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Abstract

Understanding the longitudinal properties of timetispent in different locations and activities is
important in characterizing human exposure to patits. The results of a four-season
longitudinal time-activity diary study in eight wong adults are presented, with the goal of
improving the parameterization of human activityathms in EPA’s exposure modeling
efforts. Despite the longitudinal, multi-seasotuna of the study, participant non-compliance
with the protocol over time did not play a majolero data collection. The diversitp}—a
ranked intraclass correlation coefficient (ICC)rddag-one autocorrelatiod) statistics of

study participants are presented for time speattdoor, motor vehicle, residential, and other-
indoor locations. Day-type (work-day versus norrkvday, and weekday versus weekend),
season, temperature, and gender differences tmtleespent in selected locations and activities
are described, arfd & A statistics are presented. The ovelbaind ICC values ranged from
approximately 0.08 - 0.26, while the mean poputatamk A values ranged from approximately
0.19 - 0.36. These statistics indicate that imdavidual variability exceeds explained inter-
individual variability, and low day-to-day corrdlas among locations. Most exposure models
do not address these behavioral characteristidsthaus underestimate population exposure
distributions and subsequent health risks assatiaith environmental exposures.
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Introduction

The Environmental Protection Agency (EPA) usesgasstial, time-series approach to model
human exposure to several air pollutants regulatetr Section 109 of the Clean Air Act,

which establishes National Ambient Air Quality Slards (NAAQS). This approach requires

as input realistic human time-activity (time-usajal These data, which include information on
time spent in different locations and activitiesg®rsons of different ages and genders, are used
to model year-long behavior patterns for a simalgtepulation. These behavior patterns affect
both the exposures encountered by the simulateddugls and their associated ventilation
rates, which together form the basis of predici¢dkie dose rates. To best implement the
modeling approach, longitudinal time use data aexed to appropriately represent variability

in an individual’s locations visited and activitipsrformed over time and space. However, there
currently are few longitudinal time activity datathered for exposure modeling purposes (1).

In the absence of comprehensive longitudinal dikata, EPA’s time series exposure models
must synthesize individual longitudinal time uség@as from cross-sectional data (i.e.,
combining diary data from similar persons), givitgge to uncertainty in the resultant
information. To minimize the magnitude of uncertgiand its effect on exposure and dose
estimates, EPA has developed a longitudinal dianstruction approach, called tbe& A
method, that reproduces realistic population prigerelated to exposure by selectively
sampling cross-sectional diaries from EPA’s Comaiéd Human Activity Database (CHAD)
(2). EPA models currently employing this approactude the Air Pollutants Exposure (APEX)
model (3,4), the Hazardous Air Pollution Exposureddl (5), and some versions of the
Stochastic Human Exposure and Dose Simulations [&)Eamily of models (6,7).

TheD & A method selectively chooses and then re-orders-@@stional activity diary days
from CHAD to 1) mimic a population-level intra- amter-individual variance target for a user-
supplied daily key diary property relevant to tk@@sure assessment, and 2) reproduce an
appropriate day-to-day autocorrelation in a keyalde (8). An example key diary variable
might be the time spent by asthmatic children detsiuring the ozone season. Another might
be the time spent in the “near-roadway” environnisnan older adult with pre-existing
cardiovascular problems. The& A method is parameterized by two target properti¢sen
population being modeled: tlestatistic, a ratio of inter-individual to total@ained variance

in a key variable, and th& statistic, the mean day-to-day autocorrelatiothensame variable.
TheD statistic can be thought of as ranked-order versidhe intraclass correlation coefficient,
or ICC, as explained in Glen et al. (8). Becaudh@ relative importance of longitudinal
information in its exposure modeling efforts, EPAational Exposure Research Laboratory
(NERL) is developing a database®® A metrics for different population groups.

This paper describes results of a longitudinahv@gtstudy of eight working adults. Data were
collected intermittently over the 2006-2007 timeipe in the Research Triangle Park, NC area.
The objectives of study were to 1) identify thetéas influencing time spent in different
locations and activities in working adults and difgrihe resulting variability; 2) quantify the
intra- and inter-individual variance in time usedsvelopingde novaA, D, and ICC metrics for



this population; and 3) determine the potentialgarticipant “protocol compliance fatigue”
when an activity diary is collected for multiplerjpels within a year.

Methods
The Time-Activity Study

An initial sample of 9 Caucasian adults living netResearch Triangle Park, NC area was
identified for this study. The sample consiste® éémales (4 working adults, 1 non-working
adult) and 4 males (all working adults) and all eveo-investigators of the study. None of the
participants received compensation for their effoMVe excluded the non-working female from
the analyses presented here due to her uniqueusm@attern associated with not working
outside the home; this conforms to past practicdgrigitudinal time use analyses (9).

The study was staggered over a two-year periodg-2007). Due to differences in activities
and locations on different day types (e.g. worksdagn-workdays or weekdays/weekend), a
sampling scheme was devised that emphasized algamsreased weekend data. The target
data collection pattern was 17 consecutive dagsah season: a starting Friday-Saturday pair,
followed by two weeks of data collection (Sunday:&ay), followed by a final Monday. Not all
participants were available for all days in a seabat all provided at least 14 days of data for 4
of the 5 following time periods (campaigns): JuKSeptember 4, 2006; December 5-22, 2006;
March 23-April 29, 2007; June 29-July 15, 2007; @udober 25-Novermber 12, 2007. The 8
participants all provided more than the desiredl@gs of data found to capture the mean time
spent outdoors with a reliability coefficier®.8 (10). They also all recorded’ consecutive
diary days in each season. The number of daysof data obtained from each person is listed
in Table 1. The total number of diary-days usethese analyses is 455, or approximately 57
per person. The schedule of data collection irfitted sample of 8 working adults is shown in
Figure 1.

A paper diary format based on Johnson (11) was tesgdther daily time/activity data. Each
diary was 24 h in duration, starting at midnigRtarticipants were instructed to fill out a new line
in the diary every time he/she changed either atioe or type of activity, which is known as an
“event.” The participants were asked to providesatry for every evert 1 minute in duration.
Participants were also asked to record for eachtevieether one or more of the following
circumstances occurred: 1) the subject breathedi*wa broke a sweat; 2) window(s) or door(s)
were open in an enclosed location; 3) tobacco sngokias observed in an enclosed location; 4)
a combustion source was operating; and 5) solweaits being used. Participants also noted
whether the day was a workday or not (regardle#s chlendar day-type: weekday or
weekend).

Participant Protocol Fatigue
It is well recognized in the time use researchdiigre that the contemporaneous diary format

places a significant burden on participants 12-td) provides better detail when compared with
recall methods. Also recognized is that only npldtiday diaries can properly capture activity



patterns where considerable day-to-day variakeiigts (15). The main concern in longitudinal
time use studies is compliance decreasing witheasing length of the study (15). Since our
diary study had four 17-day campaigns over a 15tmdme period, we were interested in
determining if participant non-response occurrethasstudy progressed, suggesting the data
gathered might be biased over time. Thereforeg-ii@pendent trends in the number of events
recorded per day were analyzed.

Time Spent in Locations and Activities

The daily time spent in a number of activities ézhtions were calculated for each participant.
These categories were selected due to their ratevarexposure modeling. Thecations
considered included indoors (all types), insida oésidence (own and other’s), other non-
residential indoor locations, outdoors at homedoats at all other locations, and in a motor
vehicle-dominated location (inside any motorizetigke, near a roadway, in a parking lot, at a
gas station, at a bus stop, in any garage, or auémrepair shop). We refer to a person in a
location of interest ast@abitué Theactivities considered included paid work, shopping/running
errands, exercise (including walking), indoor amtidoor chores, sleeping, and cooking or
preparing food. We refer to a person undertakmgdivity of interest as doer.

Mean daily times for each activity and location ealculated for each person, and differences
due to day-type (weekday/weekend), workday statusk/non-work), gender, and temperature
(>=65F versus <65F) were tested using the Wilcaamk sum (two-sample) test. Seasonal
effects were examined with the Kruskal-Wallis {@€). In addition, descriptive statistics were
obtained while treating each person-day as indegr@ndnd Kolmogorov-Smirnov (K-S) tests
(16) were used to test for differences in the dhiatron of values for the different groups
described above.

Variance and Autocorrelation Calculations

The balance of the within- and between-individuaiiance in the time spent in
microenvironments was quantified by the intraclamselation coefficient (ICC):

ICC = GBZ/(GBZ'*' Gwz ) (1)

whereog?® = inter-individual variance andw? = intra-individual variance (17). The

denominator is total explained variance. Thstatistic was also calculated (8). Thetatistic

is a rank-order version of the ICC, where the rasfihie time spent by each individual in
microenvironments were considered instead of thermamber of minutes. Ranks were assigned
to each participant for each day of the study, asethe rankings across people studied on that
day. D was then calculated using equation 1, where thanee terms were calculated based on
the assigned ranks.

D, like the ICC, is bounded by 0 and 1. As ICC andpproach 0, there is little inter-individual
variance: intra-individual variance predominatés. ICC andD approach 1, within-person
variance vanishes. In earlier studies, we havaddhbe ICC statistic to be 1) quite low,
generally <0.3, and 2) lower than tBestatistic for every parameter analyzed (8). Tletrim (1-



ICC)/ICC gives the ratio of the intra- to inter-imlual variance; it is not unusual when
examining human activities for the intra-individwalriance to be4 times greater than the inter-
individual component. The ICC values were calculateing the SAS UNIVARIATE procedure
to estimate separately the between-person andnapiirison variance. THe values were
calculated analogously on the scaled rank dategiwiiere produced using a ranking algorithm
in the SAS procedure IML. The estimates were adgufor short simulation length as described
in Glen et al. (8).

Since scaled ranks were used, it was a requirethahthe same calendar days for each person
be used to calculat®, as each person must have a measurement on the ol@er to create the
rankings. Although this is not strictly a requiremt when calculating an ICC using the raw
minutes, in the results reported herein, the ICG gaculated using the same calendar days as
the D statistic. However, since some of the days irsthdy did not overlap for all persons,
multiple estimates dD and ICC were calculated: more people could beuted in theD and

ICC estimates if fewer days of data were usedausieau and Mary (18) provide a method for
approximating the confidence intervals of the I&Gdunction of the number of people and
number of replicates (in this case, days) of a nmessent. We used their formula to estimate
which combination of N (number of people) angiA(number of days) that produced the
narrowest 95% confidence interval on ICCDor The approximate widthy, of the confidence
interval is given as

W= [2\/52(1_%)][1+ (Ndays —1)|CC](1— |CC)\/ NN (; —l) (2)

where zq/2) is the (1a/2) percentile of the standard normal distributidra calculate the 95%
confidence interval widthygs, we usex=0.05, and thuszzis the 97.8 percentile of the
cumulative unit normal, or 1.96.

Using equation 2, we calculateds for a range of expected ICCs for the different borations
of people andiary days that were available in this study. Whising alternative combinations
of days gives variable 95% CI widths over the raoexpected ICCs, the differences among
them were small. Therefore, we chose to use N&Mag.s=26, which overall gave the
narrowest confidence interval widths when the entainge of ICC oD was considered.
Additional ICC estimates were also calculated usiata on different sets of days for each
person. This allowed for ICC estimates contaimmaye days, but B estimate could not be
derived in this case since people could not beedm the same day.

The second component of tbe& A method is to replicate the mean population dagletp-
correlation, i.e. the lag 1 (one-day) autocorrefatAh), in the relevant diary property. Examples
could be the day-to-day autocorrelation for timergpn residences or walking near roadways by
children going to school (19). Correct charaction of the populatioA for time spent in

such activities is important for correctly reprothgcepisodic exposures in individuals. Both
Pearson (raw) and Spearman (rank) lag 1 autocboredan time spent in activities and locations
were calculated. The values used for calculatiegSpearman correlations were the ranks of
days within each individual. Th& values were calculated using the standard routorebese
correlations in the SAS PROC CORR procedure.



Results
Participant fatigue: trends in the number of receddevents per day

The number of daily events, as defined above, ap@saTable 1. Only one person had any day
with fewer than 30 events, a compliance criterieadubefore in previous EPA analyses of time
use data (20, 21). That person had only 2 days %80 events out of 47 total coded days
(4.3%). For the study as a whole, only 0.14% efttital sample coded <30 events on any one
day. This compares favorably with CHAD as a whualkich has a 10% non-compliant rate.

The median number of events recorded per day istowly is higher than all but one time use
survey in CHAD--an unusual observer-coded diargtolidren’s activities with a median of 66
events day.

There was no clear pattern in the distributionwargs recorded. Some participants’ events/day
followed a normal distribution while others appnmgted a log-normal. The trend over time in
recorded events was evaluated by regressing estaptsh day number. Three participants had a
significantly (p<0.05) positive trend in their nuertof events recorded, and three had a negative
trend; R values were low even in these cases.

Descriptive statistics of time spent in locatiomsl activities

Descriptive statistics for time spent by our samplearious locations and activities are given in
Tables 2 and 3. For both tables, statistics aveiged for individually-averaged data: included
are the mean and standard deviation (SD) for theasuples depicted, and their associated
coefficient of variation (CV), an indicator of réle variance. The results are disaggregated by
gender, day-type, workday status, temperaturesaadon wherever there was a significant
effect of these factors.

Summary statistics for microenvironmernitatationsare given in Table 2. As these were
individually-averaged data, the mean refers tantlean across people of the daily average
values. There were no gender differences in tipemisin various locations; however, day-type,
temperature, workday status, and season wereis@mtiffactors for multiple locations. Time
spent in motor-vehicle dominated locations wasarnifacross all categories. When significant,
workday status was as good as or better at distaiing time use than day-type, and much of
the difference among seasons could be capturedrsidering temperature. Time spent outdoor
in other locations was only a function of workdaihen outdoor time at home and in other
locations were combined in total outdoor time (stwdbwn in table for length), there were
significant differences for day-type (55 min/weekdd20 min/weekend day), workday status
(34 min/workday, 119 min/non-workday), temperat{fé min/colder day, 106 min/warmer
day), and season (61 min/day in winter, 79 minidagpring, 110 min/day in summer, 49
min/day in fall). The pattern of total outdoor arghicle time by day-type/temperature classes
for all individuals is shown in Figure 2.

Table 3 provides individually-averaged resultstiore spent in differemctivities.Using the
Wilcoxon test, none of the descriptive categoriagated influence time spent in exercise,



personal care, or performing indoor chores. Tipenspreparing food was the only variable
affected by gender. Once again day-type and wgrktius were the most discriminating
factors, affecting sleep, paid work, outdoor chpaesl shopping. Paid work was the only
activity that was influenced by season and tempegatvith more work being performed in
winter and spring, and when average temperatures kweer than 65 F.

Variance and autocorrelation estimates

Estimated values @ and ICC are given in Table 4. Whilevalues are most useful for
parameterizing EPA’s longitudinal diary algorithiSC values are provided due to their wide
use in the time use literature (10, 22). Becausi@iwday ranking was required to calculatB a
statistic, it was calculated using the same caleddgs for each person, while ICC values were
calculated using the entire set of available ddysalues were calculated only for all days and
both genders combined due to sample size issu€sydfiies could be calculated for key
locations and various day/gender combinations. ¥@ldes in general had a smallegs\than

their correspondin® estimate, due to the increased number of daysded in the estimate.
However, the ICC includes a component of withinspervariance due to weather differences or
day-type effects. The ICC on workdays was alwagker than on non-workdays. Both the
within-person and between-person variances incdeasaon-workdays, but the magnitude of
the increase im,, was much larger, resulting in a smaller ICC relato workdays, but this
difference was not significant. While females gatig have lower ICC estimates, the
confidence interval widths do not indicate a sigaiht difference. Overall, both tiizzand ICC
metrics are low—and their associateg confidence intervals are large, indicating sigraifit
intra-individual variability in the sample for af the location/day-type/gender combinations
evaluated.

Values of the lag-one Spearman autocorrela#omyere widely spread across individuals for
each variable considered. These are presentegbile 5. The value @& in outdoor locations
ranged from 0.14-0.47. Participants with the latgein outdoor time (e.g. M3, F1) also tended
to have largeA values in other locations. Mean estimates of fiiehPearson and Spearman
autocorrelations across all participants are gimerable 6. This table also presents differences
in A for workdays versus non-workdays and males vdesusales. The overall values were
similar for all considered locations/activitiesr{gang from 0.23 for outdoor locations to 0.29 for
residences). There were significant workday cateddferences in the Pearson (ratvjor
residential and other indoor locations; when theg®manA was considered there was an
additional difference i\ work activities. There were no gender difference& (Spearman or
Pearson).

Discussion

The data we present here were designed to assegithnal time-activity patterns in a sample
of working adults in order to assess both meanwehand intra- and inter-person variance in
time use and microenvironmental location. Whileaigng intra-individual variability does not
bias mean estimates of time use data, it attentratesorrelation coefficients among population
parameters, and causes relational techniqgues—Iikephe regression analyses—toward the null



(23). In one sense, intra-individual variabilitynCtions as a random variable, greatly affecting
parameter distributions, particularly at theirga#the most important portion for many risk
assessments (24, 25). In this section we disausgesults relative to other cross-sectional and
longitudinal studies in adults, and consider thityibf the results in exposure assessment.

Participant fatigue: trends in the number of receddevents per day

Three participants had a significantly (p<0.05)ippes trend in their number of events recorded,
and three had a negative trend. However, all theaRies were low for all participants,
explaining <10% of the total variance in events/day close analysis of the three “trend”
participants indicated that none of them had a rtwnmo trend in events recorded/day for the
four sampling cycles (or seasons), and that thebewmf events recorded per day even in the
lowest cycle was well within those recorded in ott@entemporaneous diary studies included in
CHAD (20). Given these results, we do not belitha participant fatigue would greatly
influence the longitudinal time use data analyssults reported in subsequent sections. This
finding is consistent with data presented in Glaxi& Minnen (26) and Schwab et al. (27), but
“respondent fatigue” has been observed in otheagitodinal diary studies (28).

Time spent in locations and activities

With respect to locations, at0.05 there were statistically significant diffeces in time spent

in all of locations analyzed for all of distinctimevaluated (day-type, workday/non-workday,
temperature class, and season of the year; see Thblhese findings are generally consistent
with the main findings of other longitudinal stusli@®, 29-31), but are inconsistent with
comparable analyses of cross sectional data ceatanCHAD (20), pointing out potential
problems of using population-weighted average ttatbongitudinal exposure assessments.

Time spent in selected activities shown in Tabiredicate statistically differences in time spent
in the activities for all of the distinctions evated (day-type, workday/non-workday,
temperature class, and season; see Table 3). Tihds®s are generally consistent with
comparable activities analyzed in Wu et al. (31J emZuzanek & Smale (32). However, in
these papers differences in how the activities wlefaned make direct comparisons with our
findings difficult.

The only location or activity for which there wag@nder difference in the individually averaged
means was preparing food, and the difference was suiking (F 31.71 £ 13.93 min versus M
4.28 + 6.20). However, when all days were consul@rdependently, we also found gender
differences for overall distributions of resideniceloor-other, and outdoor times. This finding
is roughly consistent with Echols et al. (29), Guaih& McCurdy (20), Wu et al. (9,31), and
Zuzanek & Smale (32). However, since there waagandiscrepancy between males and
females in our study, these gender differencesheayonfounded by age differentials.

It is clear from Figure 2 that the mean trendsag-type and temperature differences in outdoor
time were maintained within individuals. The m#jpof the 8 participants demonstrated
increased time spent outdoors on non-workdays andaomer days. The one male participant



who demonstrated more significant outdoor time enkaays habitually played sports during
lunchtime and after work, demonstrating how liféstjifferences can result in uniquely
different activity patterns.

Variance and autocorrelation (R A) estimates

In general, the calculatddl values were higher than the corresponding ICQss i§ consistent
with previous observations (8) and with the hypsiti¢hat by using ranks, the variations in
everyone's behavior due to global factors sucheather are largely removed. The use of ranks
versus raw data affected variables differently;éoample, th® value for work activities was
increased over the ICC more than other activitrds@ations, suggesting that global changes in
this variable are more pronounced (which is hirgeldy the larger CV values for this activity in
Table 3). The mean values found in this studyevggmilar to the ICC values presented in
earlier studies, even for quite dissimilar popwliasi. These studies include 1) the Frazier et al.
(22) analysis of older adult data from two US lomas; 2) the Glen et al. (8) reanalysis of data
from school-age children in the Harvard Southerhf@aia Chronic Ozone Exposure (HSCOS)
study (33); 3) the Wu et al., (31) analysis of péeetime use data; and 4) the Xue et al. (10)
analysis of the HSCOS data. All of these longmadltime use studies, and analyses of physical
activity data, demonstrate significant within-pers@riation in time spent in major (and
aggregated) locations, such as time spent in trangidoors, shopping areas, and—surprisingly-
-even in home and work locations. The ICC valuesfthese studies are in the range of 0.15-
0.40, even though disparate age/gender cohortsevataated. This is an important finding, as
discussed below.

Despite the general agreement of mean ICC and iesabith previous findings thegy

confidence intervals were quite large due to thalssample size. This imposes obvious
limitations on the application of these result®dily to EPA efforts. However, it is clear in

most cases that at least some measureable amowithiofindividual variability is present

(even in this homogeneous population), and in coases using the mean values presented here
may preferable to ignoring such variance altogeti#e admit that larger studies will be

required to confirm any recommended “target” valoeB or ICC for time spent in
activities/locations. We anticipate in the nedufa analyzing additional longitudinal datasets
from available exposure studies with larger N (B3%that are currently being added to CHAD.

The mean populatioA (autocorrelation rank) values in this study shawiiable 6 were also
similar to those found for the children in the Handl Southern California study (8) for outdoor
time (0.24 in this study versus 0.22), indoor tinf@20 for residences and 0.23 for other indoor
versus 0.22 for all indoor). They also are simitathose seen in the Frazier et al. (2009)
analysis of time use by older adults, except thatig has a much highérfor the residential
location £0.50). Sincé\'s that high have never been seen in any otheysisahat we know

of, that value must be a direct result of olderladspending so much time at home and not
travelling much.

EPA’sD & A method has the potential to allow targetingAdor different day-types or by
gender. Values foh for workdays versus non-workdays and males veesusles are reported
in Table 6. There were several significant diffexes between day-types, both for the raw



values and those based on the daily rank of thablar Values oA for males and females were
similar. Thus the current study does not indicateed for a more complex implementation of
the autocorrelation algorithm that considers gendére longitudinal data presented here aid in
understanding the importance of intra-individuaiiafaility over time. Even within day-types,
the ratio of between-person variance to total veseawas quite low (Table 5). Even considering
the largem o5 significant within-person variance in time spentifierent locations is likely,

even when the influence of other factors has besmoved.

It should be noted that this is a small study oflatively homogenous population of working
professional adults. While the values found heeesamilar to those found earlier in a variety of
population subgroups, further characterizatiorheke properties in other population cohorts and
in other regions of the U.S. would be desirablac8iemployment status, weather conditions,
age and gender, and socioeconomic factors impagitialinal patterns and their properties,
large sample size studies of diverse populatiomxelare needed to fully explicate the 1@,
andA statistical targets used in EPA’s time series enpgomodels.

Using ICC, D and A: Exposure modeling and assessmen

The ICC, D and A values estimated here can aichderstanding and quantifying the variability
in longitudinal time use in exposure assessmentgitodinal assessment of exposure typically
involves constructing some type of time-seriesraktspent in microenvironments, either for
individuals or cohorts. These results demonsttaarportance of targeting both mean behavior
and intrapersonal variability. While EPA’s curréomgitudinal diary algorithm (8) is
parameterized witD, the raw ICCs reported here can also provide guielaAttempts at
modeling the time spent in microenvironments &mation of day-type, season, and other
demographic or temporal variables have been uridertdut the predictive strength of the
resulting models have typically been low (10), hessatoo many factors--many perhaps related
to lifestyle or occupation--have not yet been gtii@ot Therefore, many approaches used by
EPA and other organizations (e.g., 36) have focoesesampling real activity and location data
from CHAD or other data sources. These methodadecsampling a new diary for every day in
the simulation, or sampling one diary per yeardach individual for each season/day-type
combination, or some combination of these appraachi@e reported ICC values can be used to
assess different sampling strategies. The fatthleaCCs for specific day-types and
temperatures are relatively low indicate that glgisample from a cohort-specific diary pool
may not be adequate for quantifying variabilityemporal patterns. Simulated ICC values will
be influenced by number of different diaries sedddbr each person, and how often they are
repeated over the simulation period. Accuratelyifp@ning within-person and between-person
variation in time spent in the microenvironment eanid over- or under-estimation of

individual variability in exposures.

In assessing longitudinal data for use in exposwdeling, the ability to characterize the mean
behavior of the population is critical. The numbédays required to estimate mean behavior is
a function of the observed ICC, and can be predibiethe Spearman-Brown prophecy formula:



_ [R(l_ lCC)] (3)
@ liccfi-R)

whereR is a target reliability in the estimate of meahdnaor (for example, time spent in
microenvironments). EPA has previously shown tha8 days of time use data and 7+
consecutive days per season are needed to prapergcterize children’s time spent outdoors
using R=0.8 (10). Equation 3 can be used to destnate an advantage of parameterizing
longitudinal algorithms usinB rather than ICC. In general, rankings of timeudtidoe a more
stable variable than raw time, since the variatibaveryone’s behavior due to the weather and
other factors (like holidays) is largely removerthus,D will likely be larger than the raw ICC
because the within-person variance has been ded.edis was generally the case in this study
(Table 4) and previous ones (8). Usbg0.26 and ICC=0.07 (the values for outdoor time in
this study), equation 3 predicts that only 12 dafydata are needed to achieve the same
reliability (R= 0.8) for the rank of outdoor timieat one gets with 36 days of data for raw
outdoor time. Thus, the mean rank of behavioafoindividual can be assessed using fewer
days of data, and thus more studies may be avaifabcharactering such metrics.

The confidence in the measured value of ICC itisalfiependent upon the number of days and
the number of people being studied (as predictegldoyation 2). An example is shown in Figure
3, which shows (for different values of ICCD) the N and N,ysrequired to achieve agwof

0.05. As N increases, the confidence in ICC ins@saand thus a smallegis required to
achieve a desirablegw Figure 3 illustrates that ICC abdare collective properties that may be
estimated fairly well even when the mean propeftesndividuals cannot be reliably measured.
For example, if 400 people are studied, a goggtan be achieved in 10 days for an ICCHor

of 0.1, even though equation 2 indicates that 38 dae needed to estimate mean time spent in
microenvironments. This is encouraging since ltudgnal studies are rare, and keeping
accurate activity diaries results in significanttigpant burden, oftentimes resulting in fewer
days of data collection than are required for estiing mean behavior (for example, 37, 38).

Together, equations 2 and 3 can be used to evalueting data sources or design future studies
for characterizing ICC anb. Datasets having large numbers of people anditeys may be

quite useful for getting estimates of these parametven if not enough days are available to
reliably estimate mean time spent in locationsabivdies. The opposite is also true: some
studies may be adequate for estimating time spemicroenvironments and activities even
though the confidence intervals ingare quite wide. How well ICC @ andA need to be
characterized in EPA’s models due to sensitivityaawns is an ongoing area of research.

Conclusions

This paper presents a statistical analysis of s§pent in various locations and activities in a
sample of working adults in Research Triangle PE&, Approximately 57 days of activity
data were collected from each person over all $asons. The objectives of study were to 1)
determine the potential for participant “protocohgpliance fatigue" in keeping activity diaries,
2) identify the factors influencing time spent iifferent locations and activities in working
adults and quantify the resulting variability aadtly 3) quantify metrics describing intra- and



inter-individual variance and autocorrelation ity for use in exposure modeling and
assessment.

Based on the results presented herein, we fouralditidence of participant fatigue in this
study. This is encouraging, as the paper diaecobn methods were somewhat burdensome.
It is hoped that new data collection technologeeg.(using smartphones) will further reduce the
burden of diary-keeping and allow for even longatection periods in individuals.

In this study of working adults, the only genddfatence in time spent in activities and
microenvironments was time spent preparing fooder@l, seasonal effects could be accounted
for by considering temperature differences, andsicaring workday/non-workday as opposed to
weekday/weekend differences improved characteoraif behavior.

The intraclass correlation coefficients for bottv tames (ICC) and ranks of times among
individuals O) were assessed. The ICC dhdalues were typical of those seen in other studies
for times spent in microenvironments and activitiége values were typically on the order of
0.15-0.40, indicating a high degree of within-persariability even for this fairly homogeneous
population of professional adults. These valuesbmused to help parameterize EPA’s or other
similar longitudinal exposure models; methods &sessing data from future longitudinal
activity studies were presented. Both the numbeeople studied and the number of days of
data collected for each individual are crucial wketermining the utility of a particular
longitudinal study in estimating & A, as the width of the $5confidence interval on the ICC

(or D) is a function of both of these quantities. Elg@ations presented herein can be used to
assess other available longitudinal human actatigsets, and serve as a tool in the optimal
design of future longitudinal time-use studies.

ICC andD values on the order found in this study and therst mentioned above—0.15 to 0.40
overall—indicate that intra-individual variancehbistween 2 and 5 times as large as inter-
individual variability for fairly homogeneous popiion subsets. Intra-individual variability is
largely ignored in the exposure modeling commurpgyrticularly in those models that focus on
time-averaged exposure and dose metrics. In &stns essentially is analogous to ignoring
uncertainty in an important aspect of exposure rfiogtehuman time/activity patterns. In
addition, many exposure models are also deternunrshature, using point estimates of the
time spent in various locations, and not varyingsthestimates by day-type, season of the year,
outdoor temperature regime, etc. Doing so bagiegiores inter-individual variability except in
a crude sense when the modeled population is disggtgd into gender and broad age
groupings. If intra- and inter-individual variabyl in time use (and other important inputs) is
ignored or under-defined, the resulting exposuredose distributions will be much narrower
than warranted by the data, particularly at thghkhend” of the distributions where health risks
are most important (39, 40). Therefore, the ptodeaeceived from control strategies that are
used as input scenarios to regulatory exposureftiosieling efforts may provide misleading
information. We hope that the information presdritere adds to the knowledge base
concerning intra- and inter-individual variability how people spend their time and in what
locations.



Disclaimer

The United States Environmental Protection AgeidA) through its Office of Research and
Development conducted the research describedsrpper. It has been subjected to Agency
review and approved for publication.
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Figure Legends

Figure 1. Pattern of seasonal data collectionwog&ing adults, 2006-2007.

Figure 2. Time spent outdoors and in vehicleslbgaaticipants for work days and non-work
days in two temperature categories (T<65 F apgblF).

Figure 3. Number of People and Diary Days Requioefichieve a ws of 0.05 for Different
Values of ICC (or D).



Table 1. Analysis of the number of diary events per recordediay

Number of Events Recorded Significant Trend?
Participant Age Days of Per Day by the Participants (p for Days<0.050)
(M=Males, F=Females) (y) Data Mean SD| CV (%) Range R2 (% b p

F1 35 56 52 7 144 39- 66 3.4 0.100  0.079
F2 36 53 56 9 16.8 41- 82 0.02 0.010 0.918
F3 37 61 42 6 14.0 30- 53 9.18 0.110  0.010
F4 39 58 54 7 124 38- 74 2.66 0.083 0.115
M1 52 54 41 5 13.0 31- 57 8.90 -0.1p5  0.022
M2 54 52 48 6 137 37- 70 0.17 -0.048  0.471
M3 54 47 36 4 12.3 27- 46 4.18 0.155  0.087
M4 66 74 52 7 129 40- 68 7.92 -0.0p3  0.044

Notes & symbols:
CV=Coefficient of variation (SD/mean)
SD=Standard deviation
R?=Coefficient of determination
b=Slope of the regression line
*=Statistically significant from 0.0 at p<0.05




Table 2 Selected descriptive statistics for individually-ageraged data: time spent in selected
locations in minutes/day (n=8 people)

Minutes/Day

o

Mean (SD) Test
Location Category CV (%) p-value
Indoor - Residence
Day-type:| Weekday 811.3 (74.8) 9.2 0Q.0
Weekend 1049.3 (132.3) 12.6 .
Workday: | Workday 787.2 (63.7) 8.1 @00
Non-Workday 1007.8 (141.5) 14.0 .
Temperature] Average Temp <65 F 864.5 (106.7)| 12.4 0.046
Average Temp >=65 F 927.3 (117.9) 12.7
Indoor — Other
Day-type:| Weekday 487.4 (51.3) 10.5 <0.00
Weekend 169.8 (65.8) 38.7 .
Workday: | Workday 543.4 (49.3) 9.1 < 0.001
Non-Workday 207.3 (71.5) 34.5 .
Temperature] Average Temp <65 F 414.0 (48.7)] 11.8 0.005
Average Temp >=65 F 3242 (72.7) 22.4 .
Season:| Winter 4235 (34.1) 8.0 0.01
Spring 365.9 (68.3) 18.7
Summer 343.3 (80.3) 23.4
Fall 288.1 (122.9) 42.7
Outdoor — Residence
Day-type:| Weekday 20.6 (13.0) 63.1 36.0
Weekend 63.4 (50.4) 79.5 .
Workday: | Workday 10.8 (6.6) 61.6 (12]0]
Non-Workday 59.6 (38.6) 64.7 .
Temperature] Average Temp <65 F 16.3 (16.5)| 101.1 0.036
Average Temp >=65 F 56.9 (35.3) 62.1
Season] Winter 11.3 (10.0) 88.3 0.01
Spring 47.1 (33.8) 71.8
Summer 54.3 (41.9) 77.3
Fall 29.5 (25.9) 88.0
Outdoor - Other
Workday: | Workday 26.6 (24.6) 92.5 ®00
Non-Workday 65.0 (27.2) 41.8
Motor-Vehicle Dominated 85.8 (29.6) 34.6

Symbols:

CV=Coefficient of variation (SD/Mean)
n=Number of people who contributed data
TestEWilcoxon test for 2-way comparisons; Kruskal-Waliest for season

SD=Standard deviation



Table 3. Selected descriptive statistics for indidually-averaged data: time spent in
different activities in minutes/day.

Wilcoxson Test

Activity Category (People) Mean (SD) CV (%) p-Value
Sleep
Day-type:| Weekday 8 458.1 (35.0 7.6 0.027
Weekend 8 506.3 (38.2) 7.5 .
Workday: | Workday 8 448.4 (35.4) 7.9| 0.006
Non-Workday 8 503.5 (33.8) 6.7
Work
Day-type:| Weekday 8 3749 (51.8 13.8 0.601
Weekend 8 9.3 (11.1) 118.7 .
Workday: | Workday 8 469.0 (16.0) 3.4| 0.801
Non-Workday 8 26.7 (18.6) 69.8 .
Temperature] Average Temp <65 F 8 268.80.4)7 26.2 0.012
Average Temp >=65 F 8 204.4 (27.7 13.6 .
Season]| Winter 8 282.6 (105.4 37.3 290
Spring 8 225.9 (41.6) 18.4
Summer 8 214.0 (41.0) 19.2
Fall 6 185.0 (105.7) 57.2
Personal Care 8 56.8 (20.1) 35.3
Shop/Run Errands
Workday: | Workday 8 6.4 (3.7) 57.8| 0.036
Non-Workday 8 15.2 (12.0) 79.1
Prepare Food
Female 4 31.7 (13.9) 43.9 0.021
Male 4 43 (6.2) 145.0
Indoor Chores 8 66.1 (37.6) 56.9
Outdoor Chores
Workday: | Workday 8 4.7 (5.3) 113.0/ 0.009
Non-Workday 8 30.1 (36.7) 121.9

Symbols & Notes:

CV=Coefficient of variation (SD/Mean)
n=Number of people who contributed data
SD=Standard deviation
®Test that theanksof two ordered samples are identical with @r0.05.
*p-value for season from the Kruskal-Wallis rankader analysis of variance (@t0.05)




Table 4. Estimates of D and ICC for several key tmtions/activities.

D IcC?
Non-
All Days® All Days Workdays® Workdays® Female$ Males’
Key Locations mean Wos mean | Wgs | mean| Wgs | mean| wgs | mean| wgs | mean| wes
Outdoors
(Total) 0.26 0.45 0.07 0.17 0.1d 0.24 0.32 0.48 0.p4 0{16.17q 0.43
Indoor -
Residence 0.20 0.40 0.12 0.25 0.20 0.3 0.37 0.51 0.p1 0[{08.22 0 0.52
Indoor —
Other 0.08 0.23 0.02 0.08 0.04 0.2 0.24 0.42 0/00 01 0. 0.04 0.16
Motor Vehicle
Dominated 0.13 0.3 0.08 0.18 0.08 0.2] 0.2P 0.47 0.p1 0J08 26 0. 0.57
Work 0.22 0.42 0.00 0.04 0.04 0.15 0.08 0.23 0.p2 0{11.00q 0.01

Symbols & Notes:

D=Diversity statistic; a rank-ordered ICC

ICC=Intraclass correlation coefficient

n=Number of subjects
Ngays=Number of days of data per subject

w o=Width of the 98' percentile confidence interval about the mean

1.

akrwbd

n=7; Niays=26, derived using the same calendar days for paxson
Calculated using all available days of data
Workdays: n = 8 and §,s= 20, Non-workdays: n = 9 and;}\s= 26
n =4 and Ns= 53
n =4 and N,s= 48




Table 5. Day-to-day (lag-one) Spearman (rank) autmrrelation values for selected
locations & activities

; ; Motor-
Participant L(()) lé;dtﬁoonr s IT_e5|d§nt|aI Other-Indoor Locations vehicle Ac\:/g\?irtli(es
ocations Locations
F1 0.34 0.50 0.41 0.20 0.34
F2 0.32 0.33 0.18 0.11 0.08
F3 0.22 0.11 0.18 0.1% 0.2]7
F4 0.31 0.54 0.57 0.42 0.46
M1 0.17 0.39 0.33 0.12 0.30
M2 0.12 -0.20 -0.10 0.02 0.04
M3 0.47 0.28 0.25 0.33 0.24
M4 0.14 -0.04 0.07 0.11 0.36




Table 6. Estimates of the population mean lag-oreutocorrelation (A).

Key Variable Mean A (Raw; Pearson) MearA (Rank; Spearman)

All |Non-Workdays | Workdays | Femaleg Males| All |Non-Workdays|Workdays | Femaleg Males
Outdoor Locations  |0.23 0.25 0.23 0.24| 0.23 0.24 0.25 0.25 0.20 | 0.27
Residential Locations|0.29 0.40 0.10 0.26 0.31 0] 0.29 0.10 0.17 0.21
Other-Indoor 0.27 0.36 0.17 0.25 0.28 0.23 0.27 0.13 0.21 0.2
Locations
Motor Vehicle 0.22 0.21 0.00 0.17 0.2% 0.19 0.24 0.01 0.15 0.2(
Locations
Work Activities 0.26 0.11 0.00 0.23| 0.28 0.36 0.46 0.00 0.48 | 0.27
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