from 2001 – 

2005 for 94 Core-Based Statistical Areas (CBSAs).  It is anticipated that this approach will 

identify groups of cities with similar exposure characteristics that may explain the heterogeneity 

in PM2.5 mortality risk estimates observed in multi-city epidemiologic studies.   
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2 Methods 

2.1 Development of variables 

We acquired data from the AHS, available from the Department of Housing and Urban 

Development’s website (Department of Housing and Urban Development) on community-

specific residential infiltration and commuting patterns.  The AHS collects data on the Nation's 

housing, including number of apartments, single-family homes, mobile homes, and vacant 

housing units; and household characteristics including household income, housing and 

neighborhood quality, housing costs, heating equipment and fuels, size of housing unit, and 

recent moves.  AHS also collects information on type of transportation (e.g., car, bus, subway) 

used to commute to work, commuting distance, and commuting time. National data are collected 

in odd numbered years, and supplemented with data for 47 selected CBSAs about every six 

years.  The national sample covers an average 55,000 housing units while each metropolitan area 

sample covers 4,100 or more housing units.  For this analysis we used the national surveys and 

any available metropolitan surveys from 2001-2005. 

Using the housing units sampled in each CBSA as part of the AHS, indicators of AERs 

were calculated as a means to identify those cities that may have a higher fraction of ambient 

PM2.5 penetrate indoors. These indicators include percent of home with central air conditioning, 

average home age, and average square footage of the home for each CBSA. Previous studies 

have shown that personal and/or indoor concentrations of sulfate (often used as a tracer for PM 

of ambient origin) are lower and less well correlated with outdoor concentrations for homes with 

AC than homes without AC (Suh et al., 1994; Suh et al., 1992).  This is likely because air 

conditioned homes typically have lower air exchange rates (AERs) than homes that use open 
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windows for ventilation, suggesting that the fraction of PM2.5 from ambient origin that penetrates 

indoors (i.e. infiltration) is lower in homes with AC than in homes without AC.  Other predictors 

of AER include the year a structure was built, as well as its size (Chan et al., 2003; Sherman and 

Matson, 2002).  Newer homes are generally more tightly sealed with lower AERs due to modern 

methods for constructing and sealing building envelopes (Chan et al., 2005; Persily et al., 2010).  

Similarly, larger houses typically have higher AERs compared to smaller houses, since they 

contain a greater surface area for leaks to develop (Chan et al., 2003).   

The mean in-vehicle commuting distance and time was also calculated for each AHS 

sample subject in each CBSA.  Commuting was considered in-vehicle if according to the AHS 

the mode of transportation was car, truck, van, bus/streetcar, taxicab, or other vehicle.  This in-

vehicle mode of transportation was then combined with the distance traveled in miles and the 

time traveled in minutes.   

Cluster analysis is based on the distance between points so variables need to be scaled 

appropriately. If variables are measured on different scales, or units variables with large values 

contribute more to the distance measure than variables with small values.  Therefore, the 

variables were standardized prior to performing the cluster analysis. All variables were 

standardized to a mean of 0 and standard deviation of 1. 

 

2.2 Selection of cites 

The total number of CBSAs covered in the national and metropolitan surveys from 2001-

2005 was 148.  The population of the CBSA largely determines the daily number of clinical 

events, such as mortality and hospitalizations, and thus the statistical power to detect potential 

adverse health effects of air pollutants, as reflected in the confidence intervals around their effect 



6 
 

estimates. Small CBSAs with relatively few daily events will have more uncertainty surrounding 

their city-specific effect estimates and less statistical power to detect potential adverse health 

effects of air pollutants. From a previous report we determined that populations of less than 

500,000 would not provide enough daily deaths to perform a time-series analysis with sufficient 

power to detect significant associations between PM2.5 and mortality (Baxter et al., 2012).  As a 

result, for this analysis of the 148 CBSAs that are included in AHS, we focused on the 94 

CBSAs with a population greater than 500,000 people. Population data for these 94 CBSAs was 

obtained from the U.S. Census Bureau’s website (United States Census Bureau). 

 

2.3 Cluster Analysis 

 We used a k-means clustering algorithm to cluster CBSAs based on residential 

infiltration factors and commuting patterns.  This iterative algorithm searches for a local solution 

that minimizes the Euclidean distance between the observations and the cluster centers.  The k-

means clustering algorithm is somewhat less sensitive to outliers than hierarchical clustering 

methods (Punj and Stewart, 1983).  In a k-means cluster analysis the number of clusters (k) must 

be assigned a priori based either on pre-existing knowledge of the data or observable 

characteristics of the data set.  For our analysis there was no pre-existing knowledge of the 

number of unique clusters to specify. We, therefore, calculated the within groups sum of squared 

errors (SSE) for 14 cluster solutions with k ranging from 2 to 15 to identify an optimal number of 

clusters.  

 SSE is defined as the sum of the squared distance between each member of a cluster and 

its cluster centroid (Kaufman and Rousseeuw, 1990) as shown below. 
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where K is the number of clusters; x is a city; Ci is the ithcluster; dist is the standard Euclidean 

distance between two objects of Euclidean space; and ci is the centroid of cluster Ci.  In general, 

as the number of clusters increases, the SSE should decrease because clusters are, by definition, 

smaller. A plot of the SSE against a series of sequential cluster levels can provide a useful 

graphical way to choose an appropriate cluster level.  The most appropriate cluster solution is 

defined as the solution at which the reduction in SSE slows dramatically. This produces an 

"elbow" in the plot of SSE against cluster solutions.  

 We conducted two separate cluster analyses.  The first only included the residential 

infiltration variables (i.e. percent of homes with central AC, mean year home was built, and 

mean home size).  The second analysis incorporates both the infiltration and the commuting 

variables (i.e. mean in-vehicle commuting time and mean in-vehicle commuting distance).  The 

SSE plots were generated with R 2.14.0 (R Development Core Team, 2011) and the cluster 

analyses were conducted using SAS 9.3 (SAS Institute Inc., 2011). 

 

3 Results 

3.1 Description of Variables 

 Table 1 presents the summary statistics of the residential infiltration and commuting 

factors across all of the 94 CBSA.  To describe the range of the data we calculated the ratios 

between the maximum and minimum values. Across CBSAs the ratios of percent of homes with 

central AC and mean home size were 13.7 and 2.2, respectively.  Mean year home was built 

ranged across the CBSAs by approximately 60 years. For the commuting variables, these ratios 
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were approximately 2 for both in-vehicle commuting time and distance.  Using the coefficient of 

variation (CV), we determined the variability for each exposure factor across CBSAs.  The CV 

for percent of homes with central AC was 44%, 24% for year built, and approximately 16% for 

the other factors. Of note the CV for year built was calculated using the age of the home (2013 - 

year built). See Supplemental Material, Table 1S for exposure factor values for each CBSA.  

There were geographical patterns to some of the factors.  Older homes and homes with lower 

percentage of central AC tended to be found in the Northeast.  Lower percentage of homes with 

central AC was also observed in California CBSAs, while the CBSAs in the South consisted of 

more homes with central AC. 

 The Spearman correlations among the exposure factors are shown in Table 2.  The 

percent of home with central AC was highly correlated (ρ = 0.71) with mean year home was 

built.  Mean year home was built was weakly correlated with mean in-vehicle commuting 

distance at 0.26.  Mean in-vehicle commuting time and distance were strongly correlated (ρ = 

0.79). While the overall correlations of these variables were high in a few cities (e.g. Las Vegas, 

NV and San Francisco, CA) the correlations were 0.5-0.6 we therefore chose not to combine 

these two variables. All other correlations between the factors were weak (ρ <0.3). 

 

3.2 Selecting k 

 The first step in analyzing the data using k-means clustering was to select the correct 

number of clusters.  The selection of the correct number of clusters is not governed by a defined 

approach, but encompasses analyzing the within group SEE. To identify the appropriate number 

of clusters we compared the within groups SSE for a number of cluster solutions ranging from 2 

to 15. By plotting the number of clusters against the within groups sum of squares for the 
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residential infiltration factors (Figure 1), and both the infiltration and commuting factors (Figure 

2) it is possible to not only quantitatively, but also visually identify a representative number of 

clusters. Figure 1 shows that similar values of the within group sum of squares appear for values 

k greater than 5.  We therefore determined that a 5 cluster solution was a reasonable choice for 

this dataset. Figure 2 shows that similar values of the within group sum of squares appear for 

values k greater than 10.  We therefore determined that a 10 cluster solution was a reasonable 

choice for this dataset.  

 

3.3 Cluster Results with Residential Infiltration Factors 

 As determined from the SSE analysis a 5 cluster solution was used for the residential 

infiltration factors.  The 94 CBSAs listed by clusters are shown in Table 2S (see Supplemental 

Material, Table 2S).  Figure 3 and Table 3 presents the characteristics of the 5 clusters. CBSAs 

with lower percentage of homes with central AC were observed in clusters 1 and 5.  Mean home 

age were older in clusters 1, 4, and 5 (prior to 1970), with CBSAs in cluster 5 having slightly 

older homes.  In contrast, the homes in the CBSAs in cluster 5 were much larger than those 

assigned to cluster 1.  CBSAs with the highest percentage of homes with central AC were 

grouped into clusters 2 and 3, with similar percentages seen in each cluster.  However, cluster 2 

consisted of CBSAs with newer and larger homes. Cluster 4 contained CBSAs with mean home 

ages similar to cluster 1; larger home sizes were found for clusters 2 and 5; however their 

prevalence of central AC were very different. For some of the clusters there appeared to be a 

geographical pattern as illustrated by Figure 4.  The majority of cities in cluster 1 appear to be 

near bodies of water and almost all of the southeastern CBSAs are grouped into cluster 3.  
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Cluster 4 contained mostly midwestern cities and cluster 5 consisted of all northeastern CBSAs. 

A complete of all cities by cluster are listed in Table 2S. 

 

 3.4 Cluster Results with Addition of Commuting Factors 

 The 94 CBSAs listed by clusters are shown in Table 3S (see Supplemental Material, 

Table 3S).  As determined from the SSE analysis a 10 cluster solution was used for the analysis 

including both the residential infiltration and commuting factors.  The characteristics of the 10 

clusters are presented on Figure 5 and Table 4.  CBSAs with highest percentage of homes with 

central AC were grouped into clusters 3, 6, and 9, and CBSAs with the lowest percentages were 

in clusters 2, 5, and 7.  Cluster 3 had the CBSAs with the newest homes while clusters 5, 7, and 

10 had CBSAs with the oldest homes. Clusters consisting of CBSAs with the largest home 

included clusters 1, 3, 4, and 5, and the remaining clusters characterized by smaller homes.  

Mean in-vehicle commuting time was similar across clusters, with CBSAs with the longest 

commuting times in cluster 1 and CBSA with the shortest commuting times in cluster 10.  

Finally, CBSAs with further in-vehicle commuting distances were grouped into clusters 1, 3, 6, 

7, and 8. As with the results with the infiltration factors a few geographical patterns did emerge. 

The majority of cluster 4 was made up of midwestern CBSAs, cluster 7 consisted of all 

northeastern CBSAs, and northeastern and midwestern CBSAs grouped into cluster 10 (Figure 

6). 

 

4 Discussion 

 The inability to explain the regional heterogeneity, specifically city-to-city heterogeneity 

within a region, in PM2.5 mortality risk estimates observed in multi-city studies remains a key 
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uncertainty in the examination of the PM-mortality relationship. This heterogeneity in PM 

mortality risk estimates has often been attributed to differences in (a) PM composition (Franklin 

et al., 2008), (b) PM exposure (i.e., exposure error) (Baxter et al., 2013a), and/or (c) community-

specific characteristic such as demographics (Bell and Ebisu, 2012).    

 Our previous analysis (Baxter et al., 2013b) examined the first component of this 

hypothesis, PM composition. Unlike previous studies that focused on identifying the most toxic 

components (Bell et al., 2007; Franklin et al., 2008; Ostro et al., 2007). Baxter et al. (2013) 

focused on trying to identify city-to-city differences in PM composition that could explain the 

city-to-city heterogeneity observed within regions. While we did not find clear evidence of 

compositional differences between cities that could explain differences in PM2.5 mortality risk 

estimates, a cursory analysis found some evidence that city-specific exposure differences, such 

as percent of population living in apartments and the prevalence of homes with central air 

conditioning, between cities may help explain the difference in PM2.5 mortality risk estimates. 

Using a novel approach not previously applied to exposure factors, we examined city-specific 

differences in population exposures for 94 CBSAs that were clustered into groups with similar 

exposure distributions. 

  In the first analysis, cities were clustered based on residential infiltration factors.  

Previous studies have observed that as the prevalence of central air conditioning across cities 

increases, PM-mortality risk estimates decrease (Bell et al., 2009; Franklin et al., 2007; Janssen 

et al., 2002).  Building on this concept, Chen el al. (2012)found evidence that seasonal and 

regional differences in PM10 mortality coefficients reflect seasonal and regional differences in 

total PM10 exposure per unit change in outdoor exposure. This study used a number of exposure 
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factors including ones representative of residential infiltration, specifically the leakiness of the 

home (determined by the age and size of the home) and fraction of residences with central AC.   

 The analysis using only residential infiltration factors resulted in 5 clusters. Cluster 1 

consisted of cities with older and smaller homes with less central AC while cities with newer, 

larger homes and a large percentage of central AC comprised Cluster 2. For the remaining 

clusters, cluster 3 is high prevalence of AC with newer and smaller homes; 4 is moderate 

prevalence of AC with older and large homes; and Cluster 5 is low prevalence of AC with older 

and larger homes.  These 5 clusters cover the most common combinations in the U.S. housing 

stock. To further examine if additional city-specific exposure differences are contributing to the 

difference in PM2.5 mortality risks between cities, exposure factors representative of commuting 

patterns (both distance and time) were included in an additional cluster analysis along with the 

infiltration factors in an attempt to more fully understand the exposure distributions of each city. 

In both analyses there were some geographical patterns. For the residential infiltration factors 

only analysis the southeastern CBSAs tended to group together (cluster 3) while for the 

infiltration plus commuting factors analysis, cluster 4 consisted of mostly midwestern CBSAs. 

 It was hypothesized that additional information on commuting patterns could further 

explain differences between cities that were not evident when examining only residential 

infiltration factors. With the American population spending on average 6.6% of its time (95 

min/day) commuting (Klepis, 1999), in-vehicle exposures represent an important consideration 

when examining personal exposure to air pollution. Commuting times and distances can also 

represent personal mobility.  Ignoring daily mobility patterns can introduce exposure 

measurement error and therefore bias into an epidemiological study (Setton et al., 2011). The 

addition of the commuting factors to the analysis resulted in 10 clusters. Overall, clusters with 
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shorter in-vehicle commuting times had shorter in-vehicle commuting distances.  In addition, 

cities with newer homes tended to have longer commuting times and distances possibly 

indicating urban sprawl.  For the rest of the exposure factors no clear patterns emerged; however, 

this was not surprising given the weak correlations between these factors. 

 These clusters could be used to investigate potential explanations for city-to-city 

heterogeneity in PM mortality risk estimates. We, therefore, examined our results in the context 

of PM10 mortality risk estimates from the National Morbidity Mortality and Air Pollution Study 

(NMMAPS) (Dominici et al., 2003). Of the 88 cities included in NMMAPS, 66 were included in 

our cluster analyses. We focused on the clusters based solely on residential infiltration factors 

and examined the differences in PM10 mortality risk estimates between cities in clusters 2 (i.e., 

Atlanta, GA; Kansas City, MO; Columbus, OH; and Charlotte, NC) and 5 (i.e., Newark, NJ; 

Syracuse, NY; and Boston, MA), representing cities with high and low residential infiltrations, 

respectively. Cluster 2 is representative of cities with newer homes (i.e., mean age of 1989) with 

a higher percentage of central AC (i.e., 72.1%); whereas homes in cluster 5 are much older (i.e., 

mean age of 1945) and have a lower percentage of central AC (i.e., 18.9%). We would expect 

higher exposures to outdoor PM in clusters with cities exhibiting higher residential infiltration 

resulting in larger PM10 mortality risk estimates. Based on the maximum likelihood estimates 

(MLE) using GLM from Dominici et al. (2003), the magnitude of PM10 risk estimates is 

generally smaller for the cities in cluster 2, except for Charlotte, compared to cluster 5. It is 

important to note that the cluster analysis may be more informative when examining PM2.5 

mortality risk estimates due to the difference in particle size and reactivity between PM2.5 and 

PM10 that could influence PM infiltration in the home.  
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 Although the cluster analysis based on residential infiltration factors alone provides some 

insight with regard to the city-to-city heterogeneity in PM10 mortality risk estimates, other factors 

are also contributing to the heterogeneity observed. As such, clusters based on infiltration and 

commuting factors were also examined in the context of NMMAPS. We recognize the clusters 

based on infiltration and commuting factors are difficult to interpret; however, when taking them 

into consideration to explain differences within clusters from the infiltration factor only analysis 

additional information is gained. For example, within cluster 2, although all of the cities have 

relatively similar commuting exposure distributions, when examining infiltration plus 

commuting clusters the infiltration distribution of Atlanta is found to be slightly different than 

that of the other 3 cities, which could explain the difference in PM10 mortality risk estimates.  

Overall, this exercise may indicate that grouping cities into clusters based on exposure 

distributions does provide additional information that can help explain the city-to-city 

heterogeneity in PM mortality risk estimates, but it also brings to light that additional 

uncertainties remain that need to be examined to more full characterize the city-to-city 

differences observed. 

 It is important to recognize that this study is subject to inherent limitations. The main 

limitation of the clustering analyses conducted in this study is that the temporal and seasonal 

patterns in exposure as well as air pollution were not considered.  It is well known that AC use 

and other factors that influence residential infiltration, such as the opening of windows, follow 

strong seasonal patterns indicative of an inverted U-shape curve (Koutrakis et al., 2005) and can 

be affected by the number of heating and cooling degree days. By excluding this information in 

conducting the cluster analysis it is possible that the cities within each cluster may not have very 

similar exposure distributions. However, the spearman correlation between cooling degree days 
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and percent of central AC was quite strong (ρ = 0.7).Our analysis also does not include all 

factors affecting exposure such as socioeconomic status. People living in poorer and more 

disadvantaged neighborhoods may have higher exposures as a result of living closer to 

sources(Zeka et al., 2006).  

While the AHS attempts to select a representative sample of homes it still may not be 

representative of the population introducing some exposure misclassification bias.  The AHS 

uses multiple counties for each metropolitan area which are not aligned with the concentration 

and health data that focused on the core counties.  However, since the majority of the population 

lives in the core county we can assume that the AHS values for the larger metropolitan area are 

indicative of the core county.  Our exposure factors are also surrogates to capture residential 

infiltration rather than direct measurements potentially resulting in some exposure error.  In 

addition, measures of the mean may not adequately capture the within-community variability 

which may be greater than the between-community variability.   

 An additional limitation of the cluster analysis is the sole reliance on minimizing SSE to 

determine the correct number of unique clusters. However, due to the lack of prior information 

that could be used to determine the correct number of unique clusters it is unclear how the 

reliance on SSE influences the overall results of the analyses.  Finally, some of the clusters 

consist of only a small number of cities.  This could indicate that the k we used is too large or 

alternatively it could mean those cities are really unique and should be in their own clusters.   

 

5 Conclusions 

 This is the first study to employ cluster analysis to group cities with similar exposure 

distributions. Identifying cities with similar exposure distributions may help explain city-to-city 
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heterogeneity in PM2.5 mortality risk estimates. To date, the air pollution literature has focused 

on PM composition and demographics in identifying heterogeneity in the observed PM2.5 

mortality risk estimates. This study builds on previous work that examined whether differences 

in composition within- and between-cities can explain the heterogeneity, and in combination 

shows that compositional as well as exposure information can provide additional insight. 

Additional research is warranted to examine the combination of composition, exposure 

differences and demographics to fully understand how each influences PM mortality risk 

estimates. 
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