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Abstract

This chapter provides an overview of computational models that describe various aspects
of the source-to-health effect continuum. Fate and transport models describe the release,
transportation and transformation of chemicals from sources of emission throughout the
general environment. Exposure models integrate the microenvironmental concentrations
with the amount of time an individual spends in these microenvironments to estimate the
intensity, frequency, and duration of contact with environmental chemicals.
Physiologically based pharmacokinetic (PBPK) models incorporate mechanistic
biological information to predict chemical-specific absorption, distribution, metabolism,
and excretion. Values of parameters in PBPK models can be measured in vitro, in vivo,
or estimated using computational molecular modeling. Computational modeling is also
used to predict the respiratory tract dosimetry of inhaled gases and particulates
(computational fluid dynamics models), describe the normal and xenobiotic-perturbed
behaviors of signaling pathways, and to analyze the growth kinetics of preneoplastlc
lesions and predict tumor incidence (clonal growth models).
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Overview

Computational Toxicology involves a variety of computational tools including databases,
statistical analysis packages, and predictive models. In this chapter, we focus on
computational models that describe various aspects of the source-to-health effect
continuum (Figure 1). Literature on the application of computational models across the
continuum has been expanding rapidly in recent years. To obtain a quantitative view of
this growth, we used the Web of Science portal to conduct a bibliometric analysis of
pubhcatlons that appeared between 1970 and 2009. Using the search structure
[TS'=(computational OR "in silico” OR predictive OR model* OR virtual) AND
TS=(toxicology) AND TS=(environment*)], a total of 397 articles were found. Adding
“NOT pharmaceutic*” to the search structure above, found 371 articles, indicating only a .
small fraction of the 397 deal with aspects of drug development. A PubMed search (Feb
17, 2011) on “physiologically-based pharmacokinetic (PBPK) modeling” found 769
articles, indicating that-our search, which focused on computational modeling specifically
in environmental toxicology, was quite restrictive.
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Figure 1. Major components of the source-to-effect continuum.

Literature searches using specific terminology were performed to understand the
publication frequency of some of the most common types of modeling used in
computational toxicology, including: Fate & Transport, Exposure, Physiologically-based
Pharmacokinetic (PBPK), Computational Fluid Dynamic (CFD), Signaling Pathway,
Biologically-Based Dose-Response (BBDR), and Clonal Growth Modeling. Searches
were restricted to original scientific publications only (i.e., reviews were excluded) and
fields of science were restricted (e.g., “NOT eco*”) in order to focus on applications
relevant to human health effects. A yearly breakdown showing publication frequency
over time is presented in Figure 2. The data show a rapid increase in publication
frequency for many of the modeling types beginning in the early 1990’s and that PBPK,
Fate & Transport and Signaling Pathways are the most common. BBDR and Clonal
Growth modeling have received considerably less attention, reflecting the resource-
intensive aspects of these kinds of models.
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Figure 2. Literature searches performed to understand publication frequency of common modeling
types used in Environmental Computational Toxicology.




Computational models along the source-to-health effect continuum
Fate and Transport
Fate and transport models describe the release, transportation and transformation of
chemicals from sources of emission throughout the general environment. Fate addresses
persistence, dissipation and loss of chemical mass along the migration pathway; and
transport addresses mobility of a chemical along the migration pathway (ASTM, 1998).
Based on their complexity, models of fate and transport can be used for either “screening-
level” or “higher-tiered” applications (Williams et al., 2010). Screening-level models
often use default input parameters that tend to over-predict exposures (the preferred
default approach used in the absence of data). These models are suitable for obtaining a
first approximation or to screen out exposures that are not likely to be of concern (U.S.
EPA, 1992). Screening-level models have limited spatial and temporal scope. Higher-
tiered models are needed when analyses require greater temporal and spatial resolution,
~ but much more information is required, such as site-specific data.

The processes that can be described in fate and transport models include advection,
dispersion, diffusion, equilibrium partitioning between solid and fluid, biodegradation,
and phase separation of immiscible liquids (ASTM, 1998). In general, fate and transport
models require information on physicochemical properties; mechanisms of release of
chemicals to environmental media; physical, chemical, and biological properties of the
media though which migration occurs; and interactions between the chemical and
medium (ASTM, 1998). For example, typical inputs to an air quality and dispersion
model are source data (e.g., emission rates), meteorological data (e.g., temperature), and
physicochemical properties of the chemical. Inputs to a surface water model, in addition
to source data and physicochemical properties, may include water flows, soil properties
and topography, and advective/dispersive movement (Williams et al., 2010).

Exposure .
The outputs of a fate and transport model are concentrations to which humans may be
exposed. These predicted concentrations are then used, in some cases, as surrogates for
actual exposure (Williams et al., 2010). Since these provisional estimates do not provide
sufficient resolution about variation of exposure among individuals and by time and
location, they can also be used as inputs to exposure models. Exposure models integrate
the microenvironmental concentrations with the amount of time an individual spends in
these microenvironments to provide qualitative and quantitative evaluations of the
.intensity, frequency, and duration of contact with chemicals, and sometimes, the resulting
amount of chemicals that is actually absorbed into the exposed organism. Exposure
models vary considerably in their complexity. Some models are deterministic and
generate site of contact-specific point estimates (e.g., dermal concentration X contact
time). Others are probabilistic, describing spatial and temporal profiles of chemical
concentrations in microenvironments. Both deterministic and probabilistic models may
aggregate some or all of the major exposure pathways.

Probabilistic models can also be used to describe variability in human behavior. Human
activities contribute to exposure variability, and at first glance appear to be arbitrary, yet
patterns of behavior are known to be representative of different age groups (e.g., hand-to-



mouth behavior among 3-5 year olds) and this information can be used to better inform
stochastic exposure models (Zartarian et al., 2006). A major challenge in characterizing
human activity is overcoming the cost of collecting information. For example, food
consumption questionnaires are important in dietary modeling (e.g., estimating chronic
arsenic exposure by shellfish consumption); however the accuracy in assessing chronic
exposure is limited by the lack of longitudinal survey information in the surveys such as
Continuing Survey of Food Intake by Individuals (CSFII) and National Health and
Nutrition Examination Survey (NHANES) (Tran et al., 2004; Glen et al., 2008). The

. recent study of Song et al. (2010) examined how much information is needed in order to
predict human behavior. The authors examined the predictability of macro-scale human
mobility over a span of three months based on cell phone use — comparing a continuous
record (e.g., hourly) of a user’s momentary location with a less expensive measure of
mobility. The authors found that there is a potential 93% average predictability in user
mobility. This predictability reflects the inherent regularity of human behavior (Song et
al., 2010) and exemplifies an approach that holds promise for examining aspects of
human mobility, thereby reducing the cost of exposure modeling.

The degree of complexity needed in an exposure model depends on (1) the nature of the
chemical (e.g., volatility) and (2) the number and complexity of the most common
exposure scenarios that the model is required to describe. The number of parameters in
the model and their corresponding data needs are functions of model complexity. The
first choice for obtaining input parameter data is direct measurement of the environment
concentrations and observations of human activity patterns. When these specific data are
not available, inputs may be obtained from population-based surveys, such as NHANES
or the Exposure Factors Handbook (U.S. EPA, 1997). The outputs of fate, transport and
exposure models can serve as inputs to pharmacokinetic models for estimating internal
tissue dosimetry.

Dosimetry

Pharmacokinetic processes translate the exposure or applied dose into a delivered dose at
an internal site. Internal doses often correlate better with apical effects than do the
external doses due to non-linear pharmacokinetics (e.g., Watanabe and Gehring, 1977).
Pharmacokinetic data can be obtained from studies using laboratory animals (Reddy et
al., 2005) or from controlled human exposures (Emmen et al., 2000; Ernstgard et al.,
2010). Controlled human exposures are largely reserved for evaluating the safety and
efficacy of drugs or therapies, not for environmental chemicals.

The relationship between exposure to a chemical and its dose at an internal target site is
determined by a set of chemical structure-dependent properties (e.g., solubility in water,
blood, and tissues, volatility, susceptibility to biotransformation) and corresponding
properties of the biological system (e.g., tissue volumes, blood flows, metabolic
capabilities). Computational models that describe the minimum set of these
characteristics needed to predict chemical-specific ADME (absorption, distribution,
metabolism, excretion) are commonly referred to as physiologically based
pharmacokinetic (PBPK) models though PBTK, were the T stands for toxicokinetic, is
also used. Because models of this type describe the relevant biology that determines



ADME, they are useful not only for predicting pharmacokinetic behavior within the dose
range and time course of available data but also for extrapolation outside these ranges.
These characteristics make these models particularly useful in risk assessments, where
extrapolation to doses well below those for which data are available 1s often necessary
(Andersen, 2003).

Many of the parameters used in PBPK models can be measured in vitro (Reddy, 2005).
Obach and colleagues (1997, 1999) observed that scaling in vitro metabolism data from
human liver microsomes to in vivo clearance values yielded predictions that were within
70-80% of actual values. They also found that the clearance predictions were improved
by accounting for plasma and microsomal protein binding. Tornero-Velez and colleagues
(2010) applied the same approach to account for deltamethrin’s age-dependent
pharmacokinetics in the maturing Sprague-Dawley rats using in vitro parameters for
hepatic and plasma metabolic clearance of deltamethrin. Finding agreement between in
vitro parameter values and in vivo parameter estimates is one way to explore
pharmacokinetic mechanisms and reduce pharmacokinetic data gaps. In the absence of
data, however, which may often be the case for new chemicals, the exposure-dose
modeler may turn to the emerging field of molecular modeling and chemoinformatics to
obtain provisional pharmacokinetic values.

Molecular modeling makes use of a wide variety of techniques to predict or understand
chemical behavior at the atomic level. Modeling chemical interactions is an important
step in understanding the molecular events encountered in both biological and
environmental systems (Bohm, 1996; Marrone et al., 1997; Fielden et al., 2002). These
methods have the potential to explain the underlying molecular processes of chemical
interactions and transformations in the source-exposure-dose-response continuum. Here,
the primary use of such tools is to provide in silico predictions of relevant data where
little or no actual data exist. Provisional estimates derived from structure-activity
relationships may then be tested using focused methods to validate or augment parameter
values. -

The field of molecular modeling comprises a wide variety of tools from
chemoinformatics-based disciplines (e.g., quantitative structure-activity relationships
[QSAR]) and graph network theory (e.g., 2 dimensional topological molecular
descriptors) to detailed atomistic simulations (e.g., molecular dynamics) and quantum
mechanical simulations of the electron distributions of a molecule. Chemoinformatic
techniques have a long history in promoting simple concepts such as lipophilicity and
partitioning (Leo et al., 1971) as indicators of persistence and toxicity within the
environment (i.e., fate and transport) (Valko, 2002). These techniques are also used to
obtain indicators of chemical disposition (Topliss, 1983) and pharmacodynamics (Cronin
et al., 2002) within biological organisms (Pratt and Taylor, 1990). Many software
packages exist whereby one can develop, augment, and utilize new or existing QSARs
for parameters such as blood-brain-barrier transfer coefficients, dermal permeatlon rates
cell line permeability, and octanol-water partition coefficient (e.g., MOE? QlKProP and

2 MOE (Molecular Operating Environment) is a software package developed by Chemical Computing
Group, Inc. It contains Structure-Based Design; Pharmacophore Discovery; Protein & Antibody Modeling;



‘OpenEye?). These QSAR packages are generally confined within biological systems
analysis as seen on the right side of the source-exposure-dose-response continuum

(Figure 1).

For environmental fate and transport models, QSAR can be used to estimate the values of
the physicochemical parameters describing the partitioning and transfer processes among
air, water, and soil. For example, the U.S. EPA’s SPARC predictive modeling system is
able to calculate large numbers of physical/chemical parameters from molecular structure
and basic information about the environment (e.g., media, temperature, pressure, PH).
These parameters are used in fate and transport modeling of organic pollutants, nutrients,
and other stressors.

Techniques such as QSAR are ideally suited for rapid evaluation of parameters for
pharmacokinetic and fate and transport models. However, development of these
techniques is data intensive, requiring training sets with well-defined endpoints to
develop the relationship between chemical structure and observed activity. In addition,
QSAR models are fitted to specific molecular subsets (training set) and it is difficult to
apply them to compounds outside the chemical space represented in the training set.

While QSAR is the more known molecular modeling technique within computational
toxicology, there are other tools, such as classical force-field docking techniques, that can
aid in understanding the biological processes which involve chemical interactions with
biomolecular targets. Inter-molecular interactions between ligands and biomolecular
targets determine binding mechanics that ultimately lead to altered physiological
responses and potential toxicological effects. Thus, an understanding of the relevant
binding interactions can lead to a better understanding of chemical function, and provide
a visual representation of chemical binding and mechanisms of toxicity. For example,
estimating the relative binding affinities of 281 chemicals to a surrogate rat estrogen -
receptor, Rabinowitz et al. (2009) utilized docking techniques to screen out 16 actives
(“true competitive inhibitors™) from non-active substrates with no false ne gatives and
eight misclassified false positives. Molecular dynamics (Allen and Tildesley, 2002;
Rapaport, 2004) or ab initio molecular dynamics (Car and Parrinello, 1985) can be used
to simulate time-evolving processes such as diffusion through environmental media,
solvation effects, and “classical” kinetic rate constants (e.g., solvent-mediated hydrolysis,
oxidation, and hydrogen abstraction rates). This information can be used as chemical-
specific inputs to pharmacokinetic and environmental fate and transport models (Truhlar
and Garrett, 1980; Wang et al., 1998; Geva et al., 2001; Prezhdo and Rossky, 1997;
Tuckerman et al., 1995; Colombo et al., 2002).

Molecular Modeling & Simulations; Cheminformatics & (HTS) QSAR; and Medicinal Chemistry
Applications.

* QikProp is a product from Schrddinger, LLC (https://www.schrodinger.com/products/14/ 17/). It canbe
used to predict parameters such as octanol/water and water/gas logP, logs, logBB, overall CNS activity,
Caco-2 and MDCK cell permeabilities, human oral absorption, log Ky, for human serum albumin binding,
and log ICsp for HERG K '-channel blockage. _

* OEChem, version 1.7.4, OpenEye Scientific Software, Inc., Santa Fe, NM, USA, WWwWw.eyesopen.com,
2010.



Computational models are also used to predict the respiratory tract dosimetry of inhaled
gases and particulates. These models are needed because the complex shapes of the nasal
airways and the branching pattern of the airways leading from the trachea to the alveoli
often result-in nonuniform deposition of inhaled materials. Models of the respiratory
tract incorporate varying degrees of anatomical realism. Computational fluid dynamics
(CFD) models of the nasal airways use accurate, 3-dimensional reconstructions of the
airways (Kimbell et al., 1993), while 1-dimensional reconstructions have been more
commonly used for the pulmonary airways (Overton et al., 2001). -

Signaling pathways

Signaling pathways such as the mitogen-activated protein kinase (MAPK) pathway
(Roux and Blenis, 2004) consist of one or more receptors at the cell surface that, when
activated by their cognate ligands, transmit signals to cytosolic effectors and also to the
genome. The cytosolic effects are rapid, occurring within seconds or minutes of receptor
activation, while the effects on gene expression take longer, with changes in the
associated protein levels typically occurring after one or more hours. A number of
computational models of signaling pathways have been described (e.g., Bhalla et al.,
2002; Hoffman et al., 2005). '

The National Research Council (NRC) report, Toxicity Testing in the Twenty-First
Century (NAS, 2007) introduced the concept of “toxicity pathways”. Toxicity pathways
were defined by the NAS as “interconnected pathways composed of complex
biochemical interactions of genes, proteins, and small molecules that maintain normal
cellular function, control communication between cells, and allow cells to adapt to
changes in their environment” and which, “when sufficiently perturbed, are expected to
result in adverse health effects are termed toxicity pathways” (NAS, 2007 p. 2). The
adverse effect is the clinically evident effect on health and is often referred to as the
apical effect, denoting its placement at the terminal end of the toxicity pathways.
Although not much work has been done to date, computational models of signaling
pathways are expected to be integral components of toxicity pathway models.

BBDR/Clonal growth

Cancer is a disease of cell division. In healthy tissue the respective rates of cellular
division and death are tightly regulated, allowing for either controlled growth or the
maintenance of tissue size in adulthood. When regulation of division and death rates is
disrupted, tumors can develop. (It should also be noted that that embryonic development
depends on tight regulation of division and death rates, where dysregulation can result in
malformations.) A number of computational models have been developed to describe
tumor incidence and the growth kinetics of preneoplastic lesions. These vary from purely
statistical models fit to incidence data (Crump et al., 1976) to models that track time-
dependent division and death rates of cells in the various stages of multi-stage
carcinogenesis (Moolgavkar et al., 1988). These latter kinds of models provide insights
into how different kinds of toxic effects — e.g., direct reactivity with DNA versus
cytolethality — can differentially affect tumor development.



Biologically based dosc-response (BBDR) models represent the entire exposure —target
site dose — apical response continuum. These kinds of models require large amounts of
supporting data but have the capability to predict both dose-response and time course for
development of apical effects as well as for some intermediate effects (e.g., Conolly et
al., 2004). This latter capability is important as it provides the opportunity to use data on
biomarkers in support of model development. The resources needed to develop such
models are, unfortunately; seldom available. In some cases, however, where the
economic importance or the degree of human exposure is sufficient, development of
BBDR models can be justified (Conolly et al., 2004).

Virtual tissues

The computational models-described above incorporate varying degrees of biological
detail. Over time, these models will be iteratively refined as new data and new degrees of
understanding of the relevant biological processes become available. Taking a long-term
view, this iterative refinement will lead asymptotically to the development of virtual
tissues and even to virtual organisms, where multiple scales of biolo gy — molecular,
macromolecular, organelle, tissue — are described in a spatially and temporally realistic
manner. Such models, with sufficient validation, will generate useful predictions of
biological behaviors and toxic responses that today can only be examined in the wet
laboratory using in vitro and in vivo methods. Numerous efforts that are self-described as
virtual tissues are underway (e.g., Wambaugh and Shah, 201 0; Adra et al., 2011; virtual
tissues in toxicology reviewed by Shah and Wambaugh, 2010). While important and
useful, these are, however, preliminary steps towards development of virtual tissues that
can actually replace their living equivalents. In the mean time, the computational
toxicology will continue to evolve and play an increasingly important role in
toxicological research and human health risk assessment.

Disclaimer: The United States Environmental Protection Agency through its Office of
Research and Development funded and managed the research described here. It has
been subjected to Agency’s administrative review and approved for publication.
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