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Abstract 
 
Understanding the longitudinal properties of the time spent in different locations and activities is 
important in characterizing human exposure to pollutants.  The results of a four-season 
longitudinal time-activity diary study in eight working adults are presented, with the goal of 
improving the parameterization of human activity algorithms in EPA’s exposure modeling 
efforts.  Despite the longitudinal, multi-season nature of the study, participant non-compliance 
with the protocol over time did not play a major role in data collection.  The diversity (D)—a 
ranked intraclass correlation coefficient (ICC)-- and lag-one autocorrelation (A) statistics of 
study participants are presented for time spent in outdoor, motor vehicle, residential, and other-
indoor locations.  Day-type (work-day versus non-work-day, and weekday versus weekend), 
season, temperature, and gender differences in the time spent in selected locations and activities 
are described, and D & A statistics are presented.  The overall D and ICC values ranged from 
approximately 0.08 - 0.26, while the mean population rank A values ranged from approximately 
0.19 - 0.36.  These statistics indicate that intra-individual variability exceeds explained inter-
individual variability, and low day-to-day correlations among locations.  Most exposure models 
do not address these behavioral characteristics, and thus underestimate population exposure 
distributions and subsequent health risks associated with environmental exposures.   
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Introduction  

 
The Environmental Protection Agency (EPA) uses a sequential, time-series approach to model 
human exposure to several air pollutants regulated under Section 109 of the Clean Air Act, 
which establishes National Ambient Air Quality Standards (NAAQS).   This approach requires 
as input realistic human time-activity (time-use) data.  These data, which include information on 
time spent in different locations and activities by persons of different ages and genders, are used 
to model year-long behavior patterns for a simulated population.  These behavior patterns affect 
both the exposures encountered by the simulated individuals and their associated ventilation 
rates, which together form the basis of predicted intake dose rates.  To best implement the 
modeling approach, longitudinal time use data are needed to appropriately represent variability 
in an individual’s locations visited and activities performed over time and space.  However, there 
currently are few longitudinal time activity data gathered for exposure modeling purposes (1).   

 
In the absence of comprehensive longitudinal diary data, EPA’s  time series exposure models 
must synthesize individual longitudinal time use patterns from cross-sectional data (i.e., 
combining diary data from similar persons), giving rise to uncertainty in the resultant 
information. To minimize the magnitude of uncertainty and its effect on exposure and dose 
estimates, EPA has developed a longitudinal diary-construction approach, called the D & A 
method, that reproduces realistic population properties related to exposure by selectively 
sampling cross-sectional diaries from EPA’s Consolidated Human Activity Database (CHAD) 
(2).  EPA models currently employing this approach include the Air Pollutants Exposure (APEX) 
model (3,4), the Hazardous Air Pollution Exposure Model (5),  and some versions of the 
Stochastic Human Exposure and Dose Simulations (SHEDS) family of models (6,7).  
 
The D &  A method selectively chooses and then re-orders cross-sectional activity diary days 
from CHAD to 1) mimic a population-level intra- and inter-individual variance target for a user-
supplied daily key diary property relevant to the exposure assessment, and 2) reproduce an 
appropriate day-to-day autocorrelation in a key variable (8).  An example key diary variable 
might be the time spent by asthmatic children outside during the ozone season.  Another might 
be the time spent in the “near-roadway” environment by an older adult with pre-existing 
cardiovascular problems.  The D & A method is parameterized by two target properties of the 
population being modeled:  the D statistic, a ratio of inter-individual to total explained variance 
in a key variable, and the A statistic, the mean day-to-day autocorrelation in the same variable.  
The D statistic can be thought of as ranked-order version of the intraclass correlation coefficient, 
or ICC, as explained in Glen et al. (8).  Because of the relative importance of longitudinal 
information in its exposure modeling efforts, EPA’s National Exposure Research Laboratory 
(NERL) is developing a database of D & A metrics for different population groups.  
 
This paper describes results of a longitudinal activity study of eight working adults.  Data were 
collected intermittently over the 2006-2007 time period in the Research Triangle Park, NC area.  
The objectives of study were to 1) identify the factors influencing time spent in different 
locations and activities in working adults and quantify the resulting variability; 2) quantify the 
intra- and inter-individual variance in time use by developing de novo A, D, and ICC metrics for 



 

 

this population; and 3) determine the potential for participant “protocol compliance fatigue” 
when an activity diary is collected for multiple periods within a year. 

 
 

Methods 
 

The Time-Activity Study 
 
An initial sample of 9 Caucasian adults living in the Research Triangle Park, NC area was 
identified for this study. The sample consisted of 5 females (4 working adults, 1 non-working 
adult) and 4 males (all working adults) and all were co-investigators of the study.  None of the 
participants received compensation for their efforts.  We excluded the non-working female from 
the analyses presented here due to her unique time-use pattern associated with not working 
outside the home; this conforms to past practices in longitudinal time use analyses (9).     
 
 The study was staggered over a two-year period (2006-2007).  Due to differences in activities 
and locations on different day types (e.g. work days/non-workdays or weekdays/weekend), a 
sampling scheme was devised that emphasized obtaining increased weekend data.  The target 
data collection pattern was 17 consecutive days in each season: a starting Friday-Saturday pair, 
followed by two weeks of data collection (Sunday-Sunday), followed by a final Monday.  Not all 
participants were available for all days in a season, but all provided at least 14 days of data for 4 
of the 5 following time periods (campaigns):  July 17-September 4, 2006; December 5-22, 2006; 
March 23-April 29, 2007; June 29-July 15, 2007; and October 25-Novermber 12, 2007.  The 8 
participants all provided more than the desired 28 days of data found to capture the mean time 
spent outdoors with a reliability coefficient ≥0.8 (10).   They also all recorded ≥ 7 consecutive 
diary days in each season.  The number of days of diary data obtained from each person is listed 
in Table 1.  The total number of diary-days used in these analyses is 455, or approximately 57 
per person.  The schedule of data collection in the final sample of 8 working adults is shown in 
Figure 1.  
     
A paper diary format based on Johnson (11) was used to gather daily time/activity data.  Each 
diary was 24 h in duration, starting at midnight.  Participants were instructed to fill out a new line 
in the diary every time he/she changed either a location or type of activity, which is known as an 
“event.” The participants were asked to provide an entry for every event ≥ 1 minute in duration.  
Participants were also asked to record for each event whether one or more of the following 
circumstances occurred: 1) the subject breathed “hard” or broke a sweat; 2) window(s) or door(s) 
were open in an enclosed location; 3) tobacco smoking was observed in an enclosed location; 4) 
a combustion source was operating; and 5) solvents were being used.  Participants also noted 
whether the day was a workday or not (regardless of its calendar day-type: weekday or 
weekend).  
 
Participant Protocol Fatigue 
 
It is well recognized in the time use research literature that the contemporaneous diary format 
places a significant burden on participants 12-14), but provides better detail when compared with 
recall methods.  Also recognized is that only multiple-day diaries can properly capture activity 



 

 

patterns where considerable day-to-day variability exists (15).  The main concern in longitudinal 
time use studies is compliance decreasing with increasing length of the study (15).  Since our 
diary study had four 17-day campaigns over a 15-month  time period, we were interested in 
determining if participant non-response occurred as the study progressed, suggesting the data 
gathered might be biased over time.  Therefore, time-dependent trends in the number of events 
recorded per day were analyzed. 
 
Time Spent in Locations and Activities 
 
The daily time spent in a number of activities and locations were calculated for each participant.  
These categories were selected due to their relevance in exposure modeling.  The locations 
considered included indoors (all types), inside of a residence (own and other’s), other non-
residential indoor locations, outdoors at home, outdoors at all other locations, and in a motor 
vehicle-dominated location (inside any motorized vehicle, near a roadway, in a parking lot, at a 
gas station, at a bus stop, in any garage, or in an auto repair shop). We refer to a person in a 
location of interest as a habitué.  The activities considered included paid work, shopping/running 
errands, exercise (including walking), indoor and outdoor chores, sleeping, and cooking or 
preparing food.  We refer to a person undertaking an activity of interest as a doer.    
 
Mean daily times for each activity and location were calculated for each person, and differences 
due to day-type (weekday/weekend), workday status (work/non-work), gender, and temperature 
(>=65F versus <65F) were tested using the Wilcoxon rank sum (two-sample) test.  Seasonal 
effects were examined with the Kruskal-Wallis test (16).  In addition, descriptive statistics were 
obtained while treating each person-day as independent, and Kolmogorov-Smirnov (K-S) tests 
(16) were used to test for differences in the distribution of values for the different groups 
described above. 
 
Variance and Autocorrelation Calculations 
 
The balance of the within- and between-individual variance in the time spent in 
microenvironments was quantified by the intraclass correlation coefficient (ICC):    
 

ICC  =   σ B
2
 / ( σB

2
 + σW

2
  )                                                                                              (1)  

 

where σB
2 = inter-individual variance and  σW

2 = intra-individual variance (17).  The 
denominator is total explained variance.  The D statistic was also calculated (8).   The D statistic 
is a rank-order version of the ICC, where the ranks of the time spent by each individual in 
microenvironments were considered instead of the raw number of minutes.  Ranks were assigned 
to each participant for each day of the study, based on the rankings across people studied on that 
day.  D was then calculated using equation 1, where the variance terms were calculated based on 
the assigned ranks. 
 
 D, like the ICC, is bounded by 0 and 1.  As ICC and D approach 0, there is little inter-individual 
variance: intra-individual variance predominates.  As ICC and D approach 1, within-person 
variance vanishes.  In earlier studies, we have found the ICC statistic to be 1) quite low, 
generally <0.3, and 2) lower than the D statistic for every parameter analyzed (8).  The metric (1-



 

 

ICC)/ICC gives the ratio of the intra- to inter-individual variance; it is not unusual when 
examining human activities for the intra-individual variance to be ≥4 times greater than the inter-
individual component. The ICC values were calculated using the SAS UNIVARIATE procedure 
to estimate separately the between-person and within-person variance.  The D values were 
calculated analogously on the scaled rank data, which were produced using a ranking algorithm 
in the SAS procedure IML.  The estimates were adjusted for short simulation length as described 
in Glen et al. (8).   
 
Since scaled ranks were used, it was a requirement that the same calendar days for each person 
be used to calculate D, as each person must have a measurement on the day in order to create the 
rankings.  Although this is not strictly a requirement when calculating an ICC using the raw 
minutes, in the results reported herein, the ICC was calculated using the same calendar days as 
the D statistic.  However, since some of the days in the study did not overlap for all persons, 
multiple estimates of D and ICC were calculated: more people could be included in the D and 
ICC estimates if fewer days of data were used.  Giraudeau and Mary (18) provide a method for 
approximating the confidence intervals of the ICC as a function of the number of people and 
number of replicates (in this case, days) of a measurement.  We used their formula to estimate 
which combination of N (number of people) and Ndays (number of days) that produced the 
narrowest 95% confidence interval on ICC or D.  The approximate width, w, of the confidence 
interval is given as 
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where z(1-α/2)  is the (1-α/2) percentile of the standard normal distribution.  To calculate the 95% 
confidence interval width, w95, we use α=0.05, and thus z(1-α/2) is the 97.5th percentile of the 
cumulative unit normal, or 1.96.   
 
Using equation 2, we calculated w95 for a range of expected ICCs for the different combinations 
of people and diary days that were available in this study.  While using alternative combinations 
of days gives variable 95% CI widths over the range of expected ICCs, the differences among 
them were small.  Therefore, we chose to use N=7 and Ndays=26, which overall gave the 
narrowest confidence interval widths when the entire range of ICC or D was considered.   
Additional ICC estimates were also calculated using data on different sets of days for each 
person.  This allowed for ICC estimates containing more days, but a D estimate could not be 
derived in this case since people could not be ranked on the same day. 
 
The second component of the D &  A method is to replicate the mean population day-to-day 
correlation, i.e. the  lag 1 (one-day) autocorrelation (A), in the relevant diary property.  Examples 
could be the day-to-day autocorrelation for time spent in residences or walking near roadways by 
children going to school (19).   Correct characterization of the population A for time spent in 
such activities is important for correctly reproducing episodic exposures in individuals. Both 
Pearson (raw) and Spearman (rank) lag 1 autocorrelations in time spent in activities and locations 
were calculated.  The values used for calculating the Spearman correlations were the ranks of 
days within each individual. The A values were calculated using the standard routines for these 
correlations in the SAS PROC CORR procedure.   



 

 

 
Results  
 
Participant fatigue: trends in the number of recorded events per day 
 
The number of daily events, as defined above, appears as Table 1.  Only one person had any day 
with fewer than 30 events, a compliance criterion used before in previous EPA analyses of time 
use data (20, 21).  That person had only 2 days with <30 events out of 47 total coded days 
(4.3%).  For the study as a whole, only 0.14% of the total sample coded <30 events on any one 
day.  This compares favorably with CHAD as a whole, which has a 10% non-compliant rate.  
The median number of events recorded per day in our study is higher than all but one time use 
survey in CHAD--an unusual observer-coded diary of children’s activities with a median of 66 
events day-1. 
 
There was no clear pattern in the distribution of events recorded.  Some participants’ events/day 
followed a normal distribution while others approximated a log-normal.  The trend over time in 
recorded events was evaluated by regressing events/day on day number.  Three participants had a 
significantly (p<0.05) positive trend in their number of events recorded, and three had a negative 
trend; R2 values were low even in these cases. 
 
Descriptive statistics of time spent in locations and activities 
 
Descriptive statistics for time spent by our sample in various locations and activities are given in 
Tables 2 and 3.  For both tables, statistics are provided for individually-averaged data: included 
are the mean and standard deviation (SD) for the subsamples depicted, and their associated 
coefficient of variation (CV), an indicator of relative variance.  The results are disaggregated by 
gender, day-type, workday status, temperature, and season wherever there was a significant 
effect of these factors.   
 
Summary statistics for microenvironmental locations are given in Table 2. As these were 
individually-averaged data, the mean refers to the mean across people of the daily average 
values.  There were no gender differences in time spent in various locations; however, day-type, 
temperature, workday status, and season were significant factors for multiple locations. Time 
spent in motor-vehicle dominated locations was uniform across all categories.  When significant, 
workday status was as good as or better at discriminating time use than day-type, and much of 
the difference among seasons could be captured by considering temperature.  Time spent outdoor 
in other locations was only a function of workday.  When outdoor time at home and in other 
locations were combined in total outdoor time (not shown in table for length), there were 
significant differences for day-type (55 min/weekday, 120 min/weekend day), workday status 
(34 min/workday, 119 min/non-workday), temperature (57 min/colder day, 106 min/warmer 
day), and season (61 min/day in winter, 79 min/day in spring, 110 min/day in summer, 49 
min/day in fall).  The pattern of total outdoor and vehicle time by day-type/temperature classes 
for all individuals is shown in Figure 2.   
 
Table 3 provides individually-averaged results for time spent in different activities. Using the 
Wilcoxon test, none of the descriptive categories evaluated influence time spent in exercise, 



 

 

personal care, or performing indoor chores.  Time spent preparing food was the only variable 
affected by gender.  Once again day-type and workday status were the most discriminating 
factors, affecting sleep, paid work, outdoor chores, and shopping.  Paid work was the only 
activity that was influenced by season and temperature, with more work being performed in 
winter and spring, and when average temperatures were lower than 65 F. 
 
Variance and autocorrelation estimates 
 
Estimated values of D and ICC are given in Table 4.  While D values are most useful for 
parameterizing EPA’s longitudinal diary algorithms, ICC values are provided due to their wide 
use in the time use literature (10, 22).  Because within-day ranking was required to calculate a D 
statistic, it was calculated using the same calendar days for each person, while ICC values were 
calculated using the entire set of available days.  D values were calculated only for all days and 
both genders combined due to sample size issues; ICC values could be calculated for key 
locations and various day/gender combinations. ICC values in general had a smaller w95 than 
their corresponding D estimate, due to the increased number of days included in the estimate.  
However, the ICC includes a component of within-person variance due to weather differences or 
day-type effects.   The ICC on workdays was always higher than on non-workdays.  Both the 
within-person and between-person variances increased on non-workdays, but the magnitude of 
the increase in σw was much larger, resulting in a smaller ICC relative to workdays, but this 
difference was not significant.  While females generally have lower ICC estimates, the 
confidence interval widths do not indicate a significant difference.  Overall, both the D and ICC 
metrics are low—and their associated w95 confidence intervals are large, indicating significant 
intra-individual variability in the sample for all of the location/day-type/gender combinations 
evaluated. 
 
Values of the lag-one Spearman autocorrelation, A, were widely spread across individuals for 
each variable considered.  These are presented in Table 5.  The value of A in outdoor locations 
ranged from 0.14-0.47.  Participants with the largest A in outdoor time (e.g. M3, F1) also tended 
to have larger A  values in other locations.  Mean estimates of both the Pearson and Spearman 
autocorrelations across all participants are given in Table 6. This table also presents differences 
in A for workdays versus non-workdays and males versus females.  The overall A values were 
similar for all considered locations/activities (ranging from 0.23 for outdoor locations to 0.29 for 
residences).  There were significant workday category differences in the Pearson (raw) A for 
residential and other indoor locations; when the Spearman A was considered there was an 
additional difference in A work activities.  There were no gender differences in A (Spearman or 
Pearson).   
 
Discussion 
  
 
The data we present here were designed to assess longitudinal time-activity patterns in a sample 
of working adults in order to assess both mean behavior and intra- and inter-person variance in 
time use and microenvironmental location.  While ignoring intra-individual variability does not 
bias mean estimates of time use data, it attenuates true correlation coefficients among population 
parameters, and causes relational techniques—like multiple regression analyses—toward the null 



 

 

(23).  In one sense, intra-individual variability functions as a random variable, greatly affecting 
parameter distributions, particularly at their tails—the most important portion for many risk 
assessments (24, 25).  In this section we discuss our results relative to other cross-sectional and 
longitudinal studies in adults, and consider the utility of the results in exposure assessment. 
 
Participant fatigue: trends in the number of recorded events per day 
 
Three participants had a significantly (p<0.05) positive trend in their number of events recorded, 
and three had a negative trend.  However, all the R2 values were low for all participants, 
explaining <10% of the total variance in events/day.   A close analysis of the three “trend” 
participants indicated that none of them had a monotonic trend in events recorded/day for the 
four sampling cycles (or seasons), and that the number of events recorded per day even in the 
lowest cycle was well within those recorded in other contemporaneous diary studies included in 
CHAD (20).  Given these results, we do not believe that participant fatigue would greatly 
influence the longitudinal time use data analysis results reported in subsequent sections.  This 
finding is consistent with data presented in Glorieux & Minnen (26) and Schwab et al. (27), but 
“respondent fatigue” has been observed in other longitudinal diary studies (28).   
 
 
Time spent in locations and activities 
 
With respect to locations, at α=0.05 there were statistically significant differences in time spent 
in all of locations analyzed for all of distinctions evaluated (day-type, workday/non-workday, 
temperature class, and season of the year; see Table 1).  These findings are generally consistent 
with the main findings of other longitudinal studies (9, 29-31), but are inconsistent with 
comparable analyses of cross sectional data contained in CHAD (20), pointing out potential 
problems of using population-weighted average data for longitudinal exposure assessments.   
 
Time spent in selected activities shown in Table 3 indicate statistically differences in time spent 
in the activities for all of the distinctions evaluated (day-type, workday/non-workday, 
temperature class, and season; see Table 3).  These findings are generally consistent with 
comparable activities analyzed in Wu et al. (31) and in Zuzanek & Smale (32).  However, in 
these papers differences in how the activities were defined make direct comparisons with our 
findings difficult.   
 
The only location or activity for which there was a gender difference in the individually averaged 
means was preparing food, and the difference was quite striking (F 31.71 ± 13.93 min versus M 
4.28 ± 6.20). However, when all days were considered independently, we also found gender 
differences for overall distributions of residence, indoor-other, and outdoor times.  This finding 
is roughly consistent with Echols et al. (29), Graham & McCurdy (20), Wu et al. (9,31), and 
Zuzanek & Smale (32).  However, since there was an age discrepancy between males and 
females in our study, these gender differences may be confounded by age differentials. 
 
It is clear from Figure 2 that the mean trends in day-type and temperature differences in outdoor 
time were maintained within individuals.  The majority of the 8 participants demonstrated 
increased time spent outdoors on non-workdays and on warmer days.  The one male participant 



 

 

who demonstrated more significant outdoor time on workdays habitually played sports during 
lunchtime and after work, demonstrating how lifestyle differences can result in uniquely 
different activity patterns.       
 
Variance and autocorrelation (D &  A) estimates 
 
In general, the calculated D values were higher than the corresponding ICCs.  This is consistent 
with previous observations (8) and with the hypothesis that by using ranks, the variations in 
everyone’s behavior due to global factors such as weather are largely removed. The use of ranks 
versus raw data affected variables differently; for example, the D value for work activities was 
increased over the ICC more than other activities or locations, suggesting that global changes in 
this variable are more pronounced (which is hinted at by the larger CV values for this activity in 
Table 3).   The mean values found in this study were similar to the ICC values presented in 
earlier studies, even for quite dissimilar populations.  These studies include 1) the Frazier et al. 
(22) analysis of older adult data from two US locations; 2) the Glen et al. (8) reanalysis of data 
from school-age children in the Harvard Southern California Chronic Ozone Exposure (HSCOS) 
study (33); 3) the Wu et al., (31) analysis of parent’s time use data; and 4) the Xue et al. (10) 
analysis of the HSCOS data.  All of these longitudinal time use studies, and analyses of physical 
activity data, demonstrate significant within-person variation in time spent in major (and 
aggregated) locations, such as time spent in transit, outdoors, shopping areas, and—surprisingly-
-even in home and work locations.  The ICC values from these studies are in the range of 0.15-
0.40, even though disparate age/gender cohorts were evaluated.  This is an important finding, as 
discussed below.   
 
Despite the general agreement of mean ICC and D values with previous findings the w95 
confidence intervals were quite large due to the small sample size.  This imposes obvious 
limitations on the application of these results directly to EPA efforts.  However, it is clear in 
most cases that at least some measureable amount of within-individual variability is present 
(even in this homogeneous population), and in come cases using the mean values presented here 
may preferable to ignoring such variance altogether.  We admit that larger studies will be 
required to confirm any recommended “target” values of D or ICC for time spent in 
activities/locations.  We anticipate in the near future analyzing additional longitudinal datasets 
from available exposure studies with larger N (9,34,35) that are currently being added to CHAD.     
 
The mean population A (autocorrelation rank) values in this study shown in Table 6 were also 
similar to those found for the children in the Harvard Southern California study (8) for outdoor 
time (0.24 in this study versus 0.22), indoor times (0.20 for residences and 0.23 for other indoor 
versus 0.22 for all indoor).  They also are similar to those seen in the Frazier et al. (2009) 
analysis of time use by older adults, except that group has a much higher A for the residential 
location (≥0.50).  Since A’s that high have never been seen in any other analysis that we know 
of, that value must be a direct result of older adults spending so much time at home and not 
travelling much.  
 
EPA’s D &  A method has the potential to allow targeting of A for different day-types or by 
gender.  Values for A for workdays versus non-workdays and males versus females are reported 
in Table 6.  There were several significant differences between day-types, both for the raw A 



 

 

values and those based on the daily rank of the variable.  Values of A for males and females were 
similar. Thus the current study does not indicate a need for a more complex implementation of 
the autocorrelation algorithm that considers gender.  The longitudinal data presented here aid in 
understanding the importance of intra-individual variability over time.  Even within day-types, 
the ratio of between-person variance to total variance was quite low (Table 5).  Even considering 
the larger w 95, significant within-person variance in time spent in different locations is likely, 
even when the influence of other factors has been removed.   
 
It should be noted that this is a small study of a relatively homogenous population of working 
professional adults.  While the values found here are similar to those found earlier in a variety of 
population subgroups, further characterization of these properties in other population cohorts and 
in other regions of the U.S. would be desirable. Since employment status, weather conditions, 
age and gender, and socioeconomic factors impact longitudinal patterns and their properties, 
large sample size studies of diverse population cohorts are needed to fully explicate the ICC, D, 
and A statistical targets used in EPA’s time series exposure models. 
 
 
Using ICC, D and A: Exposure modeling and assessment   
 
The ICC, D and A values estimated here can aid in understanding and quantifying the variability 
in longitudinal time use in exposure assessment. Longitudinal assessment of exposure typically 
involves constructing some type of time-series of time spent in microenvironments, either for 
individuals or cohorts. These results demonstrate the importance of targeting both mean behavior 
and intrapersonal variability.  While EPA’s current longitudinal diary algorithm (8) is 
parameterized with D, the raw ICCs reported here can also provide guidance. Attempts at 
modeling the  time spent in microenvironments as a function of day-type, season, and other 
demographic or temporal variables have been undertaken, but the predictive strength of the 
resulting models have typically been low (10), because too many factors--many perhaps related 
to lifestyle or occupation--have not yet been quantified.   Therefore, many approaches used by 
EPA and other organizations (e.g., 36) have focused on sampling real activity and location data 
from CHAD or other data sources.  These methods include sampling a new diary for every day in 
the simulation, or sampling one diary per year for each individual for each season/day-type 
combination, or some combination of these approaches.  The reported ICC values can be used to 
assess different sampling strategies.  The fact that the ICCs for specific day-types and 
temperatures are relatively low indicate that a single sample from a cohort-specific diary pool 
may not be adequate for quantifying variability in temporal patterns.  Simulated ICC values will 
be influenced by number of different diaries selected for each person, and how often they are 
repeated over the simulation period.  Accurately partitioning within-person and between-person 
variation in time spent in the microenvironment can avoid over- or under-estimation of 
individual variability in exposures.   
 
In assessing longitudinal data for use in exposure modeling, the ability to characterize the mean 
behavior of the population is critical.  The number of days required to estimate mean behavior is 
a function of the observed ICC, and can be predicted by the Spearman-Brown prophecy formula: 
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where R is a target reliability in the estimate of mean behavior (for example, time spent in 
microenvironments).  EPA has previously shown that  ≥28 days of time use data and  7+ 
consecutive days per season are needed to properly characterize children’s time spent outdoors 
using  R=0.8 (10).   Equation 3 can be used to demonstrate an advantage of parameterizing 
longitudinal algorithms using D rather than ICC.  In general, rankings of time should be a more 
stable variable than raw time, since the variation of everyone’s behavior due to the weather and 
other factors (like holidays) is largely removed.  Thus, D will likely be larger than the raw ICC 
because the within-person variance has been decreased.  This was generally the case in this study 
(Table 4) and previous ones (8).  Using D=0.26 and ICC=0.07 (the values for outdoor time in 
this study), equation 3 predicts that only 12 days of data are needed to achieve the same 
reliability (R= 0.8) for the rank of outdoor time that one gets with 36 days of data for raw 
outdoor time.  Thus, the mean rank of behavior for an individual can be assessed using fewer 
days of data, and thus more studies may be available for charactering such metrics. 
 
The confidence in the measured value of ICC itself is dependent upon the number of days and 
the number of people being studied (as predicted by equation 2).  An example is shown in Figure 
3, which shows (for different values of ICC or D) the N and Ndays required to achieve a w95 of 
0.05.  As N increases, the confidence in ICC increases, and thus a smaller Ndays is required to 
achieve a desirable w95.  Figure 3 illustrates that ICC and D are collective properties that may be 
estimated fairly well even when the mean properties for individuals cannot be reliably measured.  
For example, if 400 people are studied, a good w95 can be achieved in 10 days for an ICC (or D) 
of 0.1, even though equation 2 indicates that 36 days are needed to estimate mean time spent in 
microenvironments.  This is encouraging since longitudinal studies are rare, and keeping 
accurate activity diaries results in significant participant burden, oftentimes resulting in fewer 
days of data collection than are required for estimating mean behavior (for example, 37, 38). 
 
Together, equations 2 and 3 can be used to evaluate existing data sources or design future studies 
for characterizing ICC and D.  Datasets having large numbers of people and few days may be 
quite useful for getting estimates of these parameters, even if not enough days are available to 
reliably estimate mean time spent in locations or activities.  The opposite is also true: some 
studies may be adequate for estimating time spent in microenvironments and activities even 
though the confidence intervals in w95 are quite wide.  How well ICC or D and A need to be 
characterized in EPA’s models due to sensitivity concerns is an ongoing area of research. 
 
 
Conclusions 
 
This paper presents a statistical analysis of time spent in various locations and activities in a 
sample of working adults in Research Triangle Park, NC.  Approximately 57 days of activity 
data were collected from each person over all four seasons.  The objectives of study were to 1) 
determine the potential for participant “protocol compliance fatigue" in keeping activity diaries, 
2) identify the factors influencing time spent in different locations and activities in working 
adults and quantify the resulting variability and lastly 3) quantify metrics describing intra- and 



 

 

inter-individual variance and autocorrelation in activity for use in exposure modeling and 
assessment. 
 
Based on the results presented herein, we found little evidence of participant fatigue in this 
study.  This is encouraging, as the paper diary collection methods were somewhat burdensome.  
It is hoped that new data collection technologies (e.g. using smartphones) will further reduce the 
burden of diary-keeping and allow for even longer collection periods in individuals.     
 
In this study of working adults, the only gender difference in time spent in activities and 
microenvironments was time spent preparing food. Overall, seasonal effects could be accounted 
for by considering temperature differences, and considering workday/non-workday as opposed to 
weekday/weekend differences improved characterization of behavior. 
 
The intraclass correlation coefficients for both raw times (ICC) and ranks of times among 
individuals (D) were assessed.  The ICC and D values were typical of those seen in other studies 
for times spent in microenvironments and activities.  The values were typically on the order of 
0.15-0.40, indicating a high degree of within-person variability even for this fairly homogeneous 
population of professional adults.  These values can be used to help parameterize EPA’s or other 
similar longitudinal exposure models; methods for assessing data from future longitudinal 
activity studies were presented.  Both the number of people studied and the number of days of 
data collected for each individual are crucial when determining the utility of a particular 
longitudinal study in estimating D &  A, as the width of the 95th confidence interval on the ICC 
(or D) is a function of both of these quantities.   The equations presented herein can be used to 
assess other available longitudinal human activity datasets, and serve as a tool in the optimal 
design of future longitudinal time-use studies.  
 
ICC and D values on the order found in this study and the others mentioned above—0.15 to 0.40 
overall—indicate that intra-individual variance is between 2 and 5 times as large as inter-
individual variability for fairly homogeneous population subsets.  Intra-individual variability is 
largely ignored in the exposure modeling community, particularly in those models that focus on 
time-averaged exposure and dose metrics.  In a sense, this essentially is analogous to ignoring 
uncertainty in an important aspect of exposure modeling: human time/activity patterns.  In 
addition, many exposure models are also deterministic in nature, using point estimates of the 
time spent in various locations, and not varying those estimates by day-type, season of the year, 
outdoor temperature regime, etc.  Doing so basically ignores inter-individual variability except in 
a crude sense when the modeled population is disaggregated into gender and broad age 
groupings. If  intra- and inter-individual variability in time use (and other important inputs) is 
ignored or under-defined, the resulting exposure and dose distributions will be much narrower 
than warranted by the data, particularly at the “high-end” of the distributions where health risks 
are most important (39, 40).  Therefore, the protection received from control strategies that are 
used as input scenarios to regulatory exposure/dose modeling efforts may provide misleading 
information.  We hope that the information presented here adds to the knowledge base 
concerning intra- and inter-individual variability in how people spend their time and in what 
locations. 
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Figure Legends 
 
Figure 1.  Pattern of seasonal data collection in 8 working adults, 2006-2007. 
 
Figure 2.  Time spent outdoors and in vehicles by all participants for work days and non-work 
days in two temperature categories (T<65 F and T≥65 F).  
 
Figure 3.  Number of People and Diary Days Required to Achieve a w95 of 0.05 for Different 
Values of ICC (or D). 



 

 

 Table 1.  Analysis of the number of diary events per recorded day  
 

Participant 
(M=Males, F=Females) 

Age 
(y) 

Days of 
Data 

Number of Events Recorded 
Per Day by the Participants 

Significant Trend? 
(p for Days<0.050)  

Mean SD CV (%) Range R² (%) b p  

F1 35 56 52 7 14.4 39 -   66 3.84 0.100 0.079  

F2 36 53 56 9 16.8 41 -   82 0.02 0.010 0.918  

F3 37 61 42 6 14.0 30 -   53 9.18 0.110 0.010 * 

F4 39 58 54 7 12.4 38 -   74 2.66 0.083 0.115  

M1 52 54 41 5 13.0 31 -   57 8.00 -0.105 0.022 * 

M2 54 52 48 6 13.7 37 -   70 0.17 -0.018 0.771  

M3 54 47 36 4 12.2 27 -   46 4.18 0.155 0.087  

M4 66 74 52 7 12.9 40 -   68 7.72 -0.023 0.044 * 

 
Notes & symbols: 
 CV=Coefficient of variation (SD/mean) 
 SD=Standard deviation 
 R2=Coefficient of determination 
 b=Slope of the regression line 
 *=Statistically significant from 0.0 at p<0.05 
 



 

 

 
Table 2. Selected descriptive statistics for individually-averaged data: time spent in selected 
locations in minutes/day (n=8 people) 

 

Location Category 

Minutes/Day 
Mean (SD) 
 CV (%) 

Test 
p-value 

Indoor - Residence 
Day-type: Weekday    811.3    (74.8)     9.2    0.001 

Weekend 1049.3   (132.3)   12.6     . 
Workday: Workday   787.2     (63.7)     8.1    0.002 

Non-Workday 1007.8   (141.5)   14.0     . 
Temperature: Average Temp <65 F   864.5   (106.7)   12.4    0.046 

Average Temp >=65 F   927.3   (117.9)   12.7     . 
Indoor – Other 

Day-type: Weekday   487.4     (51.3)   10.5 < 0.001 
Weekend   169.8     (65.8)   38.7     . 

Workday: Workday   543.4     (49.3)     9.1 < 0.001 
Non-Workday   207.3     (71.5)   34.5     . 

Temperature: Average Temp <65 F   414.0     (48.7)   11.8    0.005 
Average Temp >=65 F   324.2     (72.7)   22.4     . 

Season: Winter   423.5     (34.1)     8.0    0.012 
Spring   365.9     (68.3)   18.7     . 
Summer   343.3     (80.3)   23.4     . 
Fall   288.1   (122.9)   42.7     . 

Outdoor – Residence 
Day-type: Weekday     20.6     (13.0)   63.1    0.036 

Weekend     63.4     (50.4)   79.5     . 
Workday: Workday     10.8       (6.6)   61.6    0.009 

Non-Workday     59.6     (38.6)   64.7     . 
Temperature: Average Temp <65 F     16.3     (16.5)  101.1    0.036 

Average Temp >=65 F     56.9     (35.3)   62.1     . 
Season: Winter     11.3     (10.0)   88.3    0.017 

Spring     47.1     (33.8)   71.8     . 
Summer     54.3     (41.9)   77.3     . 
Fall     29.5     (25.9)   88.0     . 

Outdoor - Other 
Workday: Workday    26.6      (24.6)   92.5    0.006 

Non-Workday    65.0      (27.2)   41.8     . 

Motor-Vehicle Dominated    85.8      (29.6)   34.6     . 
Symbols: 
 CV=Coefficient of variation (SD/Mean) 
 n=Number of people who contributed data 
 Test=Wilcoxon test for 2-way comparisons; Kruskal-Wallis test for season 

 SD=Standard deviation



 

 

 
Table 3. Selected descriptive statistics for individually-averaged data: time spent in 
different activities in minutes/day. 
 

Activity Category 
n 

(People) Mean (SD) CV (%) 
Wilcoxson Testa 

     p-Value 
Sleep 

Day-type: Weekday      8  458.1    (35.0)     7.6    0.027 
Weekend      8  506.3    (38.2)     7.5     . 

Workday: Workday      8  448.4    (35.4)     7.9    0.006 
Non-Workday      8  503.5    (33.8)     6.7     . 

Work 
Day-type: Weekday      8 374.9     (51.8)   13.8 < 0.001 

Weekend      8      9.3    (11.1) 118.7     . 
Workday: Workday      8  469.0    (16.0)     3.4 < 0.001 

Non-Workday      8    26.7    (18.6)   69.8     . 
Temperature: Average Temp <65 F      8  268.8    (70.4)   26.2    0.012 

Average Temp >=65 F      8  204.4    (27.7)   13.6     . 
Season: Winter      8  282.6  (105.4)   37.3    0.029* 

Spring      8  225.9    (41.6)   18.4     . 
Summer      8   214.0    (41.0)   19.2     . 
Fall      6  185.0  (105.7)   57.2     . 

Personal Care      8    56.8    (20.1)   35.3     . 
Shop/Run Errands 

Workday: Workday      8      6.4      (3.7)   57.8    0.036 
Non-Workday      8    15.2    (12.0)   79.1     . 

Prepare Food 
Female      4    31.7    (13.9)   43.9    0.021 
Male      4      4.3      (6.2) 145.0     . 

Indoor Chores      8    66.1    (37.6)   56.9     . 
Outdoor Chores 

Workday: Workday      8      4.7      (5.3) 113.0    0.009 
Non-Workday      8    30.1    (36.7) 121.9     . 

 
Symbols & Notes: 
 CV=Coefficient of variation (SD/Mean) 
 n=Number of people who contributed data 
 SD=Standard deviation 
 aTest that the ranks of two ordered samples are identical with an  α=0.05. 

*p-value for season from the Kruskal-Wallis ranked-order analysis of variance (at α=0.05) 
 



 

 

 

Table 4.  Estimates of D and ICC for several key locations/activities. 
 

Key Locations 

D1 ICC2 

All Days3 All Days 
Non-

Workdays3 Workdays3 Females4 Males5 

mean w95 mean W 95 mean w 95 mean w 95 mean w 95 mean w 95 

Outdoors 
(Total) 0.26 0.45 0.07 0.17 0.10 0.24 0.32 0.48 0.04 0.16 0.17 0.43 

Indoor - 
Residence 0.20 0.40 0.12 0.25 0.20 0.37 0.37 0.51 0.01 0.08 0.22 0.52 

Indoor – 
Other     0.08 0.23 0.02 0.08 0.08 0.21 0.24 0.42 0.00 0.01 0.04 0.16 

Motor Vehicle 
Dominated 0.13 0.3 0.08 0.18 0.08 0.21 0.29 0.47 0.01 0.08 0.26 0.57 

Work  0.22 0.42 0.00 0.04 0.04 0.15 0.08 0.23 0.02 0.11 0.00 0.01 
Symbols & Notes: 
 D=Diversity statistic; a rank-ordered ICC 
 ICC=Intraclass correlation coefficient 
 n=Number of subjects 
 Ndays=Number of days of data per subject 
 w 95=Width of the 95th percentile confidence interval about the mean 

1.  n=7; Ndays=26, derived using the same calendar days for each person 
2. Calculated using all available days of data 
3. Workdays: n = 8 and Ndays = 20, Non-workdays: n = 9 and Ndays = 26 
4. n = 4 and Ndays = 53 
5. n = 4 and Ndays = 48 

 



 

 

 

 
 
Table 5.  Day-to-day (lag-one) Spearman (rank) autocorrelation values for selected 
locations & activities 
 

Participant Outdoor 
Locations 

Residential 

Locations 
Other-Indoor Locations 

Motor-
vehicle 

Locations 

Work 
Activities 

F1 0.34 0.50 0.41 0.20 0.34 
F2 0.32 0.33 0.18 0.11 0.08 
F3 0.22 0.11 0.18 0.15 0.27 
F4 0.31 0.54 0.57 0.42 0.46 
M1 0.17 0.39 0.33 0.12 0.30 
M2 0.12 -0.20 -0.10 0.02 0.04 
M3 0.47 0.28 0.25 0.33 0.24 
M4 0.14 -0.04 0.07 0.11 0.36 

 



 

 

 

 
 
Table 6.  Estimates of the population mean lag-one autocorrelation (A). 
 

Key Variable Mean A (Raw; Pearson) Mean A (Rank; Spearman) 

All  Non-Workdays Workdays Females Males All  Non-Workdays Workdays Females Males 

Outdoor Locations 0.23 0.25 0.23 0.24 0.23 0.24 0.25 0.25 0.20 0.27 

Residential Locations 0.29 0.40 0.10 0.26 0.31 0.2 0.29 0.10 0.17 0.21 

Other-Indoor 
Locations 

0.27 0.36 0.17 0.25 0.28 0.23 0.27 0.13 0.21 0.25 

Motor Vehicle  
Locations 

0.22 0.21 0.00 0.17 0.25 0.19 0.24 0.01 0.15 0.20 

Work Activities 0.26 0.11 0.00 0.23 0.28 0.36 0.46 0.00 0.48 0.27 
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