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Abstract

Measurements from central site (CS) monitors are often used as estimates of exposure in air pollution
epidemiological studies. Since these measurements are typically limited in their spatiotemporal
resolution, true exposure variability within a population is often obscured, leading to potential
measurement errors. To fully examine this limitation, we developed a set of alternative daily exposure
metrics for each of the 169 ZIP codes in the Atlanta, GA metropolitan area, from 1999-2002, for PM, 5
and its components (EC, SO,), Os, CO, and NO,. Metrics were applied in a study investigating the
respiratory health effects of these pollutants. The metrics included: i) CS measurements (one CS per
pollutant); ii) air quality model results for regional background pollution; iii) local-scale AERMOD air
quality model results; iv) hybrid air quality model estimates (a combination of ii and iii); and iv)
population exposure model predictions (SHEDS and APEX). Differences in estimated spatial and
temporal variability were compared by exposure metric and pollutant. Comparisons showed that: 1)
both hybrid and exposure model estimates exhibited high spatial variability for traffic-related pollutants
(CO, NO,, and EC), but little spatial variability among ZIP code centroids for regional pollutants (PM, s,
SO,, and 03); 2) for all pollutants except NO,, temporal variability was consistent across metrics; 3) daily
hybrid-to-exposure model correlations were strong (r >0.82) for all pollutants, suggesting that when
temporal variability of pollutant concentrations is of main interest in an epidemiological application, the
use of estimates from either model may yield similar results; 4) exposure models incorporating
infiltration parameters, time-location-activity budgets, and other exposure factors affect the magnitude
and spatiotemporal distribution of exposure, especially for local pollutants. The results of this analysis
can inform the development of more appropriate exposure metrics for future epidemiologic studies of

the short-term effects of particulate and gaseous ambient pollutant exposure in a community.
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Introduction

Measurements from central site (CS) monitors are often used as estimates of exposure in epidemiologic
studies investigating the short-term health effects of air pollution (1-5). Fixed-site monitors may be
sufficient for representing ambient concentrations for pollutants with limited spatial and temporal
heterogeneity. For pollutants with local source impacts, the concentrations measured at CS monitors
may not represent intra-urban variation in air pollution levels (6-8). This may lead to exposure
misclassification in an epidemiology study, which can introduce statistical error that affects the strength

and significance of estimated health effect associations (9).

Alternatives to exclusive reliance on ambient concentration data from central monitoring sites include
various approaches, such as spatially dense sampling campaigns or modeling (e.g., air quality dispersion
models, land use regression models) of pollutant concentrations, which may increase the spatial
resolution of ambient pollutant concentrations (7, 10-17). Human exposure models (such as SHEDS and
APEX) can provide spatiotemporally-refined ambient exposure estimates by incorporating factors such
as human activity and behaviors of individuals as they move through space and time, in addition to
relevant demographic and home environment characteristics (e.g., air exchange rate) that impact
outdoor to indoor air pollutant infiltration (17-19). Where appropriate, the models could also be used to

characterize the contribution of indoor sources of air pollution to total exposures.

While epidemiologic studies of the adverse health effects of exposure to ambient pollution have been
conducted using modeled mid- to long-term exposure estimates (20-24), few studies of acute morbidity
have used modeled daily, spatially-refined, estimates of ambient concentrations (25, 26). To our
knowledge, no population-based studies of air pollution and acute morbidity are available where
spatially-refined estimates of ambient population exposure have been applied, beyond a few feasibility

studies (27, 28). Development and evaluation of alternative exposure assignment approaches, which
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provide information on spatiotemporally refined ambient concentrations and ambient population
exposures, is needed for use in improved population-based acute health effects studies. The research
presented here provides a unique comparison of alternative exposure estimates obtained from

measurements, modeling of ambient pollution levels, and human exposure models in a single study.

Presented here is the development of a suite of alternative exposure metrics developed by the U.S.
Environmental Protection Agency (EPA) in collaboration with Emory University and the Georgia Institute
of Technology for use in a time-series study examining the relationships between ambient air pollution
and acute morbidity outcomes (based on daily emergency department visits by ZIP code) in Atlanta, GA.
The Atlanta study domain includes the city’s downtown as well as surrounding suburban and rural areas,
and has a wide range of air pollution emissions from a variety of point and mobile sources. The study
examines a variety of pollutants with a range of spatial and temporal variability, including several that
are highly influenced by local traffic (elemental carbon (EC), carbon monoxide (CO), and nitrogen oxides
(NOL))(8, 29-32) as well as pollutants more dominated by regional contributions (particulate matter with
aerodynamic diameter less than 2.5 um (PM,s), sulfate (SO,4), and secondary or regional ozone (03)) (31,
33-36). To provide spatially-refined ambient concentrations and exposures for this study, we applied a
number of statistical, mechanistic and behavioral models (e.g., AERMOD, SHEDS and APEX) to develop

five alternative exposure metrics for each of the six pollutants.

In this paper, we outline the development of each exposure assignment approach and conduct a
detailed characterization of how each alternative metric compares to CS monitor measurements. We
also discuss implications for use of these alternative metrics in place of CS measurements in the Atlanta
time-series epidemiologic study. We hypothesize that each increasingly complex exposure metric will
show a greater degree of spatial and temporal variability in the exposure estimates, especially for traffic-

related ambient pollutants. These refined exposure estimates may then provide greater power in
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detecting epidemiologic associations of interest for pollutants with heterogeneous or complex
spatiotemporal patterns. Further details on the epidemiologic study design and the results from the
related epidemiologic analyses using the various exposure metrics are described in two related

companion papers (37, 38).

Materials and Methods

Study Design

The Atlanta study area encompassed 169 ZIP codes and extended about 70 km in each direction from
the Atlanta city center. This analysis was performed on a subset of the 225 ZIP codes included in the
larger Study of Particles and Health in Atlanta (SOPHIA) study, for the years 1999-2002. The ZIP codes
selected were based on availability of data for all exposure estimation approaches, availability of census
data for each ZIP code, and presence of the ZIP code during this study period (certain ZIP codes included
in the original SOPHIA study were discontinued prior to 1999). Ambient pollutant data were measured
and modeled for PM, 5 and two of its components (EC and SO,), and gaseous pollutants (O3, CO and
NO,), on an hourly or 24-hr basis from 1999-2002. We developed the five metrics of exposure described
below to characterize spatiotemporal patterns of ambient concentrations and population exposures to
these six pollutants within the Atlanta study area. The similarities and differences in pollutant
concentrations between exposure metrics were compared. We examined the spatial variability of
exposure metrics across days and between exposure metrics, the temporal variability of exposure
metrics, including: seasonal variability, level of temporal variability across ZIP codes and between
exposure metrics, and daily correlations between exposure metrics for the six pollutants. General
classes of exposure metrics are discussed in Ozkaynak et al., 2012 (10). Each of these pollutant-specific

alternative exposure metrics were subsequently applied in an epidemiologic analysis of daily emergency
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department visit data from each of the ZIP codes in the Atlanta study area. Results from the related

health effects analyses are reported elsewhere as companion papers (37, 38).

Exposure metric i: Central site monitor measurements (CS)

Pollutant measurements from central monitoring sites in the study area comprise the primary exposure
metric. Metriciincluded monitoring sites from the Southeastern Aerosol Research Characterization
(SEARCH) network, the Assessment of Spatial Aerosol Composition in Atlanta (ASACA) network, and the
EPA’s Air Quality System (AQS) monitoring network. Details regarding the central sites selected for each
pollutant, including their location, measurement methods and imputations done to fill in for missing
data can be found elsewhere (39-41). In brief, hourly measurements for CO were from the Dekalb Tech
AQS site, and hourly NO, measurements were from the Georgia Tech AQS site. Hourly O; measurements
for March/April — October were largely from the Confederate Ave AQS site; the Jefferson Street SEARCH
site provided O; measurements for November — February. Daily 24-hr average PM, s, EC, and SO,
concentrations were all from the Jefferson Street SEARCH site and have been detailed previously (39,
42) (Figure 1). Hourly data for CO and NO, were aggregated to daily 24-hr average values; hourly data

for O; were aggregated to daily 8-hr maximum values.

Exposure metric ii: Regional background (BG)

To create metric ii, we modified an earlier approach for creating population-weighted daily averages of
ambient pollution concentrations to create spatially resolved hourly estimates of regional background
pollution by removing local source impacts modeled by hour-of-day and day-of-week (12). The modified
approach took ambient CS monitor hourly measurements for each pollutant and removed local source
contributions as modeled by AERMOD (see exposure metric iii below) to infer hourly estimates of
regional background pollution at each monitoring site, later interpolated to ZIP code centroids as
described below. Hourly measurement data from six NO, monitors, four CO monitors, 14 Oz monitors,

6
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and five PM; s monitors were used in this study; two PM, ;s composition monitors provided 24-hr
measurements of EC and SO,. For details of locations of monitors used for creating BG estimates see
Figure 1. Regression models were developed to predict hourly EC and SO, from 24-hr measurements (for

additional details see Supplemental Text 1).

The local source contribution at each monitor location for each pollutant of mainly primary source origin
(CO, NO,, PM, 5, and EC) was modeled as a function of hour-of-day, day-of-week, month-of-year, and
year using AERMOD. These modeled contributions were then removed from the hourly regulatory
ambient CS measurements to yield regional background estimates. For the remaining two pollutants
that are almost entirely of secondary origin (Os; and SQO,), the regional background was assumed to be
the same as measured by the ambient monitors. Having estimated hourly regional background pollution
levels at central monitoring sites, these estimates were spatially translated across the study domain as

described in Supplemental Text 1.

Exposure metriciii: AERMOD

Local-scale hourly pollutant concentrations for PM, s, EC, SO,, CO, and NO, at each ZIP code centroid
were also modeled using the AERMOD dispersion model version 09292 (43). AERMOD simulates
concentrations of pollutants directly emitted into the atmosphere. Because O; is formed by
photochemical processes and has no direct emissions, Oz concentrations were not modeled with
AERMOD. SO, concentrations output from AERMOD are from direct vehicle exhaust emissions, and do
not include the secondary SO, contribution due to photochemical transformations in the atmosphere.
The AERMOD model provides near-source pollutant contributions from each stationary source at
receptors on a designated spatial scale by using emission source coordinates and stack parameters. To

estimate mobile source contributions to roadway concentrations, we treated individual road links as
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elongated area sources in AERMOD. After modeling, the contributions to air quality from all sources

were added together at each receptor (located at each ZIP code centroid).

Local emissions source data and meteorological data were input into the AERMOD model, with major
stationary source emissions data (including airport sources at Hartsfield-Jackson Atlanta International
Airport) coming from the EPA’s National Emissions Inventory (NEI) from 2002. Roadway emissions were
estimated using detailed road network locations from an improved methodology developed by the
authors for a previous study (11), with link-specific highway vehicle emission rates estimated as the
product of traffic activity by vehicle class on individual road links and running emission factors by vehicle
class. Non-running vehicle emissions (e.g. idling emissions) were treated as part of background.
Meteorological data came from the National Weather Service site at the Hartsfield-Jackson Atlanta
International Airport and the Jefferson Street SEARCH site. For detailed specifications of the AERMOD

model, see Supplemental Text 2. For details on model evaluation, see Supplemental Text 3.

Exposure metric iv: Hybrid

As part of metric iv, we used a combination of local- and regional-scale modeling to account for all major
atmospheric processes, including local contributions (driven by local-scale variation in pollutant
emissions and meteorology) and regional contributions (background levels associated with large-scale
synoptic patterns), to provide spatially- and temporally-resolved concentration surfaces in Atlanta. The
sum of the regional background contribution (metric ii) and the local contribution from AERMOD (metric
iii) was computed hourly to obtain total ambient air concentrations for the each pollutant being studied,
at each ZIP code centroid. As AERMOD does not estimate O; concentrations, the hybrid exposure metric

for O; was identical to the regional background.

Exposure metric v: APEX and SHEDS exposure models
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Models were used to estimate population exposures to ambient pollution, rather than approximating
exposure using outdoor ambient pollutant concentrations (as in metrics i-iv), at each ZIP code and for
each pollutant. As part of metric v, we used the U.S. EPA’s Stochastic Human Exposure and Dose
Simulation (SHEDS) model (19, 44, 45) to estimate 24-hr PM, s, SO,, and EC exposures, and 8-hr
maximum O3 exposures. The U.S. EPA’s Air Pollutants Exposure Model (APEX) (46, 47) outputs hourly
estimates of exposure to CO and NO,, which were aggregated to 24-hr average exposures (APEX
estimates were used for CO and NO, as model runs for the Atlanta study area had previously been
completed). The SHEDS and APEX models estimate population exposure distributions by accounting for
both the spatial variability in pollutant concentrations in locations where people are exposed (outdoor,
indoor, and in-vehicle), and person-level variability in locations visited and time spent in each
microenvironment, as the simulated individuals move about the study domain. Key input to the models
were the hybrid pollutant concentrations from metric iv, described above, time-location-activity data
from the U.S. EPA’s Consolidated Human Activity Database (CHAD) (48), spatially varying local air
exchange rates calculated as described in Sarnat et al. 2013 (38), and census tract-level home-to-work
commuting data (47, 49). Penetration and decay parameters used in the models were specific to each
pollutant, but did not vary spatially or temporally. The exposure estimates represent exposure of
individuals to ambient pollution resulting from time spent in outdoor, indoor, or vehicular
microenvironments; the APEX and SHEDS models included infiltration of ambient pollution to indoor
microenvironments, but for this application did not include the contribution from indoor source
emissions due to the intended subsequent application of the exposure estimates in an epidemiological
analysis of health effects of air pollution due to ambient sources. For detailed SHEDS and APEX modeling
specifications including penetration and decay parameters, see Supplemental Text 4-5, and Tables S2-

S5; for details on model validation, see Supplemental Text 3.

Statistical methods
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Summary statistics and Pearson correlations between exposure metrics are described below. The
coefficient of variation (CV) for each pollutant was calculated to allow for comparison of the differences
in spatial and temporal variability across pollutants. Defined as CV = o/, where o = standard deviation
and p = mean, the CV is a dimensionless index which allows for a normalized way to compare variability
across pollutants with different units. A higher CV indicates a greater degree of dispersion of the

|ll

variable. We define the “spatial” CV as the CV calculated across ZIP codes over the study domain, thus
resulting in one spatial CV for each day (n~1461 for each pollutant, and each metric), and quantifying
the amount of spatial variation in daily pollutant concentrations. The “temporal” CV was calculated as
the CV across days, with one temporal CV for each ZIP code (n=169 for each pollutant, and each metric),
and representing the degree of temporal variability of pollutant concentrations over the entire domain.

GIS mapping was used to visually depict spatial variation. Pearson correlations were used to compare

temporal correlations for each pollutant between exposure tiers.

All statistical analyses were completed in R version 2.13.2 (R Foundation for Statistical Computing,

Vienna, Austria). All mapping was done in ArcGIS 10 (Esri, Redlands, CA).

Results

Summary statistics (Table S1) and comparison between exposure metrics (Figure 2) for each pollutant
show that for all pollutants, the magnitude of 4 year annual mean hybrid estimates across all ZIP codes
approximate the magnitude of CS monitor measurements well. In comparison, exposure model
estimates are lower than ambient concentrations for PM, s, SO,4, EC, and O; due to reduced residential
infiltration and removal of these pollutants indoors, and higher than ambient concentrations for CO and
NO, due to inclusion of a roadway proximity factor in the APEX model. For detailed discussion of the
comparison between metrics for each pollutant, and of the seasonal variability for each pollutant, see

Supplemental Text 6.

10
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Spatial variability

As noted above and seen in the spread of the boxplots in Figure 2, there are differences in the amount
of spatial variation in annual mean concentrations between ZIP codes for the various pollutants and
metrics. Figure 3 displays the spatial CVs that quantify this spatial variation. Metrics iv and v have
varying degrees of spatial variability for each pollutant, evidenced by the range of spatial CVs (Figure 3).
While mean ambient concentrations from the hybrid estimates (metric iv) agree with those from CS
measurements (metric i), hybrid estimates vary spatially, particularly for pollutants with predominantly
local sources (EC, CO, and NO,). These results are consistent with findings from previous work conducted

in Atlanta showing increased spatiotemporal variability for traffic related pollutants (31).

The varying degrees of spatial variability can also be seen visually in the selection of maps presented in
Figure 4. The spatial variability in ambient concentrations and larger spatial CVs observed for metric iv
for EC, CO, and NO,, is also reflected within the exposure modeling (metric v) (Figures 3, S1), partially
due to the fact that metric iv concentrations are used as inputs in calculating the metric v estimates, but
also suggesting spatial variability in population exposures. We also observe noticeable differences in
both the magnitude and structure of the variability in distributions between metrics iv and v, likely due

to space and time dependent mobility and infiltration factors incorporated in the exposure models.

There is little difference in the spatial CVs for PM, s, SO,4, and O3, both between metrics ivand v and
within metric iv or v for each pollutant, with little to no spatial variation in either metric for these three
pollutants (mean spatial CV < 0.16) (Figures 3, S1). The low spatial CV for PM, s and SO, may be because
PM, s and SO, are largely derived from regional sources, as seen in Figure 2 where the BG contribution
dominates over AERMOD. Thus we do not expect to see spatial variability in the concentrations of these
pollutants at the ZIP code level, and over the geographic scale of our study area. O3 concentrations are

likely spatially homogeneous in our study area as they are mostly driven by regional photochemistry at
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the ZIP code level. Note that these pollutants may have increasing degrees of spatial variability if more
enhanced modeling or measurement data in fine-scale microenvironments (e.g. near roadway, and at
varying distance from roadway) were being analyzed. PM composition, especially the ultrafine
component for example, varies considerably when a finer spatial scale than ZIP code level is examined
(29, 50). In addition, the fine-scale variation in O3 photochemistry, particularly near busy roadways, was

not considered in our local emissions model (AERMOD).

Local pollutants show a different pattern, with moderate spatial variation for EC (Figure 4) (mean spatial
CV of ~0.5 for metrics iv and v). While CO has low-moderate and NO, has moderate-high spatial
variability for metrics iv and v, for both pollutants the spatial CV of the exposure model estimates is
lower than the spatial CV of the hybrid estimates (Figure 3). EC, CO, and NO, all exhibit a range of spatial
CVs across the days covered by the study period, evidenced by the wider boxplots (Figure 3). As shown
previously, spatial variability in ambient concentrations of these pollutants is expected since their main
source is local traffic emissions (31). The lower degree of spatial variability across days of exposure
model estimates (metric v) compared to hybrid estimates (metric iv) for CO and NO, is potentially due to
the relatively uniform air exchange rates used as input for the exposure model, or to the influence of
mobility and commuting related exposure factors in these models that are accounting for the movement
of individuals between high and low concentration areas (18). As a result of movement of commuters
between multiple ZIP codes on a given day, the daily average exposure concentrations for commuters

may be more similar than ambient concentrations of each ZIP code individually.

Temporal variability

Temporal CV

For all pollutants except NO,, there is no substantial difference in the mean temporal CV across ZIP
codes when comparing the three main exposure metrics (metrics i, iv and v) (Figure 5). This indicates

12
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that the overall degree of temporal variability of PM, s, SO,4, EC, CO, and Os is similar across the exposure
metrics. For PM; 5, SO,, and Os, the narrow boxplots indicate little difference in the degree of temporal
variability across ZIP codes for metrics ivand v compared to EC, CO, and NO,, where wider boxplots
indicate differences in the degree of temporal variability across ZIP codes not represented in CS
measurements. NO, exhibits a unique pattern, with the overall degree of temporal variability (i.e. the
mean temporal CV) decreasing as the complexity of the exposure metric increases (highest mean
temporal CV for the CS measurements (metric i), lowest mean temporal CV for the exposure model
estimates (metric v)) (Figure 5). This result is potentially due to regularizing effects of commuting and

related exposure factors varying across the study domain.

In breaking down the hybrid estimates into the two component parts (metric iii: AERMOD and metric ii:
BG), we see that for PM, s and SO,, AERMOD does provide added temporal variability compared to the
CS measurements (metric i), evidenced by the wider boxplots for metric iii (Figure 2). However as
described above, the magnitude of the AERMOD contributions from local primary emissions for PM, s
and SO, are so low compared to the regional contributions that this added temporal variability is lost

when the AERMOD and regional components are combined.

Correlation between metrics

The regional pollutants (PM, s, SO,4, and Os) all exhibit a strong daily correlation between the CS
measurements (metric i) and the hybrid estimates (metric iv) (r=0.90, 0.95, and 0.97 respectively), and
between the CS measurements (metric i) and the exposure model estimates (metric v) (r=0.84, 0.93, and
0.93 respectively), indicating that the CS measurements co-vary over time with both the hybrid
estimates and the exposure model estimates (Table 1). In studies where the day-to-day variability of
ambient concentrations is desired, hybrid estimates obtained using the methods presented here may

not provide greater temporal resolution as compared to CS measurements for these pollutants. It is
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important to note that in this case, the strong correlation between CS measurements and hybrid
estimates are partially due to the CS measurements being used as input for the BG estimates (metric ii),
which in turn are used in calculating the hybrid estimates. The strong correlation between CS
measurements and exposure model estimates is consistent with previous findings of a strong correlation
between ambient concentrations and personal exposures for PM, s and SO, (51-54). Previous studies
have typically found a weak correlation between ambient concentrations and exposure estimates for O3
(51, 52, 55) with the main assumption that low infiltration and high removal rates indoors may have
contributed to this weak correlation. In this instance, stronger correlations between CS measurements
and exposure model estimates for O; may be due to O; exposures being based on BG estimates only (i.e.
no metric iii: AERMOD modeling was done for Os), and due to the SHEDS model predictions including Os

infiltration and decay parameters which do not vary temporally.

Pollutants dominated by local emissions sources (EC, CO, and NO,) exhibit a moderate daily correlation
between the CS measurements (metric i) and the hybrid estimates (metric iv) (r=0.70, 0.54, and 0.58
respectively), and between the CS measurements (metric i) and the exposure model estimates (metric v)
(r=0.64, 0.63, and 0.73 respectively) (Table 1). This moderate correlation indicates that day-to-day
variability at the CS is different than that represented by the hybrid estimates or the exposure model
estimates, which may influence epidemiological study results depending on the co-variance between
exposure and health outcome data at the ZIP code level. The decrease in the metric i — metric iv and
metric i-metric v correlations for local pollutants as compared to regional pollutants may be a result of
the hybrid and exposure model estimates accounting for local traffic related sources of emissions which
may vary on a day-to-day basis (8, 29, 30). This temporal variability in local source emissions may not be
captured by CS measurements. Previous studies have found weak correlations between ambient
concentrations and personal exposures for NO, (51, 52, 56), potentially for the same reasons as

explained above and potential NO, exposures from indoor combustion sources.

14



333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

All pollutants exhibited strong correlations between hybrid estimates (metric iv) and exposure model
estimates (metric v), with correlations ranging from 0.82 to 0.98 for the six pollutants. The strength of
these correlations indicate that the day-to-day variability of hybrid estimates as compared to exposure
model estimates is quite similar, most likely because exposure models used the hybrid estimates as a
main input. If temporal variability alone is of interest (e.g., in a time-series study in a geographically
small study area) for these six pollutants, it may not be necessary to consider both hybrid and exposure

modeling to obtain adequate estimates of temporal variability for these pollutants.

Influence of spatial and temporal variability on exposure metrics for EC

In Figure 6, we have highlighted EC as an example of a spatially and temporally varying pollutant
dominated by local emissions sources which benefits from the modeling approaches presented here.
The hybrid estimates (Figure 6c) provide added spatial variability which is not present in the CS
measurements (Figure 6b), highlighting the differential exposure misclassification which could occur on
the spatial scale for EC if CS measurements were used as the exposure estimate in epidemiologic
analyses with geographically-defined subpopulations. The exposure model estimates (Figure 6d) provide
an additional benefit for epidemiology studies as these estimates take into account the added spatial
variability of hybrid estimates (due to hybrid estimates being used as input to the exposure model
estimates), yet also account for the spatially varying air exchange rates in the study area (Figure 6a).
Additional exposure factors such as commuting patterns and differences in time-location-activity
budgets included in the exposure model result in a reduced magnitude of the exposure model estimates
(Figure 6d) compared to hybrid estimates (Figure 6c). The slight reduction in the spatial CV of EC (Figure
3) when comparing exposure model and hybrid estimates may be a result of commuting patterns,
whereby commuting between ZIP codes in a given day will result in less spatial variability in exposure

model estimates as compared to hybrid estimates, which are inherently modeled for each ZIP code
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individually. In addition, Figures 6e and 6f demonstrate that the degree of temporal variability present in
the EC concentrations changes across the study domain, and is dependent on the spatially varying EC
concentrations, highlighting the potential for introducing differential exposure misclassification on the
temporal scale if the non-spatially varying CS measurements were used as the exposure estimate in

epidemiologic analyses.

Discussion

Though previous related epidemiology studies of spatially variable pollutants in this same study area of
Atlanta have reported associations with cardiovascular and respiratory outcomes using CS monitor
measurements (40, 41, 57-59), simulation studies have suggested that error due to spatial variability in
ambient pollution may result in reductions in observed relative risks by 43-68% for spatially
heterogeneous pollutants such as CO, NO,, and EC (60). This finding further motivated us to assess the
potential for exposure misclassification when using CS measurements in a health study (60, 61) so that

error might be minimized in future epidemiological studies.

To summarize our findings, air quality modeling of ambient concentrations (metric iv) approximates
mean CS measurements (metric i) well, but includes a degree of spatial variability of ambient
concentrations that CS monitor measurements do not capture, especially for local pollutants (EC, CO,
and NO,). Human exposure models incorporating infiltration parameters, time-location-activity budgets,
and other exposure factors also introduce a certain level of spatial variability for local pollutants. The
mean level of temporal variability across ZIP codes for all pollutants except NO, is represented well by CS
measurements, however for local pollutants there is a range of temporal variability across ZIP codes that

is not represented in CS measurements.

In applying the results of this analysis to exposure metrics for future epidemiologic studies, there are a
few key points to consider. First, exposure models not only introduce variability in predicted exposures,
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but may impact the magnitude and distribution of the predicted exposure concentrations both within
and across ZIP codes. Second, exposure misclassification on both the spatial and temporal scales may be
introduced for local pollutants if CS measurements are used as the estimate of exposure, due to the
spatial and temporal variability of local pollutant concentrations or spatially varying exposure factors
(especially infiltration and commuting patterns) which are not accounted for in CS measurements (37).
Though air quality and exposure models have the ability to introduce variability not present in CS
measurements, the potential to introduce greater uncertainty in the resultant health effect estimates

due to modeling error must be considered (4).

When regional pollutants (PM, s, SO,4, O3) are of interest, CS measurements may be sufficient to reflect
spatial variability, especially for time-series or case-crossover studies over large urban or metropolitan
scales, due to the limited local-scale spatial variability of these pollutants at the ZIP code level, and due
to the strong temporal correlation between CS measurements and either hybrid or exposure model
estimates. However, in studies of local pollutants (EC, CO, and NO,), both air quality modeling and
exposure modeling may need to be considered in order to represent spatial variability adequately. In
addition, air quality and exposure modeling represent different levels of temporal variability for local
pollutants compared to CS measurements. While the strong correlation between hybrid and exposure
model estimates for local pollutants suggests that hybrid and exposure models comparably represent
day-to-day variability, it is important to remember that exposure modeling estimates may represent
differences in the magnitude and spatial variability of pollutants that the hybrid estimates do not. For all
pollutants, if the appropriate magnitude of exposure is desired at a fine spatial and temporal resolution
(i.e., when fine scale spatiotemporal health data are available), exposure models may be necessary to
better represent levels of human exposure because of the variety of human exposure factors which they

incorporate.
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To our knowledge, no other single study has developed the diverse range of spatial and temporal
refinement in exposure metrics presented here, compared both air quality and exposure model results
to central site monitor measurements, and further done so for multiple pollutants. Including alternative
exposure assessment approaches in one study allows for a direct comparison of how different methods
perform relative to each other. This study provides support for the development of alternative
approaches for specific epidemiologic applications (9, 59, 62-65). While the study aimed to reduce
exposure misclassification for traffic-related pollutants (CO, NO,, and EC), pollutants of secondary origin
(O3 and SQ,), which previous work has shown have little spatiotemporal variation in Atlanta were
included for comparison (31). The inclusion of six pollutants allowed for comparison of how the
alternative approaches perform when applied to pollutants with varying spatial and temporal patterns.
In addition, the estimates developed allowed for the investigation of how these exposure surrogates

might improve health effect estimates in a time-series study (37, 38).

Results from this study should be followed with additional studies analyzing exposure estimates from
multiple alternative exposure estimation approaches at different geographic locations. Studies in
locations with different meteorological conditions (e.g., the North-East where the residential air
exchange rates may be more variable), or with different emissions profiles (e.g., greater quantity of
industrial sources, less traffic, or a more concentrated city center), may yield different results.
Conclusions regarding spatial variability may also vary when modeling is conducted at finer spatial scales
(e.g., PM, s or ultrafine PM may show increased spatial variability in near-road environments). Further,
the resources required for completing local-scale modeling for PM, s and SO, in the future should be
weighed against the local versus regional contribution for these pollutants, keeping in mind that while
PM, s concentrations measured at central sites within an urban area may be highly correlated, some
variation in their concentrations can occur spatially on any given day, especially when analyzed at a finer

spatial scale (66). Temporal variability may differ in areas where there are greater variations in
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meteorology from day-to-day. Lastly, patterns of exposure model estimates may change in areas where
air exchange rates are higher than those in Atlanta. For certain pollutants, the spatial and temporal
variability added when using air quality and exposure models demonstrates the potential for exposure
misclassification when using CS measurements as estimates of exposure in an epidemiologic study.
Keeping the results of this analysis in mind, there must be careful consideration in future epidemiologic
studies of the choice of the exposure assignment approach, with consideration given to the
epidemiological study design, pollutant of interest, and temporal and spatial scales of both exposure

and health data.

Supplemental Information: Supplemental information is available at the Journal of Exposure Science

and Environmental Epidemiology’s website at: http://www.nature.com/jes/index.html.
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Figures

Figure 1: Map of metropolitan Atlanta with monitoring site locations and population density. Letters
reference monitor locations. The table identifies station name, network, and air pollutants monitored,
with air pollutants indicated by numbers (1=NO,/NO,, 2=CO, 3=03, 4=PM, 5 mass, 5=PM, s composition

(S04, EC). Population density is from 2000 Census data.

Figure 2: Mean annual pollutant concentrations for each study ZIP code in Atlanta, GA (1999-2002).
Note metric i: CS, metric ii: Regional Background, metric iii: AERMOD, metric iv: Hybrid, and metric v:
APEX or SHEDS. Bottom and top of box represent 25" and 75" percentiles, the band near the middle of
the box is the median, and the ends of the whiskers are the 5™ and 95™ percentiles. (Note n=169 for

each pollutant, for each metric.)

Figure 3: Mean spatial CV for each day (1999-2002). Note metric i: CS, metric iv: Hybrid, and metric v:
APEX or SHEDS. Bottom and top of box represent 25" and 75" percentiles, the band near the middle of
the box is the median, and the ends of the whiskers represent the 5™ and 95" percentiles. The spatial CV

=0 for CS monitor measurements because the same CS measurement was applied to each ZIP code.

Figure 4: Selection of GIS maps of Atlanta metropolitan area showing spatial variability for annual means
of PM, s, EC, and NO, for metric iv: Hybrid. Boundaries delimited on maps are ZIP code boundaries. GIS

maps for the full set of metrics, for all pollutants, all seasons, can be found in Figure S1.

Figure 5: Mean temporal CV for each study ZIP code in Atlanta, GA (1999-2002). Note metric i: CS,
metric iv: Hybrid, and metric v: APEX or SHEDS. Bottom and top of box represent 25" and 75"
percentiles, the band near the middle of the box is the median, and the ends of the whiskers represent
the 5™ and 95" percentiles. The temporal CV for metric i is the same for each ZIP code because the same

CS measurement was used for each ZIP code.
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Figure 6: Influence of spatial and temporal variability on exposure metrics for EC.

a)
b)
c)
d)
e)

f)

GIS map of annual mean air exchange rate for each ZIP code.

GIS map of annual mean EC concentration (metric i: CS) for each ZIP code.

GIS map of annual mean EC concentration (metric iv: Hybrid) for each ZIP code.
GIS map of annual mean EC concentration (metric v: SHEDS) for each ZIP code.
GIS map of annual mean temporal CV for each ZIP code for EC (metric iv: Hybrid).

Temporal CV vs. annual mean concentration for each ZIP code (metric iv: Hybrid).
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Table 1: Mean and standard deviation of ZIP code-specific Pearson correlations between exposure metrics in Atlanta, GA: 1999-2002.

(Correlations between metrics for each ZIP code were calculated separately — the mean and standard deviation of the correlations across all ZIP

codes are presented here.)

PM; 5 SO, EC 0O, CcO NO,
Mean+SD | 0.90+0.03 | 095+0.01 | 0.70+0.08 | 0.97+0.02 | 0.54+0.07 | 0.58+0.08
Metric i — Metric iv Winter 0.84+0.04 |094+0.02 |063+0.11 | 0.92+0.07 | 0.44+0.08 | 0.48+0.08
(CS — Hybrid) Spring 0.88+0.04 |091+0.02 |069+£0.09 |096+0.03 | 052+0.10 | 0.46+0.09
Summer 0.90+0.04 |094+001 |061+£0.08 |094+0.04 |047+0.11 | 042+0.11
Fall 0.93+0.02 |093+0.01 |0.78+0.07 | 0.97+0.02 | 0.62+0.07 | 0.66+0.12
Mean+SD | 0.84+0.02 | 093+0.01 |0.64+0.07 |0.93+0.02 |0.63+£0.04 |0.73+0.04
Metric i — Metric v Winter 0.80+0.02 |090+0.02 | 0.58+0.07 | 0.85+0.06 | 0.57+0.06 | 0.68+0.05
(CS — APEX/SHEDS) Spring 0.82+0.04 |0.88+0.01 |0.62+0.07 |0.88+0.03 |0.63+0.05 | 0.63+0.07
Summer 0.84+0.03 |092+0.01 |0.57+0.08 | 0.89+0.04 | 0.54+0.08 | 0.55+0.06
Fall 0.86+0.02 |091+0.01 |0.73+0.08 | 0.92+0.02 | 0.69+0.03 | 0.79+0.03
Mean+SD | 0.93+0.01 |098+0.01 |094+0.01 |0.96+0.01 | 0.83+0.07 | 0.82+0.09
Metric iv — Metric v Winter 0.89+0.02 |096+0.01 |0.88+0.03 |0.93+0.01 |0.76+0.06 | 0.73+0.07
(Hybrid — APEX/SHEDS) | Spring 0.92+0.01 |097+0.00 |094+0.02 |090+0.02 |0.80+0.07 |0.78+0.09
Summer 0.94+0.01 |098+0.01 |098+0.01 |094+0.01 |0.82+0.09 | 0.81+0.17
Fall 0.93+0.01 |097+0.00 |097+0.01 |095+0.01 | 0.89+0.08 | 0.86+0.12
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