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ABSTRACT

Confidence in air quality models is founded by continual model evaluation, which, in
turn, relies on having the appropriate measurement data for evaluation. The type of data
desired depends on the objectives of the intended model application. Data routinely
available from state, local, tribal and EPA monitoring networks is sufficient for many
common model application evaluations, including assessing the impact of emissions
controls. However, advancing the underlying science in the model, and developing
increased confidence for non-traditional uses, requires more specialized measurements,

such as continuous methods for particulate matter speciation.
INTRODUCTION

One objective of designing an air pollution monitoring network is to obtain data for
applying and evaluating air quality models that are used in the air quality management
process (I, 2). As such, it is important to consider what data are desirable for evaluating
air quality models. Unfortunately, since the atmosphere is a very complex system, that
models cannot fully capture all relevant physical and chemical processes, and are
inherently incomplete (3). Or, as it is often said, “all models are wrong, some are
useful.” A model evaluation that compares model results against measurements is one

mechanism to provide confidence in their usefulness (4, 5).

Two issues that need to be addressed in considering the data requirements for a specific
model evaluation: 1) what specific model is being evaluated and 2) what is the purpose of

the evaluation. A model that has already undergone extensive evaluation of model



performance and peer review, and has been open to public scrutiny, requires less
evaluation than a new, less tested model. Still, the appropriate type of measurement (or
observational) data needs to be identified to evaluate the type of model in consideration.
Similarly, using a well tested model for a new, as opposed to routine, purpose requires
more extensive evaluation to develop the desired level of confidence. But, again, the data

used in the evaluation should be appropriate to address the purpose of the evaluation.

Air quality models serve a number of purposes. In the regulatory arena, they are used to
evaluate the impacts of changing emissions, e.g., to assess the effectiveness of emissions
controls, to estimate the impacts of specific sources on pollutant concentrations, and to
provide information to assess pollutant exposures and potential effects. Scientific
applications center around developing a better understanding of how chemical species
evolve and interact with exposed ecosystems, and elucidating the processes that govern

chemical evolution.

For the purpose of this article, we focus on chemical transport models (CTMs) because
they are widely used in the two primary model application areas - public policy and
science (26). Further, we focus on data desired for “field” applications, i.e., the use of
CTMs to simulate actual ambient pollutant concentrations. Issues are addressed at a

broader level to provide insight to other air quality models as well.

Recognizing that the type of evaluation being conducted is dependent on the model

chosen and the objectives, Studies (4, 6) have identified four types of model evaluation:

e Operational — evaluates model predictions against observed concentrations using
a variety of statistical measures and graphical plots

e Diagnostic — evaluates model processes (chemical and physical), model
parameters, and model inputs

e Dynamic — evaluates model response to changes in emissions and/or meteorology

e Probabilistic — evaluates model uncertainty by using various statistical techniques

While those four categories were primarily developed for CTMs, they apply across all

models. In general, dynamic evaluations are important for public policy applications,



while all types of evaluations are important for scientific assessment applications.

Increased confidence is built from applying all four types of evaluations.

CTMs can be used to predict pollutant concentrations in the atmosphere by simulating
emissions, advection, diffusion, deposition, and chemistry. Typically, 3-D Eulerian
CTMs are used to access how ozone (O3) and particulate matter (PM) will respond to
emission controls. These results can be used to develop control strategies in order to
bring areas that are currently violating the National Ambient Air Quality Standards
(NAAQS) into attainment. The two most widely used, and most thoroughly evaluated,
CTMs in the U.S. are CMAQ (7) and CAMX (8). Their uses include the development of
State Implementation Plans (SIPs), assessment of federal control policies (e.g., (9)),
establishing source impact relationships (including health impacts), and elucidating
atmospheric chemical dynamics. In addition to being widely used, those models also
benefit from being descended from models that were also extensively tested. Over the
years, CTMs have shown increasing skill in simulating O3 and PM levels leading to their

increased use in regulatory applications.

Critical inputs to CTMs include emission rates (allocated spatially and temporally by

models and measurements), meteorology (from a model or measurements) and boundary
and initial conditions (also from models and/or measurements). These inputs can have a
major impact on the performance of the CTM and should be thoroughly evaluated (), in

addition to overall model performance. .

While there is no bright line test to see if a model is “acceptable” or “not acceptable” for
a particular application, there are a number of model to measurement comparisons that
are performed to help make a “weight of evidence” conclusion. For Osand PM modeling,
it is critical to have measurements of hourly Osand daily PM (total and speciated by
component — sulfate, nitrate, ammonium, OC, EC, crustal materials). In addition, it is
beneficial to have measurements of precursor emissions (NOx and VOCs for ozone; SO2,
NOx, NH3, and VOCs for PM). Model performance statistics are calculated for ozone
and PM (total and speciated by component). Various statistical metrics have been used
such as mean bias, mean error, mean normalized bias, mean normalized error, mean

fractional bias, and mean fractional error. Tesche et al (10) considered past model



evaluations and concluded that ozone mean bias should be less than +15% and the mean

normalized error should be less than 30%.

Table 1: Measurements Typically Used for Operational and Diagnostic Model

Evaluations and Corroborating Measurements Used for “Weight-of-Evidence”

Demonstration
Model Type Species Typically Used in | Additional Species used for
Model Evaluation further “weight-of-
evidence” or diagnostic
evaluation
Chemical Transport Model- | O; NO, NO», speciated VOCs,
Ozone CO

Chemical Transport Model-
PM

PM2.5-mass, sulfate,
nitrate, ammonium, EC,

OC, soils

Speciated VOCs, NHs,
HNOs;, SO», PM elements
(Ni, V, Fe, Si, Mn, As, Se,

etc.)

Given that one of the major objectives of model applications is to assess how air pollutant
concentrations will respond to emission controls, dynamic model evaluation is of direct
importance. Unfortunately, it is nearly impossible to observe a fully controlled dynamic
scenario in nature. Instead, previous studies have relied on comparing simulating air
quality prior to and after periods separated by substantial and quantifiable changes in the
parameters of interest (e.g., intervention studies, (/1)) while assuming that other
parameters have less significant impacts on the model output metrics of interests. Such
intervention studies typically stem from either large emission reductions over time due to
both regulatory action and technological improvement, or temporary emissions
reductions due to plant outages and the displacement of sources (see examples in (11)).
Data requirements to support such studies are essentially the same as the requirements for
operational evaluation, except that the measurement data must exist for both the “before”
and the “after” cases, and be for a long enough period to address changes in meteorology.
Another aspect of dynamic evaluation is the desire to have confidence in the model’s
ability to predict long-term trends in pollutant concentrations. While traditional surface

measurement networks are frequently sufficient for such an undertaking, satellite




retrievals of air pollutants and meteorological parameters can supplement trend analysis
(12). Some intensive field program also have implemented a number of aircraft to
capture pollutant data aloft, although expensive and intermittent such studies provide

information not available from surface-based measurements (13, 74).

Discussion

If it appears that the measurements needed to evaluate air quality models are similar to
those that are available from routine monitoring networks, it is because these networks,
like the models, have evolved in response to the changing needs of the air quality
community. As a specific example, it was recognized that just having PM mass was not
sufficient to apply RM:s or to appropriately evaluate, and thus confidently use (or
improve) CTMs to quantify the impact of sources on particulate matter (/5). Given the
importance, the Species Trends Network (STN; (/6)) was developed and has become
central to model application and evaluation. Similarly, operational model evaluation has

evolved with the networks to make the best use of the routinely available data.

Is this to say that the only measurements desired are those available from the routine
monitoring networks? Unfortunately, that is not the case. Models have evolved to the
point that they are now being evaluated by more detailed diagnostic evaluations using a
much broader range of observations of species not generally available, but generally
viewed as being of importance to the formation and fate of 0ozone and PM. For example,
the Southern California Air Quality Study (SCAQS: (/7)) was designed and conducted to
provide a much more comprehensive set of data for evaluating and improving CTMs.
This has been followed by numerous additional “intensive” studies worldwide (/8-21),
including the PM Supersite program (22) providing opportunity to further assess model
capabilities and needs. The Electrical Power Research Institute (EPRI) has funded a
number of detailed measurement studies, such as the South Eastern Aerosol Research and
Characterization (SEARCH) network (23), that include measurements of hourly PM by
species (SO4, NO3, NH4, OC, EC), additional precursors (e.g., SO2, NO, NO2, NOy,
HNO3, CO, NH4), meteorological parameters, and deposition. While the surface
measurements continue to grow, the one area that still needs to be addressed is aloft

measurements. Aloft measurements from aircraft and radiosondes (24) are useful to



evaluate model transport and give us additional confidence in surface results as well as to

evaluate model processes above the surface.

Application and evaluation of the models using intensive study data, along with decades
of more routine applications, has led to some confidence for routine policy applications.
However, their use in “new” applications does not enjoy the same level of confidence.
For example, in developing a new, multi-pollutant, secondary standard for nitrogen and
sulfur oxides, CMAQ was used to simulate deposition of the multiple oxides of nitrogen
and sulfur (25). A recognized concern by the Clean Air Scientific Advisory Committee
(CASAC) was that the model had not been thoroughly evaluated for such an application.
In part, the desired data is not available. Another concern is driven by the new 1-hour
NAAQS for NO,, which includes a focus on near-road concentrations. Application of
models to near-road dispersion and reaction of NOx, and potentially other pollutants
including PM, will be a new challenge, and confidence can be developed by continuing
evaluation using not only NO; observations, but ozone and NO as well, and will be
enhanced by a more extensive network of monitors beyond those typically available to
assess attainment with the NAAQS. Particularly useful measurements that might be
added to the current network would include temporally more highly or finely resolved
PM species (e.g., EC/OC or black carbon; and ionic compounds (/4)) that could
challenge models’ abilities to correctly simulate the diurnal variation, additional trace
gases (e.g., nitric acid, ammonium) that are important for assessing the inorganic gas-
particle partitioning and nitrogen/acid deposition. Organic PM speciation added at
PAMS monitors would provide a growing data base to help assess SOA formation

approaches.

Summary

Evaluation, both historical and to the specific application at hand, is required to use an air
quality model with confidence. Much of the confidence the various models now enjoy
has been developed over years of evaluations using a range of air quality and
meteorological measurement data obtained from both routine networks and intensive
monitoring programs. At this point, model evaluation for routine applications typically

gets by with routinely available measurements, with increased confidence coming from



using additional observations when available. However, routine measurements will not

provide the information to advance the science in the models. Significant model

advancement, and likewise significantly increased confidence in their use in new

applications, will rely on more comprehensive, and tailored, measurement studies,

including measurement data aloft.

Disclaimer. The United States Environmental Protection Agency through its Office of
Research and Development collaborated in the research described here. It has been
subjected to Agency review and approved for publication.
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Figure 1. Example model performance plots: (a) PM scatter plot, (b) PM time series plot,
(c) PM spatial plot (with observations overlaid), (d) PM stacked bar chart, (e) PM bugle
plot showing concentration dependent goals (dotted line) and criteria (solid line), () PM

soccer goal plot.



