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ABSTRACT

While only limited data are available to characterize the potential toxicity of over 8 million
commercially available chemical substances, there is even less information available on the
exposure and use-scenarios that are required to link potential toxicity to human and ecological
health outcomes. Recent improvements and advances such as high throughput data gathering, high
performance computational capabilities, and predictive chemical inherency methodology make this
an opportune time to develop an exposure-based prioritization approach that can systematically
utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the
US EPA’s need to develop novel approaches and tools for rapidly prioritizing chemicals, a
“Challenge” was issued to several exposure model developers to aid understanding of current
systems in a broader sense and to assist the US EPA’s effort to develop an approach comparable to
other international efforts. A common set of chemicals were prioritized under each current
approach. The results are presented herein along with a comparative analysis of the rankings of the
chemicals based on metrics of exposure potential or actual exposure estimates. The analysis
illustrates the similarities and differences across the domains of information incorporated in each
modeling approach. The overall findings indicate a need to reconcile exposures from diffuse,
indirect sources (far-field) with exposures from directly, applied chemicals in consumer products
or resulting from the presence of a chemical in a microenvironment like a home or vehicle.
Additionally, the exposure scenario, including the mode of entry into the environment (i.e. through
air, water or sediment) appears to be an important determinant of the level of agreement between

modeling approaches.


priggsbe
Rectangle


54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

1. INTRODUCTION

The U.S. Environmental Protection Agency (EPA) regulates chemical substances based on their
potential to cause human health and ecological risk. EPA’s risk-assessment practices, which provide
the scientific foundation for regulatory decisions, continue to follow the recommendations by the
National Research Council (NRC (National Research Council) 1983), calling for scientific rigor in
characterizing an agent’s hazard, dose-response, exposure and effects.. The paucity of sufficient
information to evaluate chemical exposure and effects led to the NRC’s evaluation of this process
and a call for a more integrated assessment of exposure and toxicity (NRC 2009). The NRC’s
recommendations directly relates to risks presented from chemical substances found in products

and materials used by society.

The primary purpose of the Toxic Substances Control Act (TSCA) is “to assure innovation and
commerce in such chemical substances and mixtures do not present an unreasonable risk of injury
to health or the environment” (TSCA § 2 (b)(3)). At present, an unprecedented and increasing
number of chemicals for which risks must be assessed, at least at some screening level, continue to
be added to the TSCA inventory (over 80,000). Approximately 100,000 chemical substances
currently exist in commerce worldwide (Muir and Howard 2006). Hence, the urgent need for new,
broadly applicable tools to facilitate rapid risk characterization (Dix, Houck et al. 2007) is widely
recognized and has been well established in the literature. The U.S. is certainly not alone in this
effort, as legislated mandates for efficient risk based screening, categorization, classification and
prioritization of chemicals exist in the European Union and Canada as well (Egeghy, Vallero et al.

2011).

High throughput screening models are needed for both hazard (toxicity) and exposure, since risk is

a function of both. Current advances in hazard utilize computational chemistry and in silico
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methods for high-throughput screening (HTS) and various toxicogenomic methodologies. These
have accelerated the prediction of potential toxicity for prioritization by providing a greater
quantity and diversity of data. Notably, EPA’s ToxCast™ program applies a battery of rapid in vitro
assays to predict toxicity. To complete the high throughput risk screening, however, exposure
information must also be acquired in a similarly rapid manner, and compared with results from
ToxCast™. Thus, there is a need to rapidly assess chemicals on the basis of ‘biologically-relevance’
human exposures to target research and improve risk assessments (Cohen Hubal, Richard et al.
2010). In 2009, EPA launched its ExpoCast™ initiative to address this need for exposure data, novel
modeling approaches and discriminating metrics to screen and evaluate chemicals based on

potential for human exposures [Cohen Hubal, Richard et al. 2010)].

The use and development of exposure models as well as expert judgment have aided in the
endeavor to screen and prioritize chemicals when exposure measurements are limited or
unavailable (Schinkel et al 2011, Jayjock et al 2009). In its 1995 review of the state-of-the-science,
the Society of Environmental Toxicology and Chemistry found that the chemical ranking and
scoring systems developed over the previous 20 years were widely diverse in the factors used for
screening potential exposure, including: (1) chemical marketing data; (2) emission data; (3)
physical-chemical properties; (3) persistence and transformation processes; (4) monitoring data or
other measured concentrations; (5) modeled or estimated concentrations; (6) receptor
characteristics and exposure setting - including consumer, worker exposure related to frequency,
duration, and intensity; and (7) exposure expressed as intake (Swanson and Socha 1997). More
recently, Egeghy and coauthors review modeling tools and approaches available for prioritizing
manufactured chemicals. These approaches tend to fall into two categories: the first focuses on
characterizing the fate and transport of a chemical following release into the environment, while

the second focuses on understanding exposures resulting from use and interaction with consumer
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products (Egeghy, Vallero et al. 2011). Egeghy and coauthors identified the need to better evaluate
both categories of models and approaches to assess strengths and limitations for rapidly evaluating

and ranking chemicals based on potential for exposure.

In the context of this manuscript, the term far-field refers to indirect chemical exposures from
environmental sources, as in water, air, soil, and food stuffs; and the term near-field refers to
exposures in microenvironments such as buildings and cars. The near-field includes direct
exposures, e.g., as application and use of consumer products and Personal Care Products (PCPs)
and indirect exposures to ambient sources e.g., off-gassing of building materials, consumer

products, dust ingestion (Jayjock, Chaisson et al. 2009).

An initial study to leverage existing tools is presented herein. We compare and evaluate the
capabilities of existing tools and identify the gaps which must be addressed to develop an exposure-
based prioritization approach that can be applied to rapidly and efficiently evaluate broad classes of
chemicals. The purpose of this paper is to present a comparative analysis of exposure-based
prioritization results for a common set of chemicals using several different modeling approaches
and exposure metrics. This analysis is designed to address how consistent the models’ rankings are

with each other and if the models consistently rank the same chemicals higher or lower than others.

2. METHODS

An exposure based prioritization model challenge was issued publicly in 2010

(http://www.epa.gov/ncct/expocast/exposure based challenge.html) to elicit the experience of

developers of existing prioritization schemes or of models for rapid estimation of exposure
potential that can be used to inform exposure-based prioritization of chemicals. Challenge

participants were charged with using existing approaches to prioritize a sets of compounds based



128

129

130

131

132

133
134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

Draft for initial journal submission - Do not cite or distribute

on potential for exposure. The objective of the challenge was to gain a better understanding of the
process by which existing approaches evaluate potential exposures. As such, the main interest was
in an explicit and transparent documentation of each approach. Employing existing tools further
facilitates an analysis identifying the type, quantity and quality of information needed for a more

comprehensive approach toward exposure-based prioritization.

2.1 QUANTITATIVE EXPOSURE METRICS

Metrics for assessing chemical exposure and exposure potential referred to in the present
study are the intake rate (iR; e.g., ug/d or kg/h), the intake fraction (iF; e.g., kg-intake /kg-emission),
and the concentration in an organism such as a human (C; e.g., pg/kg). If desired, the intake rate can
also be calculated on a body weight basis (iRsw; e.g., ug kg-bw-1day-1). These metrics can be
calculated using a consistent, arbitrary “unit emission” rate (Ey; e.g., kg/h) for all chemicals to
screen, compare and prioritize chemicals based on relative exposure potential, i.e., using iF or Cuy.
The steady state intake rate based on a unit emission rate (iRy; kg/h) provides similar screening
and ranking information as the steady state intake fraction iF since the intake fraction is the
chemical intake rate normalized to the emission rate, i.e,, iF = iR/E. The iF can be calculated on an
individual basis, an age-class specific basis (iFac, e.g. “toddlers” vs. “adults”), or for a human
population in a defined spatial region (iFpop). The latter two iF endpoints are thus dependent on
population and demographic information. Intake rates and intake fractions can include the sum of
all exposure routes (i.e, aggregate exposures) or they can be calculated for specific sources (i.e, for
air, water, and food stuffs individually) to compare the relative importance of different exposure
routes and to identify those routes of exposure that are expected to be highest for a particular
chemical. Relative exposure potential metrics are thus independent of an actual emission rate and
are useful for chemical screening evaluations due to the substantial uncertainty in actual emission

rate estimates. Relative exposure potential comparisons are a function of the chemical and
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environmental properties (persistence, bioaccumulation) and the underlying assumptions and
parameters used to characterize the environmental and human conditions in the models.
Alternatively, exposure metrics can be calculated using estimates of “actual emission” rates
(Ea; e.g., kg/h), thus providing indices for screening and priority setting based on actual exposure
estimates, i.e,, Ca or iR, Estimates of actual chemical exposure using concentrations or intake rates
are directly applicable in risk based chemical assessments by comparing body/tissue
concentrations or intake rates of exposures with those concentrations or rates of intake associated
with effect or no effect levels. Unlike iRa and iF, C is an internal dose metric and therefore it depends
on absorption (i.e. including gastrointestinal biomagnification from dietary exposures) into the
body and elimination processes such as fecal egestion, urinary excretion, respiratory exhalation,

and importantly for most chemicals, metabolic biotransformation.

2.2 SEMI-QUANTITATIVE METRICS

A set of semi-quantitative measures of potential exposures to the chemical of concern are also
presented as a part of a tiered screening approach. These metrics are based on a combination of
available quantitative information on releases and concentrations, qualitative information on types
and degree of exposures reported in the literature, and expert judgment on various facets of the
exposures. The four population-based metrics considered for exposure based ranking are:
pervasiveness, persistence, severity, and efficacy. The semi-quantitative metrics reflect: (i) how
widespread the exposures could be within the general US population (pervasiveness); (ii) the
temporal frequency and/or duration of such exposures (persistence); (iii) the potential for high
levels of such exposures (severity); and (iv) the potential of the contact with the chemical to result

in intake/uptake (efficacy).

2.3 CHEMICALS

A set of 52 chemicals (or defined mixtures) was provided (Table 1). These chemicals are

representative of several broad categories in terms of physical-chemical properties and typical
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intended use. Thus, exposure to these substances can be assessed across multiple routes and
pathways depending on the prioritization model or approach. The majority of the set is comprised
of chemicals known to have a relative abundance of publically available exposure-related data
accessible for modeling; conducting this pilot from a ‘data rich’ perspective was intended to limit
the burden of data collection. Several chemicals with meager available exposure data, however,
were also included to test the capabilities of the models for addressing the vast majority of
chemicals in wide commercial use with little or no existing exposure-related information (Egeghy

etal,, 2011b).

2.4 MODELS USED

Four model developers responded to the exposure based prioritization challenge allowing for the
investigation of five models:

Far-field Human Exposure (FHX) (Arnot, Mackay et al. 2010)

Risk Assessment [Dentification And Ranking(RAIDAR) (Arnot, Mackay et al. 2006)
UNEP-SETAC Toxicity Model (USEtox™™) (Rosenbaum, Bachmann et al. 2008)
GExFRAME/Scibin (Kephalopoulos, Arvanitis et al. 2008)

Prioritization/Ranking of Toxic Exposures with GIS Extension (PRoTEGE) - derived from
Modeling ENvironment for Total Risk studies (MENTOR) (Georgopoulos and Lioy 2006)

i W

Additionally, EPA included two of its own currently used systems: (1) the Exposure and Fate
Assessment Screening Tool (EFASTv2) (http://www.epa.gov/opptintr/exposure/pubs/efast.htm)
and (2) the Stochastic Human Exposure and Dose Simulation (SHEDS) model
(http://www.epa.gov/heasd/products/sheds multimedia/sheds mm.html), Some distinguishing

features of the models were recently described by Egeghy et al. (2011).

2.5 REQUESTED OUTPUTS

In addition to providing ranking results for the chemicals, the modelers were also asked to

transparently describe the following characteristics of the modeling approaches:
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Protocol for applying prioritization tool/approach
Model structure, algorithms, and assumptions

Target sources (near and far field as defined above)
Target population of interest

Emission characteristics

Exposure pathways (media, routes)

Use of professional /expert judgment

Defaults (exposure factors, etc.)

Consumer product use categories and selection of sentinel products
Selection of exposure scenarios (inputs to scenarios)
Basis for prioritization score

Units of prioritization metric and other model outputs

2.6 COMPARISON OF PRIORITIZATION RESULTS
For the models which produced quantitative metrics (RAIDAR, FHX, USEtox, Protégé, and EFAST), a

quantitative comparison was conducted based on each chemical’s relative ranking. This initial
comparison also provides a basis for further investigation where significant differences between
modeling results would warrant focusing on the differences in model algorithms, defaults, data

input sources, etc.

Each model developer identified at least one exposure metric for use as the basis for prioritization;
however, the metrics from the different approaches were not always directly comparable. Some of
the endpoints used in the comparisons below are “exposure potential” i.e., intake fractions and
some are “exposure” endpoints, i.e., internal concentrations or body burdens. (For more
information on exposure metric development the reader is directed to Rosenbaum et al 2008,
Bennett et al 2002, and Arnot et al 2010.) The modeling approaches also used different model input
parameters for chemical properties, use and release rates. Based on the exposure metrics, the
chemicals were ranked according to magnitude thereby creating ordinal values from the measured
or modeled values with monotonic differences between chemical exposure ranks. While this is a
convenient way to view relative rankings between chemicals we note that with this approach some
information is lost because of the transformation. For example, multiple chemicals may have
fractional differences in the value of the exposure metric, but once transformed these differences

9



235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

Draft for initial journal submission - Do not cite or distribute

become exaggerated by the ordinal scale. For the purpose of prioritization, the utility of the lost
information may be considered negligible as it is not the intent of these applications to produce
precise measures of exposure. The actual values of the exposure metrics were however used to
assess the degree of differentiation between chemicals in results from each approach. This is of
interest especially when uncertainty around the estimates is considered. For example, if many
chemicals have the same exposure estimates, which is a possible artifact of using default values for
missing data, the ability of the approach to separate high, low and moderate exposure potential will
be impaired. This topic is included in the qualitative discussion of the results. Table 2 summarizes
the comparisons conducted in this analysis based on the compatibility of the exposure metrics
provided.
The quantitative analysis consisted of four methods:
(i) Correlation between the ranks of each chemical produced by the models was assessed
using two non-parametric measures of rank correlation, Spearman rho and Kendall tau.
The Spearman rank correlation indicates the direction of association between two
variables that can be related by any monotonic function. The Kendall tau correlation
depends on the ratio of concordant pairs to discordant pairs or the number of
inversions needed to transform one rank order into the other. The Kendall tau
coefficient can be interpreted probabilistically as the difference between the probability
of the set of ranked objects being in the same order and the probability of the ranked
objects being in a different order. (Abdi 2007) While in most cases, the Spearman rho
produces a higher correlation coefficient than the Kendall tau, the two measures can
yield meaningfully different results. Spearman’s rho is more sensitive to a few large
deviations than Kendall’s tau. This information can be useful if one wants to consider
using several modeling approaches in combination to form a consensus ranking for each

chemical in the future; therefore both correlation measures were evaluated. Chemicals

10
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(i)

(iii)

not ranked by a particular model were eliminated from the correlation analyses and the
remaining chemicals were re-ranked relatively.

The chemicals were sorted into 5 equally distributed bins based on their ranks.
Correlation among the bin designations was assessed along with the expert judgment
driven semi-quantitative metrics of exposures from PRoTEGE.

To evaluate consistency among the modeling approaches without considering the
source of variability contributed by the chemical being modeled, a randomized block
design was applied to the data blocking on the specific chemical. The Friedman test, a
non-parametric test similar to the parametric repeated measures ANOVA, was then
conducted to detect differences across each modeling approach. The Friedman test is
the measure of the aggregate degree to which each modeling approach differs and is
used to compare three or more paired groupings rather than two pairwise groups
described by the correlation coefficients. The hypotheses for the comparison across the
repeated measures are: The null hypothesis (HO) - The distributions are the same across
repeated measures; and the alternative hypothesis (H1) -The distributions across
repeated measures are different.

The test statistic for the Friedman'’s test is a Chi-square with [(number of repeated

measures)-1] degrees of freedom.

Tables 3a and 3b describe the data selected for comparison.

3. RESULTS

3.1 COMPARISON OF EVALUATION SCHEMES/MODELS

We briefly summarize a qualitative comparison of the aforementioned model characteristics to
provide context for the prioritization results, though this study focuses on the metrics utilized for

prioritization (exposure estimates and rankings) from each approach without regard to the

11
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underlying purpose, algorithm and assumptions involved in each. RAIDAR, FHX and USEtox are far-
field models representing exposure from diffuse sources to the general human population of
different regional spatial scales. These three models use mechanistic mass balance approaches to
simulate fate and transport in different environmental compartments. Models for bioaccumulation
into food sources destined for human consumption are also included in the exposure pathways. The
intake fraction or mass of substance available for contact with an organism per mass emitted to the
environment was identified as the primary metric for exposure based prioritization from these
models. Additionally, intake rate from the RAIDAR and FHX models can be used. The FHX model
provides age class specific rankings for chemicals, but these were not significantly different than
the rankings for the adult age class so they were not included in our comparative analysis.
Additionally only the RAIDAR model includes absorption, distribution, metabolism and excretion
(ADME) processes and an internal concentration in humans as a metric for prioritization. While this
metric may be considered most ‘biologically relevant’ and compatible with toxicity data some
technical issues have been noted elsewhere in regards to corroborating this metric against
measured biomarkers (Georgopoulos, et al. 2009). For simplicity, each of the far field models can be
run based on an equivalent unit emission and equilibrium assumption for each environmental
compartment to provide a relative estimate for each chemical or with more advanced fate
assumptions. This approach may be useful for making comparisons among broad ranges of
chemicals for which actual emission data is unavailable though this contributes more uncertainty in
the chemical screening. Under the unit emission assumption, RAIDAR and FHX provided rankings
for 45 chemicals and USEtox provided rankings for 42 chemicals. When actual US emission
estimates were possible, USEtox estimated exposures for 29 chemicals and RAIDAR estimated
exposures for 10 chemicals (though actual EU emission rates were available for the remainder of

the chemicals assessed by RAIDAR).
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Intake is an intermediary variable in USEtox to be coupled with toxicity to form a combined
exposure/toxicity “damage” endpoint. The intake value from USEtox alone is not considered a
suitable metric for ranking but provides a means of comparison on the basis of exposure. The three
far-field models can be parameterized with chemical specific information from measurement
databases or estimated from readily available Quantitative Structural Activity Relationship (QSAR)

models.

The EFAST model provides similar far-field modeling estimate, but also considered risk
management interventions to reduce exposure. It also includes a consumer product module.
EFAST?2 is a screening-level computer tool that allows users to generate exposure estimates for
humans and the environment through various release and exposure scenarios. The chemical-
specific input parameters (mostly physicochemical properties) used in the EFAST2 model include:
1) bioconcentration factor (BCF; L/kg), 2) concentration of concern (CoC; ppb), 3) wastewater
treatment removal rate (WWT; %), 4) incineration removal rate (%), 5) fugitive removal rate (%),
6) ground water migration rate, 7) molecular weight (g/mol), 8) vapor pressure (mm Hg), and 9)
weight fraction (%). The modeling endpoints estimated with EFAST2’s General Population and
Ecological Exposure from Industrial Releases module include the human Acute Dose Rate (ADR in
mg/kg-day) and LADD (Lifetime Average Daily Dose (LADD in mg/kg-day) for exposures from
drinking water (via surface water releases), groundwater ingestion (via landfill releases), fish
ingestion (via surface water releases and subsequent bioconcentration), and inhalation (from stack

and fugitive air releases).

The far-field modeling approaches produced the most rapid results of those evaluated in this study,

primarily because of the ease of parameterization using available chemical specific properties.
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3.1.1 RAIDAR
RAIDAR was used to estimate exposure for X number of challenge chemicals. Figure 1 shows the
unit emission based chemical results produced by the RAIDAR model on the basis of individual
intake fraction (IF) and internal concentration (Cu) at Tier 1Level Il fate model calculations. These
assumptions do not require a model of entry into the environment as they assume instantaneous
equilibrium in all physical compartments. The results in Figure 1 highlight the increase in
differentiation among chemicals when ADME processes are included (~12 orders of magnitude
when included vs. ~6 orders when not included). ADME processes made a significant difference in
relative rankings for those chemicals predicted to have moderate exposures levels. For those
predicted to have either very low or very high exposure levels, results from both internal and
external exposure metrics were highly correlated. In RAIDAR this difference was a more significant
factor in differentiating potential exposures than the assumed emission release compartment (i.e.

air, water or soil) which is unknown for many chemicals recommendations comprehensive

3.1.2 USEtox
USEtox was used to provide exposure predictions for 45 number of challenge chemicals. An

example of the results of predicted population intake fraction from the USEtox model is provided in
Figure 2. This approach produced differentiation among chemicals in the same order of magnitude
as RAIDAR, (i.e. the range covered over seven orders of magnitude.) The USEtox model exposure
framework was recently expanded to include indoor air as an additional emission compartment
(Hellweg et al.,, 2009) and further developed to account for sorption to indoor walls as a removal
pathway (Wenger et al., 2012). Because human exposure to manufactured chemicals in consumer
products is of concern, an indoor compartment will improve relevance of screening-level model

predictions.
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3.1.3 EFAST
The EFAST2 model produced results for 48 chemicals for water releases only. Each exposure
scenario (drinking water, fish ingestion, and groundwater/landfill routes) was ranked separately
and the chemicals were assigned a relative score (1-4) based on the distribution of their dose estimates
For comparison with USEtox and RAIDAR the dose estimates for emission to water were combined
and each chemical was ordinally ranked. Since the model was developed for screening level
estimates, the results are highly conservative and rely on many default values. In comparison with
USEtox and RAIDAR the temporal scale of the release conditions also differs in EFAST2. Where
USEtox and RAIDAR assume steady state releases, the EFAST2 model can evaluate exposures from
several different temporal release patterns. For this evaluation a unit emission was considered for a
twenty day period to produce exposures measured in ADR and LADD as described above. Because
of the assumptions used in this relative analysis of chemicals, both the ADR and LADD estimates
were perfectly correlated, so only the LADD values are used in the following comparative analysis.
An example of the EFAST2 results for the total exposure from water releases is illustrated in Figure
3. Differentiation of estimates spanned 4 orders of magnitude. Additional results from EFAST
included 9 chemicals ranked using the consumer module. These estimates are calculated solely
from inhalation (no other route) using given chemical-specific inputs of molecular weight and vapor
pressure. Only 11 chemicals were identified to have potential household consumer applications
(that fit within the EFAST model), two chemicals were excluded because they did not include an
inhalation assessment (this is the case when only the bar soap scenario applied). The consumer use
scenarios applied to the chemicals assessed include: (1) general purpose cleaner; (2) bar soap; (3)
laundry detergent; and (4) latex paint.
3.1.4 GExXFRAME
GExFRAME and PRoTEGE provided rankings for microenvironmental exposures, though both used
different approaches. PRoTEGE is based on a more sophisticated predecessor, MENTOR (Modeling

ENvironment for TOtal Risk) and estimates both near-field and far-field exposures. MENTOR
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supports detailed person-oriented source-to-dose exposure modeling for mixtures of multimedia
contaminants, allowing a focus on specific locations and subpopulations. Neither MENTOR nor
GEXFRAME are considered single models. Both are modeling systems or modeling environments
capable of accommodating various algorithms to integrate scientific data and models for estimating
exposures. For this analysis, the CARES (Cumulative and Aggregate Risk Evaluation System)
program was integrated with GEXFRAME to assess dietary and non-dietary residential exposures.
The results from the use of GExXFRAME in this exercise were purely qualitative and could not be
included in the quantitative analysis. Chemicals used in consumer products were grouped into
scenarios that defined similar source characteristics, media dispersion characteristics and exposure
pathways. Based on these categories a scenario specific set of exposure algorithms were assigned. A
default set of inputs are available for conducting exposure assessments within each set of

algorithms. The 52 challenge chemicals were classified as described in Table 4.

The GExFrame analysis produced only categorical values because GExFrame requires measured or
monitored data in near field exposure media, e.g. breathable air, contact surfaces, ingestible soil,
dust in air and surfaces, food and drinking water and other near field information. That is,
GExFrame is designed to provide a high tier, low throughput chemical characterization. Chemicals
are characterized, but not specifically prioritized. Chemicals that fall within Categories 1 and 2,
however, are likely to exhibit relatively low exposure potential. By extension, chemicals in
Categories 3, 4, and 5 may well exhibit increased exposure potential and, consequently, such
chemicals pose important risk. Finally, chemicals in Category 6 are regulated under the Federal
Insecticide, Fungicide, and Rodenticide Act and have undergone higher tier exposure assessment.
Exposure potential characterization is also use for prioritizing chemicals in terms of need for

further testing. Thus, chemicals in Category 6, notwithstanding their high exposure, may be
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considered lower priority because much is known about the chemical class in general and higher
tiered models are available to produce more accurate results.

3.1.4 SHEDS

The US EPA SHEDS model was determined to be useful for screening chemicals when specific use
categories and scenarios could be established. Parameterization of the model could be conducted
using default values, but this was not the intended purpose of such high tier models so it presented
some challenges. Future work to modify the SHEDS model for lower tiered assessments is required.
Five different use categories were gleaned from the list of chemicals in this analysis:
industrial/occupational additives & by products, plastics, commercial additives,
pesticides/herbicides and natural risks (i.e. arsenic, lead, manganese, cadmium). Various
combinations of SHEDS-Dietary, SHEDS-Soil/Dust, SHEDS-Residential, SHEDS-CCA (chromate
copper arsenate, formerly SHEDS Wood) , APEX (Air Pollutants Exposure Model) and SHEDS-Air
Toxics were determined to be useful for all of these categories except for the plastics if

appropriately modified with default scenarios.

3.1.5 PROTEGE
The PRoTEGE system facilitates screening level exposure calculations at multiple tiers, utilizing

available data on
¢ Chemical production and usage,
* Environmental releases,
* Environmental concentrations in multiple media and microenvironments, and
» Age- and gender-specific population distributions of major physiological and behavioral
attributes.
PROTEGE can estimate exposures during chemical manufacturing, chemical transportation, product

manufacturing, product use, and product disposal or as a result of intentional or unintentional
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release of the chemical in the environment and its subsequent contact with the individual through
one or more exposure routes (inhalation, ingestion, dermal contact). A summary of these results are

illustrated in Figure 4.

“Tier 2” exposure metrics of PROTEGE provide quantitative measures of potential exposures to the
chemicals of concern using probability distributions of multimedia contaminant concentrations,
combined with distributions of physiological and behavioral factors. These metrics are primarily
based on available nationwide data and are summarized in Figure 5. The exposure estimates
spanned 6 to 10 orders of magnitude differentiating among the chemicals evaluated before they
were transformed into categories. Time to obtain these chemical specific data points may be

excessive when applied to larger sets of chemicals for screening and prioritization purposes.

Results from PRoTEGE were provided for 55 chemicals in Tier 1 - those listed in Table 1 and
additional perchlorate salts - sodium perchlorate, potassium perchlorate, and magnesium
perchlorate. In Tier 2, estimates were obtained for 47 chemicals - both median values and 95th

percentile estimates were provided.

3.2 COMPARISON OF PRIORITIZATION RESULTS

3.2.1. Actual Emissions
Comparison between the prioritization results were only made where they were deemed

appropriate as described in Tables 2, 3a and 3b - with similar emission assumptions, modes of
entry, etc . While RAIDAR and USEtox mainly provide estimates of exposures due to environmental
releases versus exposure due to indoor sources or consumer product use exposure estimates,
PROTEGE estimates are equivalent to intakes for the general population and therefore provide a
means of comparison with RAIDAR and USEtox. In other words, although the model structures are

different, the exposure metric is similar and therefore these three models can be compared. In
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Figure 6, the exposure metrics across all pathways based on actual emission estimates were used to
rank each chemical for each modeling approach. This figure shows a side by side comparison of the
magnitude of the ranking results based on color. Red denotes the highest potential exposure and
green denotes the lowest potential exposure. Numerically, a value of 1 corresponds to the highest
exposure and 55 correspond to the lowest exposure. White spaces indicate no value as there were
chemicals for which an approach failed to produce a result. As expected, similarities between the
median and 95t percentile estimates from RAIDAR were observed for the majority of chemicals.
PRoTEGE showed more deviations between median estimates and upper bound estimates than
RAIDAR. The PRoTEGE distributions include both variability and uncertainty in concentrations as
well as demographic variability among physiological and behavioral factors. There are several
cases where USEtox generated comparable rankings with PRoTEGE (e.g. 2,4-D, ethane, 1,1,2,2-
tetrachloro- , methoxychlor and pentachlorophenol) and several cases where RAIDAR and
PRoTEGE produce results at opposite extremes of exposure likelihood e.g. Aroclor_1260,
Aroclor_1260, aldicarb, hexachlorobenzene, octaBDE pentachlorophenol, etc.). It should be noted
again that the RAIDAR results use EU actual emission estimates for most chemicals. There were
only four chemicals across these 3 models where RAIDAR also used US data. These comparisons are
shown in Table 5. When ranked relatively, USEtox and PRoTEGE produce the same results for
median estimates. Two of the four chemicals are ranked the same using RAIDAR and PRoTEGE

when the 95t percentile values are compared.

A total of 18 chemicals could be compared across USEtox and PRoTEGE with actual emission
estimates. The Spearman rho correlation coefficient is 0.81 and the Kendall tau is 0.63. When
USEtox is compared with the 95t percentile estimates from PRoTEGE similar results were obtained
(0.82 and 0.65, respectively). These values represent very high agreement between the two

approaches.
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A second analysis to evaluate the modeling approaches using actual emission rates was conducted
by comparing the ability of each approach to bin chemicals. There were 16 chemicals included in
this analysis. Figure 7 summarizes the Spearman rho correlation coefficients obtained when the
chemicals were sorted into 5 bins. The Kendall tau values were consistently lower for all values
reported so they are not included. Qualitative metrics from the PROTEGE model were included in
this analysis. As seen by the darker green shading, the RAIDAR metrics of exposure show no
positive association with the exposure estimates from PRoTEGE or USEtox. Interestingly, the
RAIDAR results are positively correlated with the inhalation, dermal and aggregate qualitative
metrics from Protégé. As expected, the binned quantitative metrics from PRoTEGE and USEtox are
inversely proportional with the PRoTEGE qualitative metrics except for ingestion. Within the Tier I
qualitative metrics, the ingestion pathway is inversely related to the dermal and inhalation

pathways along with the aggregate or dominant pathways which are influenced by these measures.
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3.2.2 Unit Emissions

Due to lack of actual emission data for a large number of chemicals, more compounds could be
evaluated using a unit emission rate. RAIDAR, USEtox and EFAST produced rankings based on unit
emissions to water for 38 chemicals. The Spearman rho correlation is reported in Figure 8. Positive
correlation was observed between all measures. RAIDAR and USEtox intake fractions were highly
associated with a Spearman rho of 0.7. EFAST2 produced results that were associated with both
USEtox and RAIDAR to a lesser extent (Spearman rho = 0.3). The major difference between the later
approach and the former approaches is the inclusion of chemical specific removal rates from

environmental media. The Kendall tau values were also consistently lower so they are not reported.

A strong association was also revealed between the intake fraction and internal concentration
metrics from RAIDAR. This indicates that the inclusion of ADME may be unnecessary at the
prioritization stage. However it should be noted that most of the chemicals here are “legacy
pollutants” ( i.e. persistent). A different pattern may exist for the larger domain of chemicals

requiring evaluation.

When rankings based on air emissions were compared (Figure 9), very high association was
observed between RAIDAR and USEtox. Comparison of the intake fractions for 38 chemicals

resulted in a Spearman rho of 0.9.

To avoid bias from the gross aggregation of source compartments that may affect the rankings,
intake fractions for ingestion and inhalation of air and water were disaggregated for comparison.
Areas of departure between far-field models (USEtox in contrast with RAIDAR and FHX) are the
result of differences in (i) model input parameters (model users did not use consistent input

parameters)), (ii) treatment of release (emission) rates to population densities, and model



structure (e.g., differences in fate and food web calculations as well as human contact rates (i.e.
diets).Only a comparison between models with consistent model input parameters established for
each can shed light to the cause of the observations here, but it useful to see which domains of

information and metrics yield similar results.

The Friedman test compares three or more paired groups. The test allowed for comparison
between model outputs while separating sources variability. The two major sources of variability
are the individual chemical being modeled and the model used for prioritization (e.g. RAIDAR,
USEtox, Protégé, EFAST, etc.). Based on the total of 38 chemicals evaluated by each model using the
unit emission rate, this Friedman test can identify consistency among approaches aggregately
rather than pairwise. This analysis answers the question “Are the models’ rankings consistent with
each other? “ or “Are some models ranking chemicals consistently higher or lower than other. In
every case the null hypothesis, equal treatment by each model, could not be rejected meaning that
there is some consistency between modeling results. The results are summarized in Table 6. While
the actual ranking scores of each chemical are dissimilar (as indicated through correlation tests),
consistency exists between approaches in a broader sense based in the Friedman test which may

indicate that it is appropriate to combine approaches to form a consensus ranking.

4. Discussion

Overall the statistical comparisons reveal that between the far-field models viewed here, RAIDAR,
FHX and USEtox, there is close agreement between chemical rankings when the emission
compartments are consistent (i.e. water and air). The case study results from these models are
dependent on the emissions rates as drivers of the modeling results so expected differences were
observed when these inputs were varied from the unit emission assumption. When compared to

near field models (PRoTEGE) a significant indication of agreement between rankings exist when the



emission estimates are regionally compatible (i.e. U.S. release inventories). Unfortunately, these
actual release quantities are unavailable for a large number of chemicals produced at lower
production volumes. Inverse relationships between the qualitative estimates informed in part by
expert judgment and the quantitative modeling results were observed to be sensitive to exposure
pathway. This is an indication that scenario specific chemical rankings may be important going
forward. Another finding to support the need to resolve scenario specific exposure prioritization
issues is that within the USEtox modeling results, the rankings of chemicals from the indoor air
pathway and outdoor air pathway had a very low inverse Spearman correlation coefficient of -0.18
as well. Time activity data has shown that the population spends most of their time indoors
including residential and occupational settings. Therefore the need to include exposure predictions
for near-field exposure is significant. Models like GEXFRAME and SHEDS are designed to make these
scenario dependent predictions, however they are incapable of producing results for a large
number of chemicals lacking the sufficient input data for higher tiered assessments. It is clear that
characterizing important factors like habits and practices of consumers which drive exposure
potential is a critical need. The PROTEGE model allows for lower tier predictions to capture these
factors in a “data poor” environment with semi-qualitative metrics. Where more data are available,
median higher tier predictions of exposure potential based on quantitative assessments showed
moderate agreement with the RAIDAR model but inverse association with USEtox and Protégé.
While these types of metrics offer a promising alternative in the absence of data, it will be
important to reconcile the differences between the semi-quantitative and modeled results in terms
of specific exposure pathways which appear to be the most significant contributor to the observed

differences.

Ultimately the reliability and utility of these approaches is dependent on their ability to rapidly

assess thousands of chemicals for which little exposure information is anticipated. Developing a set



of criteria or specific needs from a high throughput exposure based prioritization approach is a
necessary precursor. The objectives of such an approach are needed to more clearly define how to
balance the tradeoffs between producing rapid results with available information and meeting an
acceptable level of confidence in screening. For example, the categorization of chemicals seen here
for GEXFRAME and SHEDS could be useful in eliminating chemicals from an inventory because of
little concern over potential exposure though they do not produce individual exposure estimates.
Additionally, these approaches may be parameterized with defaults to shed light on the relevance
or potential exposure associated with particular scenarios. The developers of EFAST2 and
PROTEGE, approaches which did produce exposure estimates recommended binning the results
into 4 or 5 risk categories based on associated confidence. The term prioritization infers the need to
have chemical specific ordinal results but the ability to ‘screen for prioritization’ should not be
necessarily discounted. How comprehensively exposure across the source to receptor continuum is
characterized is another issue that needs to be resolved. The far-field models were more inclusive
of processes relevant to the entire continuum (though they were more rigorous in processes from
source to concentration). The near field models rely on environmental concentrations from
scenario specific use of chemicals and focus more on the successive processes from concentration
to receptor. Because the entire source to dose continuum is deemed relevant in producing
compatible results with high throughput toxicity testing how the results from far-field and near
field source models can be combined warrants further exploration, especially because inverse
associations were observed in some cases. A further consideration is whether a consensus
approach should be developed or an approach that synthesizes the results from models across the
source to dose continuum. Equal treatment of chemicals by each model demonstrated by the
Friedman test may inform the appropriateness of consensus building when exposure source and

pathway considerations are reconciled.



As highlighted by the RAIDAR results, the incorporation of internal exposure in prioritization
schemes acknowledging the complexity of exposure is an important topic for exploration. For
example, the rankings based on intake fraction vs. internal dose from the challenge results, show
that incorporating ADME into prioritization. In other words, in many cases the precise pathway of
exposure becomes relatively less important in determining tissue concentrations compared to the

efficiency of absorption and the residence time in the body.

The authors recognize some additional factors for consideration in developing exposure based
prioritization approaches that fell outside of the scope of modeling results herein. These issues are
bulleted below:

e Consideration of chemicals as single substances rather than embedded in products

a. The issue of confidentiality of individual product usage data is a problem.

b. There is a separation in the product chain between the companies that make the
chemical and the companies making the final products.

C. Those reporting production volume for a chemical are often unaware of how it may

be used downstream.

d. Decisions on how chemicals may be used are sometimes made by many different
smaller companies (formulators) rather than by large manufacturers who are used
to working with regulators to provide information for exposure assessment.

e The amount of the chemical released vs. the amount used vs. the amount produced may lead
to different prioritization results.

e Interms of modeling, an extension of exposure characterization beyond occurrence,
persistence and bioaccumulation is necessary for prioritization of large numbers of
chemicals.

o Consideration of the potential lifetime of the person and the products

e Should the function of the chemical or types of products it is used in (toys, paints, etc.) be
the basis for exploring exposure scenarios?

5. Conclusions

Currently available approaches show promise for prioritizing chemical ingredients in products
according to their potential for exposure, but several gaps in knowledge exist. Chief among these

gaps are the paucity of information needed for reliable estimates of exposures for direct and micro-



environmental scenarios and the need for improved understanding of product use and resulting
release rates. A next step will be for EPA to simultaneously, evaluate exposure-based prioritization
linkages to hazard based chemical prioritization approaches. Since risk is a function of exposure
and hazard, such integration is needed for risk-based chemical prioritization. This is consistent

with current risk assessment recommendations (notably, by the National Research Council, 2009).

Another need is the ability to extrapolate exposure characterization and ranking from the small
subset of data-rich chemicals. This will rely on QSAR and other methods to extrapolate from known
chemicals with estimated properties to other chemicals. Some older techniques can be found in EPI
Suite, ChemSTEER and similar chemical databases and systems, but updated fate simulation
capabilities would have a positive impact on the outcome of future analyses. Uncertainty in using
estimated properties for exposure and risk assessment model inputs is expected to be substantial;

thus methods to address this uncertainty need to be considered.

Formal techniques in decision making under high uncertainty have greatly improved over the past
decade. Although their usefulness was recognized as early as in 1995 in SETAC'’s state of the
science publication (Swanson and Socha 1997), decision analysis techniques had rarely been used
in chemical ranking and scoring systems. Utilizing outranking approach in multi-criteria decision
analysis has several advantages to exposure based prioritization which are being explored. The
model structure allows for formal value of information analysis which addresses the question of
what data are most needed to make a prioritization decision allowing EPA to prioritize research
needs and request the right information from industry during the pre-manufacture process. Other
decision science techniques allow for the modeling of expert judgment when measured or
monitored data are absent. Bayesian networks can be part-mechanistic and part-statistical

frameworks for incorporating and combining information from data and other sources (i.e. expert



judgment). These approaches are promising for synthesizing important exposure related criteria.
Subsequent exercises have been designed to apply current approaches to larger sets of chemicals
lacking sufficient data to further facilitate the evaluation of the utility and reliability of these

approaches in a heuristic method (Wambaugh et al., submitted).

DISCLAIMER:

The views expressed in this manuscript are those of the authors and do not necessarily reflect the

views or policies of the U.S. Environmental Protection Agency.
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Table 1 - Model Challenge Chemicals

Chemical Name CASRN Chemical Name CASRN
1,2,3-Trichlorobenzene 87-61-6 Hexabromocyclododecane 25637-99-4
2,4,5-Trichlorophenoxyacetic acid 93-76-5 Hexachlorobenzene 118-74-1
2,4-D 94-75-7 Lead 7439-92-1
8-2 fluorotelomer acid 27854-31- | Malathion 121-75-5

5
Aldicarb 116-06-3 Manganese 7439-96-5
Aroclor_1254 11097-69- | Methoxychlor 72-43-5

1
Aroclor_1260 11096-82- | Methyl Mercury 22967-92-6

5
Arsenic 7440-38-2 | Methylparaben 99-76-3
Atrazine 1912-24-9 | n-Hexane 110-54-3
Benzene, 1-methoxy-4-(2-propen-1- | 140-67-0 Nonylphenol 25154-52-3

-

}];i)sphenol-A 80-05-7 octaBDE 32536-52-0
Butylhydroxyanisole 8003-24-5 | Parathion 56-38-2
C10-13 Chloroalkanes 85535-84- | Pentachlorophenol 87-86-5

8
Cadmium 7440-43-9 | pentaDBE 32534-81-9
Carbaryl 63-25-2 Perchlorate 10034-81-81
DDT 50-29-3 Permethrin 52645-53-1
decaBDE 1163-19-5 | PFOS 1763-23-1
DEHP, Di(2-ethylhexyl)phthalate 117-81-7 Phenol, (1,1-dimethylethyl)-4- 25013-16-5

methoxy-
Diethyl Phthalate 84-66-2 p-tert-Pentylphenol 80-46-6
Di-n-butylphtalate 84-74-2 Styrene 100-42-5
Ethane, 1,1,2,2-tetrachloro- 79-34-5 Tetrabromobisphenol A 79-94-7
Ethene, 1,1,2,2-tetrachloro- (perc) 127-18-4 Trifluralin 1582-09-8
Ethylene thiourea 96-45-7 Tris (1,3-dichloro-2-propyl) 13674-87-8
phosphate

Ethylparaben 120-47-8 Tris (2-chloroethyl) phosphate 115-96-8
Formaldehyde 50-00-0 Vinclozolin 50471-44-8
gamma-Hexachlorocyclohexane 58-89-9 Vinyl Chloride 75-01-4

1 The CASRN was incorrectly provided to the challenge participants as 10034-81-8. The correct number is

14797-73-0




Table 2 - Summary of Comparative Analysis

Type of Models Metrics Method Number of
Emission Chemicals
Assumption Evaluated
Actual Emissions | RAIDAR, USEtox and iRa, Ca, Comparison 4
PROTEGE - median exposure dose | Table
estimates and 95th
percentile for RAIDAR
and Protégé
Actual Emissions | USEtox and PRoOTEGE - iRa, exposure | Correlation 18
median estimates dose
Actual Emissions | Binned data - RAIDAR, iRa, Ca, Correlation 16
USEtox and PROTEGE exposure dose
(median estimates and
95th percentile for
RAIDAR and Protégé)
with PROTEGE semi-
quantitative
Unit Emissions to | RAIDAR, USEtox and iF, Cy, LADD Correlation 38
water EFAST /Friedman test
Unit Emissions to | RAIDAR and USEtox iF, Cy Correlation 38
air /Friedman test
Unit Emissions RAIDAR and USEtox iF, Cy Correlation 38

for the sum of air
and water

[Friedman test




Table 3a - Comparison of Exposure Metrics Based on Actual Emission Data Analysis Plan

Actual Emissions Comparisons

RAIDAR

USETOX

PRoOTEGE

Amount of
Emission:

European Union (EU) —
Technical Guidance
Document (TGD)
Actual Emissions or US
EPA Pesticide
emissions data for 10
chemicals

US EPA Pesticide
emissions data, National
Emissions Inventory
(NEI) for air, Toxic
Release Inventory (TRI)
for air, and TRI for water

Multimedia contaminant
concentrations from
national databases like TRI
and NEI

Mode of Entry:

EU-TGD Mode Of
Entry (MOE) Estimates

US EPA Pesticide to
crop application rate, NEI
air, TRI air, TRI water

Scenario Specific

All sources (Foliage,
Root, Fish, Poultry,
Pork, Cow, Dairy, Milk,

Sum of Water and Air -
all sources (urban air,
rural air, continental
freshwater) — crops, root
crops, meat milk and fish
from freshwater and

Ambient air,
concentrations in food,
environmental field

Aggregates Egg, Inhalation, Water, | marine compartments, studies, drinking water,
Sources: Total Foods, Dust) etc. and indoor air
Inhalation and ingestion
Exposure Inhalation and of (urban air, rural air,
Pathway: Ingestion continental freshwater) Inhalation & Ingestion
individual intake rate
(iR) (ug/day) and 95™
percentile based on Population intake rate, iR
Metric: confidence score (kglyear) g/day for the population




Table 3b - - Comparison of Exposure Metrics Based on Unit Emission Data

Unit Emissions Comparisons

Amount of
Emission:

Mode of Entry:

RAIDAR
Unit Unit
Water Air

Foliage, Root,
Fish,TerrHerb, TerrCarn,
Poultry, Pork, Cow, Dairy,
Milk, Egg, Inhalation,

Foliage, Root,
Fish,TerrHerb, TerrCarn,
Poultry, Pork, Cow, Dairy,
Milk, Egg, Inhalation, Water,

Source: Water, Total Foods Total Foods

Pathway: Inhalation and Ingestion Inhalation and Ingestion
Individual, iF (kg/kg), iRy Individual, iF (kg/kg), iRy

Metric: (ng/day), Cy (ng/kg) (ng/day), Cy (ngrkg)

USETOX

Amount of

Emission: Unit Unit

Mode of Entry: Freshwater Continental rural air

Freshwater - crops, root
crops, meat milk and fish
from freshwater and
marine compartments,

Rural air - crops, root
crops, meat milk and fish
from freshwater and marine

Source: etc. compartments, etc
Pathway: Inhalation and Ingestion Inhalation and Ingestion
Metric: IFpop (kg/kg) iFpop (kg/kg)
EFAST

Overall human exposure

estimates
Amount of Unit (1 kg over 20 days)
Emission: for all chemicals

Mode of Entry:

Source:
Pathway:
Metric:

Landfill infiltration to
groundwater, industrial
fugitive gas and stack
releases to air, surface
water releases

Drinking water, fish
ingestion, inhalation and
groundwater ingestion

Inhalation and Ingestion
mg/kg/day




Table 4 - Categorical Results from GExXFRAME

Category | Chemical Description Human Exposure Assessment Process
1 Previously used and currently not No human exposure possible
found in human exposure media
2 Previously used and currently found Exposure assessment for chemicals found in near field
in human exposure media exposure media
3 Present in human exposure media Worker exposure only during the manufacturing process for both
during industrial use raw material and products
4 Found in food and/or drinking water Exposure assessment for chemicals present in food and/or
drinking water
5 Found in consumer use products Exposure assessment for chemicals present in consumer
products resulting in their presence in near field exposure media
6 A pesticide currently in use Exposure assessment for pesticides as done by OPP (Office of

Pesticide Programs)




Table 5 - Comparative Ranks of Chemicals with US Actual Emission Estimates

Chemical Name RAIDAR RAIDAR USETOX PROTEGE PROTEGE
Intake 95th Intake Median 95th
Fraction Fraction
ug/day ug/day kg/yr-1  g/day g/day
2,4-D 2 2 1 1 2
Aldicarb 3 3 2 2 1
Methoxychlor 1 1 3 3 3
Parathion 4 4 4 4 4




Table 6 - Friedman Test Results for Unit Emission Model Rankings

Measurement Models Metrics Friedman chi- Degrees | p-value
squared of
Freedom

Unit Emissions RAIDAR, USEtox and iF, Cy, LADD | 0.0771 df =3, 0.9944
to water EFAST

Unit Emissions RAIDAR and USEtox | iF, Cy 0.5 df=2 0.7788
to air

Unit Emissions RAIDAR and USEtox iF, Cu 0.9313 df =2 0.6277

for the sum of air
and water
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Figure 1 - Comparison between estimates produced by RAIDAR exposure metrics
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Figure 2 - Summary of Rankings Produced by USEtox
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Figure 3 - Summary of Rankings Produced by EFAST2
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Figure 4 - Summary of “Tier 1” estimates of semi-quantitative metrics of exposure

(pervasiveness, persistence, severity, and efficacy) for the 55 chemicals
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Figure 7 - Correlation of Binned Chemical Rankings and Qualitative Metric - Spearman
Coefficient between each model and metric used to estimate exposure for the same set of
chemicals. Shading indicates degree of correlation from high (yellow) to low (green).
Abbreviations: Inhalation (Inh), Ingestion (Ing), Dermal Absorption (Der), Aggregate
Pathways (Agg), Dominant Pathway (Dom)
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Figure 8 - Correlation of Unit Emission to Water Rankings - Spearman Coefficient between

each model and metric used to estimate exposure for the same set of chemicals. Shading

indicates degree of correlation from high (yellow) to low (green)
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Figure 9 - Correlation of Unit Emission to Air Rankings - Spearman Coefficient between each

model and metric used to estimate exposure for the same set of chemicals. Shading indicates

degree of correlation from high (yellow) to low (green)





