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i. Summary/Abstract

Computational molecular models of chemicals interacting with biomolecular targets provides
toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that
augments, enriches and complements in vitro and in vivo efforts. From a molecular biophysical ansatz
we describe how 3D molecular modeling methods used to numerically evaluate the classical pair-wise
potential at the chemical/biological interface can inform mechanism of action and the dose-response
paradigm of modern toxicology. With an emphasis on molecular docking, 3D-QSAR and
pharmacophore/toxicophore approaches, we demonstrate how these methods can be integrated with
chemoinformatic and toxicogenomic efforts into a tiered computational toxicology workflow. We
describe generalized protocols in which 3D computational molecular modeling is used to enhance our
ability to predict and model the most relevant toxicokinetic, metabolic and molecular toxicological
endpoints, thereby accelerating the computational toxicology-driven basis of modern risk assessment
while providing a starting point for rational sustainable molecular design.

ii. Key Words
Docking, molecular model, virtual ligand screening, virtual screening, enrichment, toxicity,
toxicoinformatics, discovery, prediction, 3D QSAR, toxicophore, toxicant, in silico, pharmacophore

1. Introduction
1.1 0verview of Molecular Modeling anditsrolein Computational Toxicology: Fillingthedatagapsin
Mechanistic Toxicology

Modern computational molecular modeling methods are some of the most well-established, versatile
and vital computational chemistry methods that are at the very core of the emerging field of both
mechanistic [1] and computational toxicology and sustainable molecular design.' The use of molecular
modeling coupled to mathematical and chemical-biological inquiry is crucial “to better understand the
mechanisms through which a given chemical induces harm and, ultimately, to be able to predict adverse
effects of the toxicants on human health and/or the environment” [2].

A first step in considering the use of three-dimensional (3D) computer assisted molecular modeling
(CAMM) methods is the awareness of molecular level questions one can address with the various
techniques. Molecular modeling can be used in the context of toxicological inquiry to address three
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molecular level aspects of both individual small-molecule (ligand) or biological macromolecules
(targets), or the resultant interactions of the ligand/target complex , namely: (1) Structure (2)
properties and (3) (re)activity. In the context of toxicological and chemical genomic research (or
toxicogenomics) one is interested in or requires downstream information that makes use of “optimized”
structures or geometries of ligands or biological targets. Of the properties one may be interested in,
molecular complementarity is a key objective along with catalytic competence of a chemical and
possibly molecular susceptibility (or reactivity of a molecule). Similarly, there are two main research
efforts one wishes to inform in mechanistic toxicology, namely:

(1) toxicokinetics or ADME (rate of fate within the body)
(2) toxicodynamics or molecular toxicological interactions that result in a cellular response,

By considering two principal research paths and the biological macromolecular target space to which
these coupled processes are related (Table 1) it becomes evident that the subset of molecular modeling
tools that will be used by a toxicologist is not much different than the in silico drug discovery workflows
[3], with the exception that there is less of an emphasis on lead optimization, and more of an incentive
on modeling approaches that possess an ability to both  accurately and efficiently prioritize and
categorize chemicals to their respective macromolecular targets; in silico methods that are
complementary to modern experimental toxicogenomic inquiry.
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Table 1 This table shows the overlap between macroscopic and mechanistic toxicology, examples of
targets for which pair-wise ligand/target interactions are most often sought after, and the molecular
modeling methods used to inform the toxicological questions. Toxicology research streams
(toxicokinetics/dynamics), specific toxicology related processes (ADME/T), examples of toxicologically
related biological macromolecules implicated in specific processes and several 3-dimensional
Computational Molecular Modeling methods (3D-CAMM) are mentioned.



It is estimated that there exist in the order of 7,000,000 chemical leads for small-molecule drug-
discovery and ~ 80,000 to 100,000 chemicals under the auspice of environmental chemicals for which
the data matrix for risk is sparsely populated (i.e. environmental chemicals), and so there is a need for
large-scale screening efforts for prioritization and categorization of these large inventories. [1, 3-6]. Due
to the scale of chemical inventories of interest and variety of toxicologically implicated targets of
interest, the most appropriate starting point for 3D-CAMM most frequently applied to toxicology
(pharmacophores, 3D QSAR and molecular docking) is the use of molecular mechanics force fields to
describe or determine the 3D structure of a chemical/biological molecular system of interest. [7-13] In
this approach both ligands and biological macromolecular targets are mathematically described and
modeled by applying classical Newtonian mechanics to atomic (not electronic) systems which in turn are
numerically evaluated using modern computational implementations of the underlying biophysical
models. We stress the importance of delineating the fundamental choice of molecular mechanics as
opposed to quantum mechanical approaches for answering questions typical of chemical/biological
perturbations due to the size domain, and information criteria of the part of mechanistic toxicology one
most often wants to inform in the computational toxicology framework; the pair-wise interaction
potential between ligand and macromolecular target. To better understand the difference between
2D/3D molecular modeling methods as applied to computational toxicology, we present a symbolic
graphic (Figure 1) outlining the three main 3D molecular modeling techniques used in this chapter.
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Figure 1. Point of departure from a 1D chemical smiles notation to 3D representation, with atom type
and specific coordinates spatially defined. (d-f) the three major classes of molecule modeling methods
used to evaluate ligand/target interactions.




Although intrinsic property or functional group chemical filters (leadscope) in addition to classical QSAR
approaches [14] and decision tree classifiers [15] are both pragmatic and parsimonious components of
the chemoinformatic toolkit of computational toxicologists, they lack the intimate molecular level detail
of the biomolecular interaction that could only be resolved by 3D-CAMM. Often chemoinformatics
methods alone are unsuitable to address structurally-related questions that require target-specific
insight. For instance, for cases that fail to be able to resolve stereoisomerism and its implications in
biomolecular interactions, species-related differences in sequences, polymorphism related
extrapolations in susceptible populations, and structural bases for mechanistic variability (inhibition
versus substrate, agonist versus antagonist), there is little question that primarily 3D modeling methods
such as (l) pharmacophore mapping, (I1) 3D-QSAR, and (lll) molecular docking methods that necessitate
detailed structural information (i.e. Cartesian coordinates of atoms and their specific connectivity) and
are the only viable alternatives for reliable a priori estimates for risk assessment .

Unlike specific models of both biological macromolecules and small-molecule ligands, both 3D-QSAR and
pharmacophore methods address the fundamental chemical/biological aspects of pair-wise interactions
implicitly. Although both deal with the explicit (i.e. full 3D) structure of a chemical of interest, and both
require either a training/test set of chemicals with known activities for a given target for a given mode
of action (i.e. agonist or antagonist, substrate or inhibitor), neither pharmacophore approaches or 3D
QSAR approaches can provide specific molecular level detail between atoms on both macromolecule
coupled to those of the ligands that give rise to said activity. Pair-wise interactions between the ligand
and the target molecule must be spatially defined. Nonetheless, both methods are a step in the right
direction from traditional 2D-QSAR since inherently both 3D-QSAR and pharmacophore models have the
ability to discriminate activity based on 3-dimensional topology (i.e. inform stereochemical interactions
or regiospecific interactions) without providing residue-specific interactions that could give rise to the
specific interaction.

According to IUPAC, a pharmacophore (or in the case of toxicology, a toxicophore) is “an ensemble of
steric and electronic features that is necessary to ensure the optimal supramolecular interactions with a
specific biological target and to trigger (or block) its biological response” [16]. In this sense a
pharmacophore model’s objective is to characterize a molecule’s atomic constituents in terms of the
primary interaction types that give rise to pair-wise interactions; from multiple atoms to a subset of
binding “features.” The features most common for a set of known chemical actors on a known biological
target of undefined tertiary structure are: hydrophobic, aromatic, hydrogen bond acceptor, hydrogen
bond donor, cationic or anionic or metal interactions. Furthermore there may be exclusion volumes and
feature directionality included in the pharmacophore. The pharmacophore features are elucidated by
comparing multiple known actors in terms of common overlaid structural features (or alignments). Next,
if one is to investigate a series of chemicals and test the pharmacophore one would sample
conformational space and any structure that contained a conformation that satisfied the spatial and
feature requirements of the pharmacophore model would be considered a complete or partial “hit”.

On the other hand, being able to assess which functional groups or specific spatial features have the
ability to modulate the chemical/biological interactions in a quantitative sense is the area of 3D QSAR .
Although there are cases of simple QSAR models dating back to the late 1800’s [17], 3D-QSAR is a much
more recent approach. While classical QSAR models are useful for rapidly predicting chemically-induced
effects based on physicochemical properties, its main weakness is that it does not account for 3-
dimensional molecular shape, a critical aspect of intermolecular interaction. Instead of relying on
physicochemical properties as molecular descriptors, 3D-QSAR interprets molecular shape using



interaction energies from force field calculations. The huge number of individual interaction energies
was historically difficult to correlate with biological activity and it was not until the advent of PLS [18]
that 3D-QSAR became technically feasible.

The first, and still most widely used 3D-QSAR method, is known as Comparative Molecular Field Analysis
(CoMFA) [19]. Other methods have since emerged, including Comparative Molecular Similarity Indices
Analysis (CoMSIA) [20], ALMOND [21], three-dimensional QSAR (TDQ) [22], Catalyst [23] and Phase [23],
generally to either improve predictive performance or simplify the model development process. The
main drawback of 3D-QSAR is the time requirements and difficulty in preparing the data set for model
development.

Further details and steps required for both pharmacophore elucidation/mapping and 3D QSAR as
applied to toxicology are elaborated in the Methods section.

1.3 Modeling Explicit Pair-wise interaction potential of ligand-target: Molecular Mechanics, empirical
scoring,andtheneedforstructurally informedmolecularmodels

In the specific case of modeling ligand/target interactions for virtual ligand screening as applied to
toxicology, certain methods for evaluating pair-wise interaction energy are too computationally
expensive/intensive and scape poorly with system size; Quantum Mechanical (QM or sometimes
referred to as quantum chemical or electronic structure theory methods) are highly accurate but not
ideal (hence not pertinent) due to their computational demand for almost all of the said interaction
partners and processes listed in Table 1, with perhaps the exception of bond breaking/making processes
inherent in metabolic reactions or irreversible binding. Although the principal focus of in silico methods
to estimate metabolic rate constants have been quantum mechanical [24, 25] the majority of pair-wise
interactions a toxicologist will require are related to ligand/macromolecular target pair-wise
interactions, comprised of both bonded (ligand and target “self energy”) and non-bonded interactions
between a small molecule and target biological macromolecule (i.e. receptor or enzyme) for which all
structural optimization routines are adequate within a classical physics formalism, or more specifically,
within a molecular mechanics (MM) framework in which the smallest unit of relevance are atoms (not
electrons as in the case of QM approaches).

The classical physics approach to modeling molecules requires the assumptions of molecular
mechanics which makes use of atom-specific functions, or force fields parameters, that have been
developed by a variety of experimental or high-level theoretical calculations (i.e. ab initio or semi-
empirical QM). These are related to atom-specific terms that describe all bonded, and non-bonded
interactions (conformational energy, as a function of dihedral angles, bond angles and bond lengths
intramolecular electrostatic interactions and van der waals, or dispersion forces) in Cartesian space that
are ultimately integrated over all space of the individual molecule or ligand/biomolecule complex to
estimate “intermolecular” interaction energy. The “pair-wise interaction potential” between a ligand
and a macromolecular target is provided in a simplified form in Figure 2.
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Figure 2. Fundamental classical expressions evaluated in pair-wise interaction modeling between ligand
(L) and macromolecular target (T), and the resulting affinity of the complex (L:T). (1) The first expression
relates the energy of the molecular components as a difference of the complex’s bonded/non-bonded
atomic potential from the energy of the individual partners (L, T). (2) The approximation that the energy
function is related to free energy of a system, the thermodynamic representation in terms of enthalpy
(H) and entropy (S), and the thermodynamic interpretation of transition-state theory and molecular
driving forces for association (K;). (3) Finally, the relationship between the Ligand:Target complex
affinity constant, K, or dissociation Ky and the approximate translation to a toxicologists metric of the
inhibition constant K;.



In the fields of both statistical thermodynamics and transition state theory for chemical reaction rates, is
the relationship between reaction free energy and thermodynamic variables. As provided in Equation 2
of Figure 2, if one has a method for capturing interaction free energy of complex formation (or
association) of a ligand/target complex this thermodynamic variable, dG can be cast in terms of an
equilibrium process via the expression in lines 2 and 3, where the association constant of an L:T
complex, K, = [LT]/[L][T] Kq = 1/K, and K;, the inhibition constant from competitive inhibition assays that
in vitro assays often quantify is directly proportional to Ky (dissociation constant) of the ligand with
respect to a reference probe [26].

In theory, it is tempting to believe that the free energy from scoring or force-field functions should
directly correlate with the experimentally-determined biological activity (Kq or K;) of complex formation
as evaluated by pair-eise interaction schemes, the problem is significantly more involved. The
complexity of the problem and inherent simplifications in molecular docking often result in an ability to
enrich a dataset in question in such a way that “actives” (i.e. biologically active molecules, or “hits” for a
target) considered above some threshold expectation value for binding are guessed several orders of
magnitude better than a random guess. For screening this is a reasonable expectation. Details of the
various steps for 3D molecular modeling are addressed briefly in the methods section (3.Methods), with
focus on how to use these optimized structures for 3D pharmacophore elucidation, 3D-QSAR, and
molecular docking. For more extensive methodological resources for any of the methods provided we
refer the reader to Table 3 which contains expansions of the topics covered in this chapter. It is strongly
encouraged to familiarize oneself with these tools through practice if one wants to apply these
techniques to individual toxicological research efforts.

1.4Theuse of molecular modeling incomputational toxicology: Theintegrated modeling workflow to
in silico chemicalgenomics

Although we have provided an overview of the most popular and useful aspects of 3D-CAMM that could
be used to inform mechanistic toxicology, we need to understand how they fall in to the computational
toxicology framework. To know how and when these methods are applied in practice, and by whom, we
have devised a workflow (Figure 3) that highlights some of these components and how they may
complement experimental High Throughput Screening protocols. The objective is to enrich the
understanding of chemical/biological interactions through toxicogenomic inquiry. This is achieved by an
in silico (filters -> 2D QSAR > pharmacophore -> docking/3D QSAR) tiered approach that is tightly
coupled to experimental in vitro screening efforts (i.e. protein ligand binding assays, transient activation
assays, gene expression profiling, cytotoxicity assays, etc) to encode a chemical-specific biological
activity fingerprint or signature. This conceivably can also be performed in silico using multiple target
screening, and used as a metric for chemical/biological activity comparisons (i.e. similarity based on
multi-target virtual affinity fingerprint as opposed to structure alone).



LTI TN TR T TR T ETETAET ETITIRTETITTETATARTETARTETI TIRTETRTICTETAT A,

Opandscais
Chemainformatiee
Desferiptor Refourdes

[

If Intﬂmlbtli du-:'lu
Li,'u.‘ﬂuﬂsum ~2100 L 150 )

h'd

o Irehouse Ehemicsll sase o
Efforts (e ToxCnfll © ~vor 2

Cell-bazed mzays
micrasome/hepatoryies
lim witra) : P

/

Figure 3. Computational toxicology modeling workflow showcasing the in silico, In vitro and in vivo
integration of data and models within an informatics framework.
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All of the data from a tiered approach to virtual ligand screening could and should ultimately be
encoded or captured within a database framework so that easy recall could be performed to inform
molecular level resolution data gaps as they arise. We add that the development of a database
infrastructure that can subsequently capture the resultant poses and pair-wise interaction energy
(surrogates for affinity) holds value in being able to query molecular-level insight for an experimental
chemical genomics screen.

We provide, in brief, a workflow that demonstrates how to pair or couple experimental, in silico, and 3D
in silico methods and the various pipes of data that allows one to build a virtual ligand—target complex
structural database. This type of strategy had been adopted to build our own in-house resource to
support toxicogenomic inquiry (DockScreen) which is explained in the Examples section.

2. MATERIALS

There are well over 350 independent packages (computational codes) available for various aspects of
the molecular modeling or Virtual Ligand Screening (or 3D VLS) paradigm that capture the various
components required for 3D modeling of ligand / biomolecule interactions: all chemoinformatics and
QSAR development, docking, homology modeling, pharmacophore elucidation, chemical structure
manipulation, structure building, refinement, optimization, and finally bioinformatics applications.

For the case of computational toxicology the lead optimization procedure/process typically associated
with in silico drug discovery or rational drug design and associated methods and coded implementations
are essentially dropped (although they may persist for sustainable molecular design). These packages
run on many different platforms including but not limited to Windows/PCs, SGI, Mac, Linux (UNIX
workstations), and some limited functionality molecular modeling utilities are even available for hand-
held devices and smart-phones. For practical purposes, we have typically chosen one of several
commercial suites that with the following features:

a) Platform independence (works on heterogeneous network architecture)

b) Token-key license structure (check out by user when required)

c¢) Many independent molecular modeling methods, bioinformatics, chemoinformatics and data
mining methods combined

d) Built-in functionality for scripting, piping data, and automated/macro workflows

e) Is well documented and has good active and passive support networks (technical service, and
FAQ/scripting forums)

Public available resources for the “non-expert” or experts are included in Table 2 and provide numerous

links for a variety of software packages, both commercial and open-source, in addition to visualization
tools and databases relevant for informing ligand/target pair-wise interaction moedeling.
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Individual 3D CAMM lists Uniform Resource Locator (URL)

Directory of In Sllico Drug Design http://www.click2drug.org

Tools (Swiss Institute of
Bioinformatics)

Universal Molecular Modeling List http://cmm.info.nih.gov/modeling/universal software.html
(NIH)
Free computer tools in Structural http://www.vls3d.com/links.html

Bioinformatics and
Chemoinformatics

Computational Chemistry List, Itd. http://www.ccl.net/chemistry/links/software/index.shtml
(CCL.NET) Software Related Sites

(Note, these include “ALL” chemistry
related sites above and beyond the
scope of this paper

Virtual Library: Science: Chemistry: http://www.liv.ac.uk/Chemistry/Links/softwarecomp.html|

Chemistry Software Houses from the
University of Liverpool (UK)

Table 2: A list of several comprehensive software/tool/data resources lists available on the WWW that
provide access to various commercial and open-source software packages, in addition to open-access
database resources.

From an application stand point the authors have required both bioinformatics and chemoinformatics
tools, structural database capabilities, and the ability to perform geometry optimization of structures,
molecular docking, homology modeling of target structures, conformational searches, pharmacophore
elucidation, and QSAR development. However, we have primarily used Chemical Computing Group’s
Molecular Operating Environment (MOE) [27] for all database manipulation, QSAR development, library
development, structural optimization and descriptor calculation. Similarly, for ADME related parameter
estimation via QSAR we use Schrodinger’s QikProp [28] which has been vetted against various animal
and human drug targets or ADME related endpoints (i.e. LogPBB, LogKhsa, #metabolites, CACO2, or
MDCK permeability, etc.)
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3. Methods

As mentioned in the introduction, the classical physics approach to modeling molecules requires the
assumptions of molecular mechanics which makes use of atom-specific functions, or force field
parameters, that have been developed often for specific classes of molecules. Force field calculations
have been successfully performed on larger polypeptides and protein structures. Park and Harris [24]
utilized AMBER force fields to develop an all-atom model for CYP2E1 which was subsequently used for
docking studies. A comprehensive review of AMBER protein force field development can be found
elsewhere [7, 29]. Several studies have also assessed the relative performance of CHARMM, MMx, OPLS
and AMBER force fields [30, 31]. Gundertofte et al. [32] have assessed the relative accuracies of MMx
and AMBER force fields. Jorgenson et al. [33, 34] have also examined the performance of their OPLS
force field in the context of proteins and organic liquids. Regardless of the framework details, a
molecular mechanics force field is always chosen for structural optimization, and the specific force field
selected is usually chosen that best captures the atom-type diversity in the dataset (i.e. chemical space
of the training fragments or atoms). A broad overview of all the step-wise modeling procedures is
provided in Figure 4.
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For our molecular modeling needs, (i.e. in the case of small molecule ligands with environmental
chemicals) we have almost exclusively used the MMFFx force field (MMFFx, [35]) for 3D
geometry optimizations of entire libraries of chemicals.

Subsequently, partial atomic charges are assigned either using empirical (i.e, Gasteiger) or semi-
empirical based charge model representations of the electrostatics of the system (i.e., AM1-
BCC) and are stored in a 3D chemical structural database.

These structures could be used directly with target specific activity information as the seed for a
conformational search (spanning all rotatable bonds to predict other relevant geometries) and
aligned to other known biologically-active chemicals to generate 3D-QSAR or pharmacophore
models.

However, if the structure is known and the target protein sequence is known and a crystal
structure or near-neighbor homolog exists, it is conceivably simple to optimize hydrogens on the
crystal structure obtained from the literature, or perform theoretical site-directed mutagenesis
or threading, the basis for homology modeling based off of a known structural template.

Finally, with an optimized target structure database, and an optimized ligand database one
could perform molecular docking experiments where the pair-wise ligand:target interactions
(bonded and non-bonded terms) are systematically evaluated. The resulting poses from such a
docking “run” can each be individually scored based on known binding affinity. There are
numerous online resources that provide ligand/target binding affinity data (i.e.
www.bindingdb.org).

Using these rank-ordered lists of chemicals based on scored docking poses between a small
molecule and a macromolecular target is the starting point for a prioritization or rank-order
scheme for screening a specific target: virtual structure (macromolecule) based virtual ligand
screening.

A library of structural targets of interest that may have been selected based on their role in a
major toxicity pathway a researcher may be studying, has value in being able to fish for targets
of any chemical [36]. The next section elaborates on the capabilities of a large-scale
ligand/target screening initiative.

For detailed description of external methods we encourage the readers to consult Table 3, which
contain more detail for each aspect of the various steps of molecular modeling. Next we provide a step-
wise breakdown of various modeling steps required for evaluating ligand/macromolecular target
interactions.
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Step

Molecular Docking

A general introduction to
molecular modelling
techniques in the area of
protein—ligand interactions
Docking Scoring Functions

Chemical Database
Preparation

Target selection criteria

Virtual or in silico affinity
fingerprints

3D Structure-Based Virtual
Ligand Screening

Resources and brief overview

In silico chemical genomics —
Target and Ligand
Preparation
Analysis of Chemical Space in
the context of Domain of
Applicability
Analysis of docking data

Table 3: A comprehensive set of combined reviews and/or methods papers for various aspects

Systematic Methods Reference

Morris, G. and M. Lim-Wilby, Molecular docking. Methods in Molecular

biology (Clifton, NJ), 2008. 443: p. 365.

a) Kroemer, R., Molecular modelling probes: docking and scoring.
Biochemical Society Transactions, 2003. 31: p. 980-984. and (b) Van Dijk,
A., R. Boelens, and A. Bonvin, Data driven docking for the study of
biomolecular complexes. Febs Journal, 2005. 272(2): p. 293-312.

Pick, D., Novel Scoring Methods in Virtual Ligand Screening. Methods in
Molecular biology, 2004. 275: p. 439-448.

Bologa, C., M. Olah, and T. Oprea, Chemical database preparation for
compound acquisition or virtual screening. Methods in Molecular biology
(Clifton, NJ), 2005. 316: p. 375.

Wishart, D., Identifying putative drug targets and potential drug leads:
starting points for virtual screening and docking. Methods in molecular
biology (Clifton, NJ), 2008. 443: p. 333.

Briem, H. and U. Lessel, In vitro and in silico affinity fingerprints: Finding
similarities beyond structural classes. Perspectives in Drug Discovery and
Design, 2000. 20(1): p. 231-244.

Villoutreix, B., et al., Free resources to assist structure-based virtual

ligand screening experiments. Current Protein and Peptide Science, 2007.

8(4): p. 381-411.

Jongejan, A, et al., The Role and Application of In Silico Docking in
Chemical Genomics Research. Methods in Molecular biology (Clifton, NJ),
2005. 310: p. 63.

Jaworska, J., N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability
domain estimation by projection of the training set descriptor space: a
review. ATLA-NOTTINGHAM-, 2005. 33(5): p. 445.

Bender, A., et al., Chemogenomic data analysis: Prediction of small-
molecule targets and the advent of biological fingerprints. Combinatorial
Chemistry &# 38; High Throughput Screening, 2007. 10(8): p. 719-731.

of the 3D molecular modeling methods discussed in this chapter. We urge the reader to

familiarize themselves with each of the steps associated with their modeling method chosen

and the particular toxicological data gaps they may wish to address.
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3.1 Ligand Preparation

1)

2)
3)

4)
5)

6)

Collect a list of all the chemicals of interest

-Dataset augmentation (i.e. adding “simulated metabolites”- Enumerate metabolites using a
heuristic (or knowledge base) metabolite enumeration algorithm [37, 38].

Curate this list with the smiles representation of the structure of interest
Convert this 2D chemical structure dataset to a 3D representation by assigning the chemicals
absolute configuration which includes the atom types but their 3D connectivity (bond type and
orientation) and selecting an appropriate molecular mechanics force field and charge model of
interest (depending on the chemical space of the chemicals of interest in addition to the
magnitude of the screening initiative (i.e. hundreds to thousands of chemicals one would be
better of going to no more than a classical physics approximation of the molecular geometry)

Assign charges to the geometry optimized structures

Refine the dataset (see Table of Methods) — [39]

a) Consider charge state and charge model, force field and domain of applicability dependent
on the nature of your chemical

Capture all 3D geometries into a database.

a) Almost all major molecular modeling suites (e.g. Chemical Computing group’s Molecular
Operating Environment [27], Accelrys Discovery Suite [40], Schrodinger [28] and Tripos [41].)
provide database representation of the chemicals of interest, so converting from smiles
code to 3D optimized, cleaned, and charge-model applied 3D representation is relatively
seamless

b) STOP

3.2 Target Preparation

1)

2)

3)

Coupled to experimental knowledge, searching through chemical genomics databases such as
http://stitch.embl.de or the comparative toxicogenomics database (http://ctd.mdibl.org/ ) often

identifies good, relevant targets for a chemical or analog of interest.
Finding a suitable target model (typically an X-ray crystal structure from http://www.pdb.org) is

the next step. Before assuming that a given target structure will serve as a sound basis for
molecular modeling studies, it is critical to understand that “protein structures” are models.
Although they are based on experimental data, they are nonetheless prone to bias or ambiguity
from several sources. While numeric metrics such as resolution, R-factor, free-R, redundancy,
and average |/sigma (signal to noise ratio) are important considerations for the overall reliability
of a crystal structure model, at least some local errors or ambiguities are found in nearly all
structures. Active sites are often somewhat rigid, especially when bound to ligands, so one can
hope that the structure of interest is a sound choice. However, there is usually no substitute for
examining electron density (See notes section below and [42]).

Selecting the appropriate structure if confronted with several? Perform an RMSD evaluation on
a structural superposition. If the geometries are similar they may cluster into most-probable
conformation states. Select a representative from each cluster.
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4)

5)

If the target structure is known and the sequence is known and a crystal structure or near-
neighbor homolog exists, it is conceivably simple to optimize hydrogen atoms on the crystal
structure obtained from the literature, or perform theoretical site-directed mutagenesis or
threading, the basis for homology modeling based off of a known structural template.

If the target structure is not known and one wishes to perform structure-based virtual screening
or molecular docking, one must build a homology model of the structure of interest using the
sequence of the desired target (from www.uniprot.org ) and a crystal structure template of the
nearest-neighbor homolog (template or crystal structures from www.pdb.org and homology or
sequence identify search using BLAST. A protein homology model server is available for
integrated web modeling at www.proteinmodelportal.org .

3.3 Molecular Docking

1)

2)

3)

4)

5)

6)

With an optimized target structure database, and an optimized ligand database one could
perform molecular docking experiments where the pair-wise interactions (bonded and non-
bonded terms) between the ligand and the macromolecular target are systematically evaluated.
The resulting poses from such a docking “run” can each be individually scored based on known
binding affinity data training set of chemicals for a given target.

A binding site is identified (co-crystallized ligand site, or rationally selected site) and each ligand
is subject to interact with the macromolecular target, where sampling and docking trajectories
are subject to the force field approximations. Each individual “pose” is scored or captured for
subsequent analysis.

Each of the poses are systematically scored using pair-wise interaction potentials that are either
derived from classical physics approaches (i.e. force field approximation) or empirical scoring
functions that have been optimized to reproduce either experimental in vitro binding affinities
(trained scoring function).

The results are subsequently validated for their ability to enrich MOA data, or rank-order
chemical binding for a known target. Another common validation protocol that has less to do
with the binding affinity and more with pose analysis is the ability for the docking algorithm to
reproduce the original co-crystallized ligand in the same geometry. Methods that minimize the
RMSD between known pose and docked pose are considered optimal. This approach of being
able to reproduce experimental crystal structures is termed “pose fidelity” [43, 44] and
references within;

Docking “experiments” can form the basis of continuous complementarity evaluation of
ligand/target complexes (unlike experimental, that rely on binding stronger than a probe
chemical, or else result in a “NA” or blank result.). Since one can take the top and bottom rank-
ordered chemicals for a target and deduce chemoinformatic filters (i.e. intrinsic functional
property or functional group profiling) one could conceivably perform what is known as
“progressive docking”, where filters from molecular docking simulations are used to create

“structure-guided” filters for subsequent chemicals. (Progressive Docking: A Hybrid
QSAR/Docking Approach for Accelerating In silico High Throughput Screening [45].

Details about assumptions and expectations from structure-based virtual ligand screening
models, and the very nature of the target structure used are enumerated in the “Notes section”.
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It is very important to be aware of the various issues that lead to mismatched expectations (i.e.
surprise) when attempting to apply these 3D-CAMM approaches.

3.4 3D QSAR

This section is intended to provide a brief overview of 3D-QSAR, outlining its advantages and
disadvantages and describing the basic steps required to derive and validate a model. For greater
detail on the topic, the reader is referred to external references. [46-48]. Figure 5 outlines the basic
steps involved with developing, validating and using a 3D-QSAR model. Although not listed on the
figure, the first step in deriving a 3D-QSAR model is really defining the applicability domain or the
chemical space comprising the set of compounds for which the model is to be used. A good way of
rapidly assessing the chemical space of two chemical lists is using ChemGPS-NP [49, 50]. When that
has been defined, a representative sample of that compound list with known biological activity must
be chosen for further development. 3D-QSAR models have been developed using data sets ranging
from as little as 20-30 compounds or as much as 200-300. A large data set of compounds will likely
cover a larger chemical space, but considerations of the cost of biological testing usually limit this
size. Another consideration in the initial stages of data set design is the overall span in biological
activity values: a span in activity values of 5 log units is generally considered to be the minimum
requirement.

Figure 5. Workflow for deriving, validating and using a 3D-QSAR model.
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1) After data set compounds have been carefully chosen, several steps of molecular modeling are
necessary to ensure

a) they are in their biologically active conformation,
b) geometry optimization has been performed and
c) accurate partial atomic charges have been assigned.

2) Of these steps, identification of the biologically active conformation is the most important and
most difficult. Geometry optimization and charge calculation methods generally have a much
lesser effect on model predictive performance.

a) data set is carefully divided into training and test sets. The training set is a subset of the data
set used for deriving the 3D-QSAR model and usually comprises roughly two-thirds of the
original data set. The test set is then comprised of the remaining one-third of compounds
and is used for evaluation of the predictive performance of the model. Care must be taken
to ensure the training and test sets have similar coverage of chemical space as well as a
similar span in activity.

b) Following data set division, the final software-dependent steps in 3D-QSAR model derivation
may be taken. Since 3D-QSAR correlates biological activity with differences in structural
features, these final steps generally involve aligning important pharmacophore groups or
features of the chemical scaffold to bring to light those structural features that impact
biological activity.

3) After the 3D-QSAR model has been derived it must be validated. The first step of the validation
process normally includes internal validation by cross-validation, which gives an indication of the
strength of correlation within the training set compounds. Although this is a useful metric, it
gives little indication of how well the model can predict activity data for compounds not
included in the training set. To understand this, the model is used to predict the activities of test
set compounds. These predicted values are compared with the previously-known activity values
to calculate rzpred, a measure of external predictive performance.

4) If the model is found to be sufficiently predictive following these tests, it may be used to
perform predictions on similar compounds for which biological activity is unknown. If it is not,
the user must repeat the previous steps leading up to model derivation until the model is
sufficiently predictive.

3.5 Pharmacophore / toxicophore elucidation

1) Taking the optimized ligand geometries and knowledge of the specific target for which these
chemicals interact with it is possible to superimpose the various ligands, or conformations of the
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various ligands, to re-recreate or infer the optimal features for a specific experimental mode of
action.

2) Negative data is especially useful in pharmacophore models as it allows one to rule out
“impossible” superpositions (hence better molecular level boundary conditions) and increase
the predictive accuracy of models to predict “hits” or “non-hits.”

3) Flexible alignment or ligand superposition is preceded by geometry optimization and
conformation enumeration of each of the 3D geometries that can be made by performing either
stochastic or deterministic molecular simulations within a molecular mechanics framework to
systematically alter the dihedral angles of the chemicals of interest and localize multiple low
energy conformers or rotamers.

4) Once alignment procedures between chemicals have been completed, one often finds common
molecular features that one can reduce the ligand structure into (i.e. hydrogen bond donor,
hydrogen bond acceptor, hydrophobic contact, aromatic contacts, metal interactions, cationic
interactions, anionic interactions). These features can include exclusion volumes or cavities that
“wrap” the outer volume of a set of known ligands. For any given chemical, if a conformation
falls within the cavity, and the spatial relationship between features are either completely or
partially satisfied one would identify “potential hits”.

4.Examples

In order to familiarize toxicologists with pertinent examples for further exploration (I) we briefly outline
some of the key papers in table format (Table 4) as they address mechanistic toxicology questions, the
modeling approaches taken, the software used, and the literature reference of the research effort.
Finally (I1) we provide a brief description of an in-house in silico chemical genomics program and the key
actions taken to bring an in silico molecular modeling results database to fruition to complement
screening and toxicogenomic efforts.

Example(s) I: 3D CAMM to inform toxicology, single target research.
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Tox data gap

Modeling method chosen /

software used

Chemical/target space

citation

1. Absorption Catalyst (Accelrys) TARGET: P-gp (P-glycoprotein | [51]
efflux transporter)
3D QSAR
LIGANDS : 27 digoxin
Pharmacophore inhibitors, 21+17 vinblastine
Homology modeling, inhibitors,
2. Distribution | a) Homology modeling, 3D | TARGET: sex hormone binding | [52-54]
QSAR, molecular globulin / LIGAND: 80,000
dynamics, and molecular | ligands
docking (various - Glide —
Schrodinger, and TARGET: Human Serum
Chemical Computing and Albumin binding (plasma
Tripos suites) binding), LIGAND: < 10
structurally-related chemicals
b) Molecular docking to naturally occurring
(Autodock) molecular ochratoxin
modeling
(Macromodel/Schroding | TARGET: Human Serum
er), theoretical site- Albumin binding (plasma
directed mutagenesis binding), LIGAND: 37
(Sybyl, Tripos) structurally related putative
interleukin 8 inhbitors
c) 3D-QSAR and molecular
docking
3. Metabolism | Pharmacophoreand 3D a) TARGET: CYPs 1A2, [55-57]
QSAR 2B6, 2C9, 2D6, 3A4
LIGANDS: various
drug-like / leads
b) TARGET: PXR
LIGANDS: various
drug-like / leads
4. Elimination | Pharmacophoreand 3D TARGET: rat multi-drug [58, 59]
QSAR (various in-house resistance-associated protein
packages such as CAMDA, as | 2 and 1/ LIGAND: >4000
well as commercial suites conformers of >18
such as Sybyl (TRIPOS) metabolism-like leads.
5. Molecular A) homology modeling and TARGET: Estrogen receptor [60, 61]

molecular docking

alpha (i.e. nuclear receptor) or
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toxicology (OpenEye’s FRED and eHITS) 5-HT6 receptor based off the
rhodopsin crystal structure
(receptors) (GPCR modeling)

Table 4: Selected research papers that exemplify 3D CAMM to inform mechanistic toxicology.

Example 1l : Building an in silico chemical genomics framework using 3D CAMM to inform toxicology on
multiple targets

This next example focuses primarily on the components required to build a multiple target large-scale
docking inventory to support chemical genomic research. In an effort to dig deeper into toxicogenomics
data we had built an in-house in silico chemical genomics infrastructure. The idea was to complement
HTS and chemical genomics programs and support a fully integrated in silico, in vitro, in vivo
computational toxicology framework.

Particular examples of building a multiple target, multiple chemical docking database are relatively rare
in the literature, and for the most part support drug discovery research. We wanted to demonstrate to
the reader how this was done at an overview level of detail to show key considerations, infrastructure
and coding requirements needed to be assessed. In this case, we were building a database to inform the
data matrix required for risk assessment of many environmental chemicals. One of the efforts from the
US-Environmental Protection Agency’s National Center for Computational Toxicology is the ToxCast
program [5]. In this case, for phase | a total of 320 chemicals (DSSTox dataset) were selected for
thorough in vitro work-up. What was not provided by any of these assays, however, was the type of
information at molecular resolution as obtained by structure-based virtual ligand screening or in silico
chemical genomics. In this case an in silico chemical genomic intiative, DockScreen, was started [62-64].

The Dockscreen data is the result of about 2,500 ligands docked into about 150 protein targets using the
eHiTS (Simbiosys Ltd, Canada) software package. The result was over 350,000 docking runs resulting in
over 9 million ligand poses. These calculations were performed over a period of 2 months on 20 servers
and collected a total of ~ 250 Gb of coordinate specific pose data for each of the 2500 chemicals on each
of the 151 targets. To store and manage queries to access this data, a MySQL relational database
schema was designed with separate tables for ligands, proteins, docking runs, and poses as well as some
computational statistics. A custom interface to this database was built in a Linux OS environment with a
PHP enabled Apache web server. The acronym "LAMP" is often used to refer to such a combination of
Linux, Apache, MySQL, and PHP which have been used in combination to provide web access to many
databases. For Dockscreen, only a dozen or so PHP scripts were needed to let users to view, query and
select groups of ligands, groups of targets, and statistical calculations on the distribution of docking
scores for the runs including such ligands and targets. In addition to numeric statistics, histogram
graphics were produced on the fly. An applet allowing users to draw chemicals and search against
ligands is also built in. We believe in house tools such as these that provide scientists relatively fast

III

access to “molecular-level” target binding properties and poses is critical for those wishing to focus on

chemical risk assessment at a molecular level of accountability.
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5.Notes

The good modeling practices as discussed more broadly throughout this book in other chapters

still apply to molecular modeling: that is in order to keep an audit trail of the steps and methods

applied to virtual screening one must keep track of details used to obtain the numerical results:

(0]

(0]

Keep track of crystal structure PDB accession number
Comment on species type and co-crystallized ligands

Consider any information with regards to MOA to be pertinent and capture (eg. IS
inhibitor or IS substrate, or IS agonist, or IS antagonist)

Consider keeping the crystal structure of the co-crystallized ligands as methods to test
pose fidelity and “accuracy” of your modeling experiment

When selecting a crystal structure it is good practice to inspect the atoms in the vicinity
of the putative binding site for which you will perform docking. If the B or thermal factor
is relatively low, then this is a good sign that the active site is relatively rigid and not an
“ensemble of conformations.” This information is explicitly found in the PDB file (and
can be downloaded from http://www.pdb.org). Other derived information about the

model geometry can be analyzed with free tools such as MolProbity [65]. This free
software helps identify model inconsistencies which may suggest not using a given
structure. Similarly, it is vital to consider only targets for which the original X-ray data
have been deposited. Using this data, electron density maps can be calculated or
downloaded from places such as the Uppsala Electron Density server [66]. The maps and
models can be viewed using free programs such as Coot [67], Python Molecular Viewer
(PMV) [68, 69], or SwissPDB’s DeepView [70]. Even with help from an experience X-ray
crystallographer, one can confirm a) that density clearly follows the shape of the model
and that b) there is not substantial “difference electron density” to indicate that model
atoms are incorrectly placed.

It is good practice to use crystal structures with relevant co-crystallized ligands as
opposed to only resolution criteria.

Every detail counts: knowledge of the pH, solvent medium, ionic strength and buffers used can

have implications on the model, the charge state of the model, and the type of charge model

you would select to estimate atomic charges.

(0]

Considering the sub-cellular localization can often help in determining charge state for
a chemical. For instance, the pH of the cytosol is ~7, the mitochondrial and ER pH is ~5,
whereas the pH of the nucleus is ~7.5-8. This may affect the charge models you wish to
capture.
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For modeling protein binding consider solvation/desolvation description as implemented in
molecular mechanics frameworks or molecular docking algorithms as being inadequately
captured or addressed.

For modeling more complex cellular activity phenomena (such as receptor mediated transient
activation assays) consider cellular transport processes as surrogates to modeling a molecular
MOA. For instance, estimating cellular membrane permeability, non-specific target binding and
specific target binding may assist in these efforts.

When validation of pose fidelity is not optimal, consider the reasons for failure. “Reasons for
Pose fidelity failure - Many of these pose fidelity failures could be attributed to one of four
common causes: (a) insufficient conformational sampling of the ligand, particularly of aliphatic
ring puckering, (b) symmetric or pseudosymmetric molecule, (c) critical missing water
molecules, and (d) ligand pose dominated by electronic (orbital) effects. These issues are
common to all docking methods and protocols.” [71]

Putting the pieces together — data and models and different software packages: One may want
to consider either the purchase of a workflow manager such as Pipeline Pilot [40] or use of
public domain versions such as KNIME [28], Bioclipse [72] or Taverna [73]. Many of these
packages contain the necessary elements to address step 1 and 2 of Figure 1 in the in silico in
vitro workflow. Then, the selection of a docking package is the final step.
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