
 1

 Model evaluation and ensemble modelling of surface‐level ozone in 

Europe and North America in the context of AQMEII 2 

Efisio Solazzo1,*, Roberto Bianconi2, Robert Vautard3, K. Wyat Appel9,  Michael D. Moran14, Christian 

Hogrefe9, Bertrand Bessagnet6, Jørgen Brandt16, Jesper H. Christensen16, Charles Chemel11,12, Isabelle 4 

Coll15, Hugo Denier van der Gon20, Joana Ferreira8, Renate Forkel10, Xavier V. Francis12, George Grell18, 

Paola Grossi2, Ayoe B. Hansen22, Amela Jeričević17, Lukša Kraljević17, Ana Isabel Miranda8, Uarporn 6 
Nopmongcol4, Guido Pirovano6,7, Marje Prank19, Angelo Riccio21,  Karine N. Sartelet5, Martijn Schaap20, 

Jeremy D. Silver16, Ranjeet S. Sokhi12, Julius Vira19, Johannes Werhahn10, Ralf Wolke13, Greg Yarwood4, 8 
Junhua Zhang14, S.Trivikrama Rao9, Stefano Galmarini1 

 10 
1Joint Research Centre, European Commission, ISPRA, Italy;  
2Enviroware srl, via Dante 142, 20863 Concorezzo (MB), Italy 12 
3IPSL/LSCE Laboratoire CEA/CNRS/UVSQ 
4Environ International Corporation, Novato CA, USA 14 
5CEREA, Joint Laboratory Ecole des Ponts ParisTech/ EDF R & D, Université Paris-Est, France 
6Ineris, Parc Technologique Halatte, France 16 
7 Ricerca sistema energetico (RSE), Italy 
8CESAM & Department of Environment and Planning, University of Aveiro, Aveiro, Portugal 18 
9Atmospheric Modelling and Analysis Division, Environmental Protection Agency, NC, USA  
10IMK-IFU, Institute for Meteorology and Climate Research-Atmospheric Environmental Division, Germany 20 
11National Centre for Atmospheric Science (NCAS), University of Hertfordshire, Hatfield, UK 
12 Centre for Atmospheric & Instrumentation Research (CAIR), University of Hertfordshire, Hatfield, UK 22 
13 Leibniz Institute for Tropospheric Research, Leipzig, Germany 
14Air Quality Research Division, Science and Technology Branch, Environment Canada, Toronto, Canada 24 
15 IPSL/LISA UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot  

16Department of Atmospheric Environment, National Environmental Research Institute, Aarhus University, 26 
Denmark 
 28 
17 Meteorological and Hydrological Service, Grič 3, Zagreb, Croatia 
18CIRES-NOAA/ESRL/GSD National Oceanic and Atmospheric Administration Environmental Systems 30 
Research Laboratory Global Systems Division Boulder, Colorado USA 
 32 
19Finnish Meteorological Institute, Helsinki, Finland 
 34 
20 Netherlands Organization for Applied Scientific Research (TNO), Utrecht, The Netherlands 
 36 
21 Department of Applied Science, University of Naples “Parthenope”, Naples, Italy 
 38 
22 Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Denmark 

                                                 
* Author for correspondence: E.Solazzo. Email: efisio.solazzo@jrc.ec.europa.eu 



 2

Abstract. More than ten state-of-the-art regional air quality models have been applied as part of the 40 

Air Quality Model Evaluation International Initiative (AQMEII). These models were run by twenty 

independent groups in Europe and North America. Standardised modelling outputs over a full year 42 

(2006) from each group have been shared on the web-distributed ENSEMBLE system, which 

allows for statistical and ensemble analyses to be performed by each group. The estimated ground-44 

level ozone mixing ratios from the models are collectively examined in an ensemble fashion and 

evaluated against a large set of observations from both continents. The scale of the exercise is 46 

unprecedented and offers a unique opportunity to investigate methodologies for generating skilful 

ensembles of regional air quality models outputs. Despite the remarkable progress of ensemble air 48 

quality modelling over the past decade, there are still outstanding questions regarding this 

technique. Among them, what is the best and most beneficial way to build an ensemble of 50 

members? And how should the optimum size of the ensemble be determined in order to capture data 

variability as well as keeping the error low? These questions are addressed here by looking at 52 

optimal ensemble size and quality of the members. The analysis carried out is based on systematic 

minimization of the model error and is important for performing diagnostic/probabilistic model 54 

evaluation. It is shown that the most commonly used multi-model approach, namely the average 

over all available members, can be outperformed by subsets of members optimally selected in terms 56 

of bias, error, and correlation. More importantly, this result does not strictly depend on the skill of 

the individual members, but may require the inclusion of low ranking skill-score members. A 58 

clustering methodology is applied to discern among members and to build a skilful ensemble based 

on model association and data clustering, which makes no use of priori knowledge of model skill. 60 

Results show that, while the methodology needs further refinement, by optimally selecting the 

cluster distance and association criteria, this approach can be useful for model applications beyond 62 

those strictly related to model evaluation, such as air quality forecasting.  

 64 
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1. Introduction 74 

Regional air quality (AQ) models have undergone considerable development over the past three 

decades, mainly driven by the increased concern regarding the impact of air pollution on human 76 

health and ecosystems (Rao et al., 2011). This is particularly true for ozone and particulate matter 

(e.g., Holloway et al., 2003; Rao et al, 2006; Jacob and Winner 2009). Regional AQ models are 78 

now widely used for supporting emissions control policy formulation, testing the efficacy of 

abatement strategies, performing real-time AQ forecasts, and evaluating integrated monitoring 80 

strategies. Moreover, ozone estimates have been used in assimilation schemes to provide further 

information on meteorological variables such as wind speed (e.g., Eskes, 2003). The combination of 82 

outcomes predicted by several models (regardless of their field of application), in what is typically 

defined as ensemble modelling, has been shown to enhance skill when compared against an 84 

individual model realisation (e.g., Delle Monache and Stull, 2003; Galmarini et al. 2004; van Loon 

et al., 2007). Although ensemble modelling is well established (both from the applied and 86 

theoretical perspectives) and is now routinely used in weather forecasting, it is only during the last 

decade that a growing number of AQ modelling communities have joined their model outputs in 88 

multi-model (MM) combinations (Galmarini et al., 2001; Carmichael et al., 2003; Rao et al., 2011). 

The advantages of ensemble modelling versus an individual model are at least twofold: (i) the mean 90 

(or median) of the ensemble is, in effect, a new model that is expected to lower the error of the 

individual members due to mutual cancellation of errors; and (ii) the spread of the ensemble 92 

represents a measure of the variability of the model predictions (Galmarini et al., 2004; Mallet and 

Sportisse, 2006; Vautard et al., 2006, 2009; van Loon et al., 2007). Potempski and Galmarini (2009) 94 

also point out the scientific consensus around MM ensemble techniques as a way of extracting 

information from many sources and synthetically assessing their variability. In particular, the mean 96 

and median offer enhanced performance, on average, compared with single-model (SM) realisations 

(Delle Monache and Stull, 2003; Galmarini et al., 2004; McKeen et al., 2005, and others).  98 

A MM ensemble can be generated in many ways (see, e.g., Galmarini et al., 2004), including by 

varying some internal parameters for multiple simulations with an SM, by using different input data 100 

(e.g., emissions) for multiple simulations with an SM, or by applying several different models to the 

same scenario. This latter approach is the main focus of the Air Quality Model Evaluation 102 

International Initiative (AQMEII) (Rao et al., 2011), an international project aimed at joining the 

knowledge and experiences of AQ modelling groups in Europe and North America. Within 104 

AQMEII, standardised modelling outputs have been shared on the web-distributed ENSEMBLE 

system, which allows statistical and ensemble analyses to be performed by multiple groups 106 
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(Bianconi et al., 2004; Galmarini et al., 2012). A joint exercise was launched for European and 

North American AQ modelling communities to use their own regional AQ models to simulate the 108 

entire year 2006 for the continents of Europe and North America, retrospectively. Outputs from 

numerous regional AQ models have been submitted in the form of both gridded, hourly 110 

concentration fields and values at specific locations, allowing for direct comparison with air quality 

measurements available from monitoring networks across North America and Europe (see Rao et 112 

al., 2011 for additional details). This type of evaluation, with large temporal and spatial scales, is 

essential to assess model performance and identify model deficiencies (Dennis et al., 2010; Rao et 114 

al., 2011).  

 116 

In this study, we analyse ozone mixing ratios provided by simulations from eleven state-of-the-art 

regional AQ models run by eighteen independent groups from North America (NA) and Europe 118 

(EU) (while a companion study is devoted to the examination of particulate matter, Solazzo et al., 

2012). Model predictions have been made available, along with observational data, to the 120 

ENSEMBLE system. The ability of the ensemble mean and median to reduce the error and bias of 

SM outputs is examined, and conclusions regarding the size of the ensemble and its quality are 122 

made. The level of repetition provided by each individual model to the ensemble is quantified by 

applying a clustering analysis to examine whether the improvement in error using the mean or 124 

median of the model ensemble is due to the increased ensemble size, or if information carried by 

each model contributes to the MM superiority.  126 

 

The main objective of this study is to assess the statistical properties of the ensemble of models in 128 

relation to the individual model realisations for a range of air quality cases. Each model has 

imperfections, and it is beyond the scope of this analysis to identify the causes of model bias for 130 

each ensemble member. Several other papers examining the performance of the individual model 

simulation are available in the AQMEII special issue.  132 

 

2. Models and data 134 

2.1 Experimental set up 

In order to carry out a comprehensive evaluation of the participating regional-scale AQ models, the 136 

model estimates are compared to observations for the year of 2006, with the various modelling 

groups providing hourly ozone mixing ratios and concentrations of other compounds. Surface 138 

concentrations were then interpolated to the monitoring locations for the purposes of model 

evaluation.  140 
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2.2 Participating models 142 

Table 1 summarises the meteorological and AQ models participating in the AQMEII 

intercomparison exercise and providing ozone mixing ratios at European or North American 144 

receptor sites, or both. In some cases the same model is used with a different configuration by 

different research groups (or in a few cases by the same research group). In total, eleven groups 146 

submitted ozone predictions for EU and seven submitted ozone predictions for NA. No a-priori 

screening on the worst performing models has been performed on the participating members; 148 

however, it is assumed that the models have at least previously gone through an operational model 

evaluation, as defined in Dennis et al. (2010).  150 

 

AQMEII participants were provided with a reference meteorological simulation for the year 2006, 152 

generated with the WRF v3.1 (Skamarock et al., 2008) and the MM5 (Dudhia, 1993) models, for 

NA and EU respectively, which were applied by the majority of groups. Several other groups 154 

performed simulations using other meteorological drivers (Table 1). Skills and shortcoming of the 

meteorological models within AQMEII are described by Vautard et al. (2012).  156 

 

The AQ models participating in the exercise, listed below, have been extensively documented in the 158 

scientific literature (including sensitivity tests and evaluation studies): 

- CMAQ (Byun and Schere, 2006) 160 

- CAMx (ENVIRON, 2010) 

- CHIMERE (Schmidt et al., 2001; Bessagnet et al., 2004) 162 

- MUSCAT (Wolke et al., 2004; Renner and Wolke, 2010) 

- DEHM (Brandt et al., 2007) 164 

- POLYPHEMUS (Mallet et al. 2007; Sartelet et al. 2012) 

- EUROS (Schaap et al., 2008) 166 

- SILAM (Sofiev et al., 2006) 

- AURAMS (Gong et al., 2006; Smyth et al., 2009) 168 

- EMEP (Simpson et al., 2003; Jeričević et al., 2010) 

- WRF/Chem (http://www.acd.ucar.edu/wrf-chem/) 170 

The combination of meteorological and chemical transport models varies for each group (with the 

only exception being the WRF model with the WRF/Chem model, which was used twice for EU), 172 

thus allowing analysis of a diversified set of model output, which is necessary to sample the 

spectrum of uncertainty within an ensemble.  174 
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Emissions and chemical boundary conditions used by the various AQMEII groups are summarised 176 

in Table 1. AQMEII provided a set of time-varying gridded emissions (referred to as “standard” 

emissions) for each continent, focusing on the evaluation of the AQ and meteorological models. 178 

The EU standard emissions were prepared by TNO (Netherlands Organization for Applied 

Scientific Research), which provided a gridded emissions database for the years 2005 and 2006. 180 

This dataset was partly developed in the framework of the European MACC project 

(http://www.gmes-atmosphere.eu/), and is an update of an earlier TNO emissions database prepared 182 

for the GEMS project (http://gems.ecmwf.int). This inventory does not include biogenic emissions, 

and therefore different approaches were used by different groups to provide biogenic emissions, as 184 

summarised in Table 1. The NA standard emissions are based on the 2005 U.S. National Emissions 

Inventory (NEI), 2006 Canadian national inventory, and 1999 Mexican BRAVO inventory. 186 

Biogenic emissions were provided by the BEISv3.14 model, while daily estimates of fire emissions 

were provided by the HMS fire detection and SMARTFIRE system (year 2006). In-stack emissions 188 

measurements for many U.S. power plants were provided by Continuous Emissions Monitoring 

data for the year 2006. Full details regarding the standard emissions used for EU and NA are given 190 

in Pouliot et al. (2012). The standard emissions were used by the vast majority of the participating 

AQMEII groups (Table 1). Model results generated with other emissions inventories have also been 192 

submitted, however, which provides a useful comparison in interpreting the results of model-

estimated ozone mixing ratios.  194 

 

AQMEII also made available a set of chemical concentrations at the lateral boundaries of the EU 196 

and NA domains,  which were provided by the Global and regional Earth-system Monitoring using 

satellite and in-situ data (GEMS) re-analysis product provided by European Centre for Medium-198 

range Weather Forecast (see Schere et al., 2012 for more details). Other boundary conditions for 

ozone used by several AQMEII modeling groups were based on satellite measurements assimilated 200 

within the Integrated Forecast System (IFS). LMDZ-INCA, which couples the general circulation 

model Laboratoire de Meteorologie Dynamique and the Interaction with Chemistry and Aerosol 202 

model (Hauglustaine et al., 2004) was used for CAMx  and CHIMERE in one set of simulations 

(NA simulations), with another CHIMERE model simulation using the standard AQMEII boundary 204 

conditions (Table 1).  

 206 

2.3 Observational data for ozone 
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The European and North American continental areas have each been divided into four sub-regions 208 

(EU1 to EU4 and NA1 to NA4). Figure 1 displays the sub-regions for both continents, the locations 

of the ozone receptors that have been used, and contours of “standard” anthropogenic NOx 210 

emissions averaged over the summer months of June-July-August (JJA) of 2006. Only rural 

receptors below an altitude of 1000 m have been examined, with at least 75% annual data 212 

availability. The choice of analysing only rural receptors is dictated by the need to provide 

comparison with spatial scales consistent with the model resolution (see, e.g., Vautard et al., 2009). 214 

Moreover, ozone measured by monitoring stations in urban areas is more sensitive to reactions with 

NOx, which may reduce ozone production.  216 

 

The selection of the sub-regions is based on emissions, climate, and altitudinal aspects, as well as 218 

practical constraints (data coverage, computational time). The four EU sub-regions are similar to 

those in the  analyses of meteorological forcing (Vautard et al., 2012) and particulate matter 220 

(Solazzo et al., 2012) for AQMEII. Sub-region EU1, consisting of the British Isles, France, and 

northern Spain, was selected for its mid-latitude, mixed maritime-continental climate and large 222 

conurbations (London, Paris). Sub-region EU2, consisting of Central Europe, has a continental 

climate with marked seasonality, many large cities, and areas with large emissions. Sub-region 224 

EU3, consisting of the Po River Valley up to the Alpine area of Italy and south-eastern France has a 

mixed climate, generally poor air quality, and is influenced by the Alpine barrier. The Southern 226 

European domain covers the Mediterranean area (southern Italy, the east coast of Spain, and 

Greece), with typical Mediterranean climate and large cities (e.g., Barcelona, Rome). The number 228 

of rural receptors for the EU sub-regions is 201, 225, 77, and 140, respectively.  

 230 

For NA, the number of rural receptors in the four sub-regions varies between 134 and 150. The NA 

sub-regions are broadly derived from previous studies (e.g., Eder et al., 1993), and consider the 232 

NOx emissions intensity, with the additional constraint of a uniform number of receptors.  Sub-

region NA1, consisting of the western portion of the United States and south-western Canada, has 234 

high emissions along the coast of California, smaller emissions toward the interior of the continent, 

a high amount of solar radiation, low relative humidity, and some large cities with poor air quality 236 

(e.g., Los Angeles). Sub-region NA2 consists of the U.S. Plains states to the east of the Rocky 

Mountains and is characterised by a continental climate in the north and a hot, humid climate in the 238 

south, with a number of large cities with poor air quality (e.g., Houston, Dallas). Sub-region NA3, 

consisting of northeastern NA including parts of south-central Canada, has a marked seasonal cycle, 240 

most of the Great Lakes, some of the highest emissions areas in NA, and many large cities (e.g., 
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New York City, Philadelphia, Toronto, Montreal). Finally, sub-region NA4, consisting of the 242 

southeast United States, has high emissions and strong solar radiation. 

 244 

Ozone data for EU were derived from hourly data collected by the AirBase and EMEP (European 

Monitoring and Evaluation Programme, http://www.emep.int/) networks, for a total of 1563 246 

stations, of which over 1400 have a percentage of data validity higher than 80%. Ozone data for NA 

were prepared from hourly data collected by the AIRS (Aerometric Information Retrieval Systems, 248 

http://www.epa.gov/air/data/aqsdb.html) and CASTNet (Clean Air Status and Trends Network, 

http://java.epa.gov/castnet/) networks in the United States and the NAPS (National Air Pollution 250 

Surveillance, http://www.ec.gc.ca/rnspa-naps/) network in Canada. A total of 1445 stations are 

available, more than half with a percentage of data validity higher than 80% (many U.S. ozone 252 

stations only operate from May to October).  

 254 

3. Single models and multi-model ensembles: operational evaluation and general statistics  

3.1. Operational SM and ensemble statistics for the continental-wide domains  256 

van Loon et al. (2007) showed that the ensemble mean ozone daily cycle over EU, obtained by 

averaging over all monitoring stations for the entire year of 2001, agrees almost perfectly with the 258 

observations, and better than any individual member of the ensemble. This result provides 

substantial evidence of the enhanced skill of MM predictions versus the individual SM predictions. 260 

Such a result, though, while encouraging, poses some additional questions, such as what is the role 

of repeated averaging (in time and space) in smoothing out peaks and reducing variability, and 262 

whether any ensemble combination will  show additional skill relative to SMs. For example, 

Galmarini and Potempski (2004) showed that for the ETEX-1 case study the MM did not offer 264 

significantly superior skill (and performed less well than for a long-term AQ case due to the 

transient nature of the short-term ETEX tracer release). They thus concluded that in the absence of a 266 

method for pre-selecting or discriminating between ensemble members, the MM improved 

performance might be just coincidental and dependent on the ‘lucky shot’ of having the right 268 

collection of models around the measured data.  

 270 

Figure 2 presents annual frequency distributions of ozone mixing ratios averaged across the 

receptor set that were estimated by the AQMEII SM and MM for EU (Fig. 2a) and NA (Fig. 2b). A 272 

box-and-whisker representation has been used to show the frequency distribution, where the 

rectangle represents the inter-quantile range (25th to 75th percentile), the small square identifies the 274 

mean, the continuous horizontal line inside the rectangle identifies the median, the crosses identify 
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the 1st and 99th percentiles, and the whiskers extend between the minimum and maximum values. 276 

The measured frequency distribution is also shown in each row. The top row displays the 

distribution of hourly values (i.e., each bar is the distribution over 8760 receptor-averaged hourly 278 

values), the middle row is the daily average distribution (over 365 receptor-averaged daily values), 

and the bottom row is the mean diurnal range (each bar reflects the distribution over 24 receptor-280 

averaged hourly values, in which the same hours are averaged for each day of the year). Depending 

on the averaging period, ozone mixing ratios are reduced by a factor of two for both continents, 282 

which results in a dramatic reduction of the spread (e.g., min and max values are within the inter-

quantile ranges for the diurnal cycle) and a clustering of the diurnal time series, which in turn 284 

results in improved statistical agreement. Thus, averaging over extended areas (continent) and 

periods (year) has a dramatic effect in reducing the spread of the data.  Note that in order to 286 

maintain model anonymity each participating model has been assigned a random model number 

(Mod 1 to 11 for EU and Mod 12 to 18 for NA) that do not correspond to the order of models 288 

presented in Table 1.  

 290 

The ability of the MM ensemble to sample measurement uncertainty for both continents is analysed 

by means of the rank histograms presented in Fig. 3, which are a measure of the ensemble reliability 292 

(Talagrand et al., 1998; Joliffe and Stephenson, 2003). The rank histogram is a widely adopted 

diagnostic tool to evaluate the spread of the members of an ensemble. In a rank histogram, the 294 

population of the k-th rank is the fraction of time that observations fall between the sorted members 

k-1 and k, and the number of ranks or bins is one greater than the number of ensemble members. 296 

Ideally, the frequency for each bin should be the same, meaning that the ozone estimate from each 

ensemble member is as probable as from any other member, and that observations have an equal 298 

probability of belonging to any bin (Hamill, 2000). In such a case the observations and the 

ensemble members are selected from the same probability distribution, and the probability of an 300 

observation falling into a particular bin is the same for all bins. In Fig. 3, spatially-averaged hourly 

ozone data from the full year are used. For EU (Fig. 3a), the bin populations are rather uniform for 302 

the first ten bins (between 6% and 11%), with bins 11 and 12 having a frequency of ~18% each.  

This distribution indicates the ensemble mean has difficulty simulating high hourly mixing ratios, 304 

which indicates a negative bias in the ensemble mean (i.e., underestimation).  For NA  the 

intermediate bins of the rank histogram are more populated than the side bins (Fig. 3b), indicating 306 

the possible presence of outlying members.  

 308 
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It is not clear whether the deviation from a uniform distribution for both EU and NA is due to 

chance (for case in which ensemble members and observations are truly selected from the same 310 

distribution) or if there is a compensating effect over such large domains and long time scales. 

These aspects will be further examined in Section 3.3. 312 

 

3.2 Sub-regional SM and MM ensemble analyses  314 

Regional AQ models are often used on limited spatial and temporal scales (e.g., a few months or a 

season over several hundred kilometres: Camalier et al., 2007; Bloomer et al., 2009; Boynard et al., 316 

2011; Hogrefe et al., 2011), for which mutual cancellation of model errors might not be as effective 

as in the case of continental and yearly scales, as discussed for the results of Fig. 2. The analyses 318 

presented in this section focus on the spatial variability of ozone mixing ratio statistics in four 

distinct sub-regions of each of the continental domains of Fig. 1, examining the temporal variability 320 

for the summer months JJA, when the ozone mixing ratios are typically the highest and are of most 

concern for public health. Analysis and evaluation of SM performance over the whole year are 322 

presented in companion papers in this Special Issue.  

 324 

Sub-regional ozone diurnal cycles are shown in Fig. 4a (EU) and Fig. 4b (NA), including ensemble 

mean and median (hourly data have been used for the analysis). Examining the observed 326 

summertime diurnal cycles for the four EU sub-regions (Fig. 4a), it is evident that there is 

considerable intra-continental variability of the daily ozone maximum, with the northern Italian and 328 

Mediterranean sub-regions (EU3 and EU4) reaching 60 ppb or more whereas peak daily ozone 

mixing ratios of ~45-50 ppb occur in the other two EU sub-regions. For sub-regions EU1, EU2, and 330 

EU3 the daily maximum occurs at 1700 local time (LT), while the daily maximum occurs two hours 

earlier in the EU4 sub-region due to the higher average insolation. Daily minimum ozone values 332 

occur between 0700 LT and 0800 LT, and range between 20 and 30 ppb, with the Mediterranean 

area (EU4) having the highest minimum due to the relative abundance of biogenic emissions (see, 334 

e.g., Sartelet et al., 2012). The daily maximum ozone values for NA are of the same general 

magnitude as EU, between 45 and 55 ppb for sub-regions NA1, NA2, and NA4, while only 336 

reaching ~35 ppb for sub-region NA3 (the north-eastern NA region) due to the inclusion of some 

remote monitoring stations from the Canadian NAPS network.  Daily maximum values occur at 338 

1600 LT for all four NA sub-regions. Daily minimum values typically occur at 0700 LT, and range 

between 20 to 25 ppb for sub-regions NA1, NA2, and NA3 and less than 20 ppb for sub-region 340 

NA4. This latter sub-region (south-eastern United States) exhibits a steep rise of ozone mixing 

ratios in the late morning that is indicative of strong daytime photochemistry in this region.  342 
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The majority of individual models (indicated by the thin lines in Fig. 4) exhibit highly region-344 

dependant behaviour, although some common patterns are present. Models for EU have a 

predominant tendency to underestimate (in some cases significantly) the peak daily mixing ratio 346 

and/or displace the time of the peak mixing ratio, as well as to overestimate nighttime mixing ratios, 

with the exception of sub-region EU2 (central Europe), which may be due to the strong daily 348 

temperature gradient in this region. Nighttime overestimation is known to occur in some models 

due to difficulties in dealing with stable conditions (e.g., Smyth et al., 2009; Herwehe et al., 201)  350 

 

Model results for the NA sub-regions exhibit a lower spread throughout the diurnal cycle (Fig. 4b), 352 

with the exception of one outlying model for sub-regions NA1, NA2, and NA3, which is 

consistently biased low, especially at night. However, the majority of the models exhibited 354 

nighttime overestimation to varying degrees, indicating that most of the AQ models have at least 

some difficulty dealing with stable conditions despite the variety of vertical mixing schemes 356 

implemented by the models. The case of the south-east U.S. sub-region (NA4), on the other hand, 

with consistent model overestimation throughout the diurnal cycle, clearly requires a dedicated 358 

investigation that is beyond the scope of this study.    

 360 

Reasons for individual model biases are detailed in other studies of this special issue dedicated to 

AQMEII and are not covered here. Collectively, though, the results of those studies have pointed to 362 

a number of factors, such as: (a) the biogenic emissions adopted by each model in EU (Brandt et al., 

2012; Sartelet et al., 2012), confirmed by examining the performance of the CHIMERE model with 364 

MEGAN biogenic emissions, which is the best performing SM for all EU sub-regions; (b) the 

meteorological driver (Vautard et al., 2012), and the impact of overestimated wind speed on the 366 

dispersion of primary pollutants (Solazzo et al., 2012), especially in EU; and (c) the lateral 

boundary conditions used for ozone, especially for winter-time concentration in NA (Schere et al., 368 

2012; Appel et al., 2012; Nopmongcol et al., 2012).  

 370 

The MM ensemble mean and median generally underestimate the amplitude of the ozone diurnal 

cycle in EU despite one outlying model demonstrating a large positive bias. By contrast, the MM 372 

mean and median accurately follow the measured ozone diurnal cycle for sub-regions NA1, NA2, 

and NA3 (while largely overestimating for the NA4 sub-region) due to the mutual compensation of 374 

a low-biased outlier and the tendency of the other ensemble members to overestimate ozone. It 

should be noted that the mean and median curves overlapping is a consequence of the repeated data 376 
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averaging (both spatially and temporally), which has smoothed out the peaks of the distribution, as 

previously shown in Fig 2.    378 

 

Figure 5 presents the error statistics for EU (Fig. 5a) and NA (Fig. 5b), in the form of a “soccer-380 

goal” plot (Appel et al., 2011). NMSE versus NMB scores (see Appendix A for definition) are 

reported for each individual model, together with scores for the ensemble mean and median, for 382 

each of the four sub-regions.  Points falling within the dotted lines indicate model performance 

within the criteria set by Russell and Dennis (2000) for ozone (bias within ± 15% and error within ± 384 

30%). For EU the majority of points lie in the left region of the soccer goal, indicating 

underestimation, with the exception of Mod1, which substantially overestimates the ozone mixing 386 

ratio for all sub-regions. The ensemble mean and median scores for all sub-regions fall within the 

15% box, and therefore comply with the performance criteria for ozone. For NA model results are 388 

well within the 15% box (mainly overestimated), the exception being the NA4 sub-region, where 

three models show an overestimation between 15% and 20%. The ensemble mean and median for 390 

NA are approximately identical, as already noted for the diurnal cycle (see Fig. 4b).  

 392 

3.3. Reliability of the Multi-model Ensemble  

Biased rank histograms for all sub-regions of the two continents have a sloped shape (Fig. 6). 394 

Analysis is based on hourly data for the period JJA. The histograms for EU sub-regions 1 and 2 

(Fig. 6a) have the most populated bins towards the end of the ranks, indicating model 396 

underestimation. The EU4 sub-region has empty or nearly empty initial and final bins, indicating an 

excess of model variability. The histogram for the entire EU domain is fairly flat, a result of 398 

compensating biases between sub-regions EU1 and EU2 and sub-regions EU3 and EU4 (see Fig. 

3a). As discussed at the beginning of section 3.2, when using long averaging periods and large 400 

spatial scales, seasonal and intra-continental variability can be hidden by the averaging and 

compensating errors.  Large biases are also present for the NA sub-regions (Fig 6b), with 402 

overestimation (left bins most populated) for all sub-regions, as seen in Fig. 5b. The spread also 

suffers from deficiencies of the ensemble in all cases, with excess of spread for sub-region NA1 404 

(middle bins more populated) or insufficient spread, such as in sub-regions NA2, NA3, and NA4 

(side bins more populated). This latter case is typically due to not having captured all sources of 406 

error properly (Vautard et al., 2009), which may be due too many members of the ensemble using 

the same meteorological drivers and/or emissions. Comparing the histograms in Fig. 6b for the 408 

entire NA domain for JJA and that of Fig. 3b for the entire NA domain for the full year highlights 

that for the full year the bins were more uniform, with a tendency to form a “bell” shape, whereas 410 



 13

for JJA the distribution is drastically biased and bin populations are uneven. This is probably due to 

the underestimation in the winter months by models adopting the GEMS boundary conditions for 412 

ozone (Appel et al., 2012), which compensates for the overestimation in the summer.  

 414 

4. Multi-model analysis: selected vs. unselected model ensembles 

4.1 Ensemble size 416 

In this section we evaluate whether an ensemble built with a subset of individual models can 

outperform the ensemble mean of all available members, as anticipated by the theoretical analysis 418 

of Potempski and Galmarini (2009). The analysis is done for the sub-regions of EU and NA 

separately, using hourly ozone data for the period JJA.  420 

 

Consider the distribution of some statistical measures (RMSE, PCC, MB, MGE, defined in 422 

Appendix A) of the mean of all possible combinations of available ensemble members n (n is 11 for 

EU and 7 for NA). The number of combinations of any k members is 
1,...,2 −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

nkk
n

.  For example, 424 

there are as many as 462 combinations of 5 models for EU, and 35 combinations of 3 models for 

NA. The results of the statistical analysis are presented in Fig. 7. The continuous lines on each plot 426 

represent the mean and median of the distribution of any k-model combinations. MM mean and 

median have similar behaviour decaying as O(1/k) (Potempski and Galmarini, 2009). These curves 428 

move toward more skilful model combinations as the number of members (k) increases, which 

confirms the common practice to average over all available members to obtain enhanced 430 

performance with respect to SM realisations. For MB, the mean trend is flat due to the quasi-

symmetric error fluctuations about the mean value for NA. Mean RMSE curves decrease steeply 432 

from two to four models for all sub-regions except the sub-region NA4. A further striking feature is 

that the best SM has similar (EU sub-regions EU1 and EU2; NA sub-regions NA1 and NA3) or 434 

lower (EU sub-regions EU3 and EU4; NA sub-regions NA2 and NA4) RMSE than the ensemble 

mean with all members. This is most probably due to having included members with large variances 436 

in the ensemble (Potempski and Galmarini, 2009). 

 438 

Analysis of mean RMSE for EU sub-regions (Fig. 7a), for which a large set of members is 

available, shows a plateau is reached for k > 5. This would indicate that there is no advantage, on 440 

average, to combine more than six members, as the benefit in minimizing the mean RMSE is 

negligible. Investigating the maximum RMSE (i.e., upper error bound), however, gives the result  442 

maxk RMSE (k) > maxk RMSE (k+1). Thus, the mean of ensembles with a large number of members 
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has the property of reducing the maximum error. For example, sub-region EU3 has a large error 444 

span for RMSE, between 2.5 ppb and 15 ppb for k = 2, which reduces to between 4 ppb and 7 ppb 

for k = 10 (Fig. 7a). A similar trend is seen for PCC (all sub-regions), with a monotonic 446 

improvement in the minimum PCC values with increasing k.   

  448 

Values of minimum RMSE (lower bound) exhibit a more complex behaviour. A minimum, among 

all combinations, systematically emerges for ensembles with a number of members k < n. Similarly, 450 

a maximum of PCC is achieved by combinations of a subset of members. This result suggests that 

ensembles of a few members systematically outperform the ensemble of all members.  In addition, 452 

adding new members to such an optimal ensemble (thus moving towards a higher value of k) 

deteriorates the quality of the ensemble, as the minimum RMSE increases and the maximum PCC 454 

decreases (Fig. 7).  

 456 

4.2 Ensemble combinations of minimum RMSE  

In Table 2, the MM combination of minimum RMSE is reported for any k, where models are 458 

identified by the RMSE ranking (for example, 2-5 is the ensemble mean of the second- and fifth-

best SM in terms of RMSE). The SM RMSE ranking is defined by domain, and individual models 460 

may not have the same SM RMSE ranking over the different sub-regions.  

 462 

An important point worth noting is that the RMSE ranking shows that the optimal ensemble is in 

some cases achieved by the MM ensemble containing low-ranking members, which suggests that all 464 

members should be considered to build a skilful ensemble. Therefore, an ensemble of top-ranking 

models can be worse than an ensemble of top-ranking and low-ranking models: that is, outliers may 466 

need to be included in the ensemble to obtain the best performance.  

 468 

It can be argued that large ensembles are needed to capture extreme events (e.g., high mixing 

ratios). Figure 8 presents a scatter plot of 1-hour daily maximum ozone mixing ratios for the EU 470 

sub-regions (analysis for NA sub-regions with fewer individual model members produced similar 

results and is not shown). The x-axis represents the 1-hour maximum of the ensemble of all 472 

available members, while the y-axis represents the 1-hour maximum of the ensemble of the selected 

members with minimum RMSE (bold-face combinations of Table 2). The data distribution along 474 

the diagonal line for each region shows that ensembles of selected models and full ensembles have 

the same probability to capture the extreme events. In particular, for the EU1 and EU3 sub-regions, 476 

the maximum predicted mixing ratio is higher with the small ensemble. This is because a poorly 
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performing SM added to an ensemble can improve RMSE and compensating biases can reduce 478 

overall bias.   

 480 

As an example, consider the case presented in Fig. 9, in which ozone mixing ratios of observations 

(Fig. 9a), the ensemble of ranked models 1 and 5, (Fig. 9b), ranked model 2 (Fig. 9c), and ranked 482 

model 11 (Fig. 9d) are displayed at the receptor sites. Note that the ranked combination 1-5-11 

represents a minimum RMSE for the EU1 sub-region (Table 2).  An interesting question to pose is 484 

why the lowest-ranked model (11) improves the ensemble more than a highly ranked model. 

Examining the receptor sites in the British Isles and France (Domain 1 of Fig. 1a), the MM mean of 486 

Fig. 9b clearly underestimates the observations in the south of France. When the 11th-ranked model 

(Fig. 9d) is added to the ensemble in Fig. 9b, compensating errors result in lower RMSE than the 488 

combination with the 2nd-best model in Fig. 9c. This is because the 2nd-best model has a 

performance very similar to the best performing model (which is already included in the ensemble), 490 

and thus brings no new information to the existing ensemble, whereas the 11th-ranked model, while 

performing poorly across the entire domain, matched the high mixing ratios in southern France (i.e., 492 

the only place where the higher-ranked models performed worse). Since RMSE weights large errors 

more heavily, including the 11th-ranked model results in less error at a greater number of receptor 494 

sites than when the 2nd-ranked model is included instead.   

 496 
Statistical results and box-and-whisker plots for the full ensemble and for the selected member 

ensemble for each sub-region are presented in Table 3 and Fig. 10, respectively.  RMSE is, as 498 

expected, lower for the selected-member ensemble for all sub-regions. PCC varies only slightly, 

indicating that the association between observations and MM ensemble is not strictly related to 500 

model error. The minimum RMSE combinations also improve the estimation of the modelled 

spread (the standard deviation of the MM ensemble, σ) compared to measured spread for almost all 502 

sub-regions (Table 3), and especially for the EU sub-regions. Therefore, reducing the number of 

members does not degrade the ensemble variability, but instead actually compares better to the 504 

spread of the observations. This is most likely due to the reduced variability induced by members 

sharing similar emissions and boundary conditions. Figure 10 presents a graphical depiction of how 506 

the selected-member ensemble compares against the full-member ensemble in terms of spread, 

maximum and minimum, and percentile distribution. The improvement to spread of the selected-508 

member ensemble mean is most visible.  

 510 

 

 512 
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5. Reduction of data complexity: a clustering approach  

Results discussed in the previous section have shown that a skilful ensemble is built with an optimal 514 

number of members and often includes low-ranking skill-score members as well.  In order to 

discern which members should be included in the ensemble, a method for clustering highly 516 

associated models and then discarding redundant information was developed using the PCC as the 

determining metric (we note that PCC is independent of model bias; therefore, the analysis would 518 

be the same for unbiased models). The most representative models of each cluster, chosen based on 

a distance metric, are then used to generate a reduced or selected-member ensemble. In this way, 520 

the information that each member provides to the ensemble is “unique” to the greatest possible 

degree.  522 

 

The Euclidean distance metric has been used to calculate the distance between the PCC of any two 524 

models and between clusters.  The points that are farthest apart are identified and used as the initial 

cluster centres. Then, the other models are allocated to the closest centre by the Euclidean distance 526 

from each centre. Results for this procedure are presented in Fig. 11 (EU) and Fig. 12 (NA) as 

hierarchical diagrams called dendrograms. The “height” of each inverted U-shaped line on the x-528 

axis represents the distance between the two clusters being connected. Independent clusters are 

identified by different colours. Sensitivity analysis of other distance metrics (not shown) has found 530 

that the clustering of models is independent from the metric used to calculate the distance, thus 

leaving the group associations unaltered.  However, while the distance itself may change, it does not 532 

affect the results of this study. The y-axis of Figs. 11 and 12 identifies the models by their number 

and RMSE ranking (discussed in Section 4.2). The ranking information allows tracking of each 534 

model’s position and whether aggregation results from differences between the models themselves 

(e.g., AQ model, meteorological drivers, emissions) or if the model’s performance itself (e.g., 536 

RMSE) has an influence.  

 538 

For EU (Fig. 11), the maximum PCC distance (degree of model disassociation) varies between 0.12 

(sub-region EU4) to 0.28 (sub-region EU2). By contrast, analysis of NA sub-regions (Fig. 12) 540 

shows the maximum distance is 0.08 for all sub-regions, with the exception of sub-region NA2 

(~0.03). Association between models is thus stronger for NA, indicating a lower degree of 542 

independence.  This is likely due to four out of the seven models using the same meteorological 

driver for NA, and six models using the same emissions.  For EU it is possible to isolate two 544 

repeating groups of models whose PCC distances are very small: Mod6 and Mod7, and Mod11 and 

Mod3. Models of the former group are essentially the same, as they share both AQ and 546 



 17

meteorological models, and used the same emissions and boundary conditions. They also have 

similar RMSE rankings. Mod11 and Mod3 differ in the AQ model used, but used the same 548 

meteorological model (MM5) and anthropogenic emissions. The NA cluster analysis, with fewer 

members, shows repeated association of several pairs of models: Mod15 and16 (same 550 

meteorological driver, anthropogenic emissions, and boundary conditions); Mod13 and Mod17 

(same AQ model, only different boundary conditions), and Mod14 and Mod18 (same 552 

meteorological driver). Mod12 is associated with Mod14 and Mod18, with the exception of the 

NA3 sub-region.  554 

 

In order to find an optimal set of clusters, a threshold at which models are said to be independent 556 

(imagine cutting the dendrograms vertically) is defined. The selection of the cutting height is in part 

arbitrary. The common practice suggests cutting the dendrogram at the height where the distance 558 

from the next clustered groups is relatively large, and the retained number of clusters is small 

compared to the original number of models (Riccio et al., 2012). Members of the ensemble 560 

generated with a higher threshold are more distant and therefore more independent. The cluster 

representatives and selected-member ensembles are summarised in Table 4 for both continents and 562 

for different PCC distances. For clusters composed by only two members and with symmetric 

structures (same mutual distance among all members, such as the third cluster of the EU2 sub-564 

region in Fig. 11b), it was not possible to identify a model whose distance from the centre of the 

cluster was a minimum in terms of RMSE. In these cases, more than one model is selected to 566 

represent the cluster.  

 568 

The number of independent members varies between 3 and 6 for EU and between 2 and 4 for NA 

(this difference is probably due to the smaller number of models for NA). It is interesting to note 570 

that the number of independent clusters matches the number of models needed to generate the MM 

ensembles with minimum RMSE in Fig. 7 for both continents. The two methods are in fact 572 

independent, as the clustering analysis makes no use of observational data (only model-to-model 

PCC is in fact used in the cluster analysis). Looking at the minimum RSME combination in Table 2, 574 

it can be seen that the ensembles of minimum RMSE have two or more members belonging to the 

same cluster, and that for the NA4 sub-region all members are from the same cluster. This is a result 576 

of too few independent members due to models sharing of boundary conditions, meteorology, and 

emissions.   578 
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The RMSE of MM ensembles in Table 4 were compared to the RMSE curves discussed in Fig. 7 by 580 

connecting, for any number of models, the minimum (thick lines) and maximum (dotted lines) 

RMSE values. The results are presented in Fig. 13. The short lines in Fig. 13 represent the RMSE of 582 

combinations from Table 4 (obtained with the clustering technique) and are reported along with the 

ranked combination. In the case of clusters with only two members (symmetric clusters), it was not 584 

possible to identify the representative member, and therefore both members have been retained for 

the analysis. Comparing the position of the cluster’s combination against the RMSE of the full 586 

member ensemble in Fig. 13 allows one to infer whether the new methodology is able to produce 

reduced ensembles that are more skilful than the full ensemble mean. Note that combinations of 588 

independent models have, in most cases, lower RMSE than the full ensemble, and that for all sub-

regions there are ensembles that clearly outperform the full ensemble. For example, the 590 

combinations 1-2-3-8-11, 2-6-7-8, 1-3-6-9-11, 1-2-4-8-9-11 for sub-regions EU1, EU2, EU3, and 

EU4, respectively, have a lower RMSE than the mean of all ensemble members and are close to the 592 

minimum curve. Conversely, there are situations in which the ambiguous definition of 

representative cluster leads to high-RMSE MM combinations, as for the four-member combination 594 

of the EU4 sub-region (1-2-4/5-11) and NA1 sub-region (2-4-5). Further work is needed to remove 

such ambiguity.  596 

 

6. Conclusions 598 

This study collectively evaluates and analyses the performance of eleven regional AQ models and 

their ensembles in the context of the AQMEII inter-comparison exercise. The scale of the exercise 600 

is unprecedented, with two continent-wide domains being modelled for a full year.  The focus of 

this study was on the collective analysis of surface ozone mixing ratios, rather than on inter-602 

comparing metrics for each individual model. The study began with an analysis of ozone time series 

for sub-regions of EU and NA, followed by an interpretation of the uncertainties of the individual 604 

models and ensemble. Analysis of model error in each sub-region demonstrates that most of the  

error in the models is introduced by bias from emissions, boundary conditions, and meteorological 606 

drivers.  

 608 

While MM ensembles demonstrate improved performance over the individual model realizations, 

the most skilful ensemble is not necessarily generated by including all available model results, but 610 

instead by selecting models that result in a minimization in ensemble error. In addition, an ensemble 

of top-ranking model results can be worse than an ensemble of top-ranking and low-ranking model 612 

results.  Until now, the prevailing assumption has been that as long as a large set of results was 
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treated statistically in one ensemble, the ensemble would perform better than any individual 614 

ensemble member. Furthermore, it was assumed that the better the model results the better the 

ensemble. However, the analysis presented here suggests that this is not necessarily the case, as 616 

outliers also need to be included in the ensemble to enhance performance. Furthermore, the skill 

score does not necessarily improve by increasing the number of models in the ensemble. By 618 

contrast, the level of dependence of model results may lead to a deterioration of the results and to an 

overall worsening of performance. Despite the remarkable progress of ensemble AQ modelling over 620 

the past decade and the effort spent to build a theoretical foundation, there still are many 

outstanding questions regarding this technique. Among them, what is the best and most beneficial 622 

way to build an ensemble of members? And how to determine the optimum size of the ensemble in 

order to capture data variability while minimizing the error?  624 

 

To try address these questions we apply a method for reducing data complexity known as a 626 

clustering technique, which has the advantage of simplifying information provided by the large 

amounts of data (such as AQ model outputs) by classifying, or clustering, the data into groups 628 

based on a selected metric, where there is no prior knowledge of grouping. Results show that, while 

the clustering technique needs further refinement, by selecting the appropriate cluster distance and 630 

association criteria, one can generate an ensemble of selected members whose error is significantly 

lower than that of the full-member ensemble mean. While the results of the clustering analysis are 632 

directly relevant for ensemble model evaluation applications, it is also applicable to other ensemble 

communities, for example AQ forecasting, climate analysis, and oceanography.  634 
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 640 

Appendix A: Statistical Measures 

Defining y the vector of model output and obs the vector of observations (n-component both), having mean 642 

value y  and obs , respectively. 

Mean bias:  644 

n

)obs(y
=MB i

ii∑ −
                                                                       (A1) 

Root mean square error:  646 
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n

)obs(y
=RMSE i

ii∑ − 2
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Mean Gross Error: 648 
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obsyn

)obs(y
=NMB i

ii∑ −

                                                              (A6)
 

 656 
Pearson correlation coefficient: 
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Captions 
 838 
Table 1. Participating models and important characteristics.  

Table 2. RMSE-ranked combinations of models that give minimum RMSE for each sub-region. The 840 
minimum of all combinations is listed in bold. 
 842 
Table 3. Statistical skills for all-members ensemble (first row of each domain) and ensemble of minimum 
RMSE (second row).  σ is the standard deviation in μg m-3 for EU and ppb for NA. 844 
 
Table 4. Ranking of cluster representatives for EU and NA sub-regions for varying PCC distance.  846 
 
 848 
Figure 1 – Continental maps of (a) Europe and (b) North America with locations of sub-regions marked. 
The dots and other symbols denote the positions of the rural ozone receptors used in the evaluation analysis. 850 
The contours indicate the summertime anthropogenic NOx emissions (in kg km-2) from the standard 
inventories. 852 
 
Figure 2. Box-plots of ozone frequency distribution at receptors, averaged in space over (a) EU domain and 854 
(b) NA domain and in time for the whole 2006 year, for observations (MEAS), individual SMs, and two MM 
ensembles (Mean, Median).  856 
 
Figure 3. Rank histogram for the whole domain of (a) EU and (b) NA, full-model ensemble, hourly data for 858 
the whole 2006 year. 
 860 
Figure 4. Time series (JJA) of diurnal ozone cycle for (a) EU and (b) NA sub-regions 

Figure 5. Normalized Mean Bias vs. Normalised Mean Square Error for (a) EU and (b) NA. Sub-regions 1 862 
to 4 are represented by number and coloured by model or ensemble. Mean and median for each sub-region 
are highlighted by boxes. 864 
 
Figure 6. Rank histogram for (a) EU and (b) NA by sub-regions, full-model ensemble, hourly data for the 866 
period JJA. 
 868 
Figure 7. RMSE, MGE or MB, and PCC of the ensemble mean of any possible combination of members for 
(a) EU, and (b) NA. Continuous lines denote the mean and the median of the distributions 870 
 
Figure 8. Daily maximum concentrations for EU sub-regions, for the period JJA. Horizontal axis: ensemble 872 
maximum of all available members. Vertical axis: ensemble maximum of model combinations with 
minimum RMSE.   874 
 
Figure 9. Hourly ozone concentrations (μg m-3) for the period JJA at receptor positions: (a) observations; (b) 876 
ensemble of ranked models 1 and 5; models ranked (c) 2nd; and (d) 11th.  
 878 
Figure 10. Box-plots of observed ozone concentration, full-model ensemble and selected-model 
(combinations with minimum RMSE) ensemble. Top row: EU sub-regions; bottom row: NA sub-regions. 880 
 
Figure 11. Dendrograms of model clustering as function of mutual PCC distance for EU sub-regions 882 
 
Figure 12. Dendrograms of model clustering as function of mutual PCC distance for NA sub-regions 884 
 
Figure 13. Curves of minimum (thick lines) and maximum (dotted lines) RMSE obtained by connecting min 886 
and max of Fig. 8. The short lines are the RMSE of MM ensembles from clustering analysis (combinations 
of Table 4). The labels are the individual RMSE rankings of MM members. Different colours correspond to 888 
different sub-regions for (a) EU and (b) NA.  
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Tables 890 
Table 1 

Model Res 
(km) 

No. 
Vertical 
layers 

Emissions Chemical BC  Met AQ 

European 
Domain 

MM5 DEHM 50 29 Global emission 
databases, EMEP 

Satellite 
measurements 

MM5 Polyphemus 24 9 Standard§  Standard 
PARLAM-

PS EMEP  50 20 EMEP model From ECMWF and 
forecasts 

WRF CMAQ 18 34 Standard§ Standard 
WRF WRF/Chem 22.5 36 Standard§ Standard 
WRF WRF/Chem 22.5 36 Standard§ Standard 

ECMWF SILAM 24 9 
Standard 

anthropogenic 
In-house biogenic 

Standard 

MM5 Chimere 25 9 MEGAN, Standard Standard 
LOTOS EUROS 25 4 Standard§ Standard 
COSMO Muscat 24 40 Standard§ Standard 

MM5 CAMx 15 20 MEGAN, Standard Standard 

North 
American 
Domain* 

GEM AURAMS 45 28 Standard+ Climatology 
WRF Chimere 36 9 Standard LMDZ-INCA 
MM5 CAMx 24 15 Standard LMDZ-INCA 
WRF CMAQ 12 34 Standard Standard 
WRF CAMx 12 26 Standard Standard 
WRF Chimere 36 9 Standard standard 

MM5 DEHM 50 29 global emission 
databases, EMEP 

Satellite 
measurements 

§ Standard anthropogenic emission and biogenic emission derived from meteorology (temperature and solar radiation) 892 
and land use distribution implemented in the meteorological driver (Guenther et al., 1994; Simpson et al., 1995). 
*Standard inventory for NA includes biogenic emissions (see text). 894 
+Standard anthropogenic inventory but independent emissions processing, exclusion of wildfires, and different version 
of BEIS (v3.09) used.  896 
 
 898 
Table 2 

 Number of Models
2 3 4 5 6 7

EU 
dom1 
dom2 
dom3 
dom4 

1-2 
3-8 
2-3 
5-9 

1-5-11 
2-3-8 
2-3-5 
1-6-9 

1-2-7-11 
2-3-5-8 
1-2-3-5 
2-6-7-9 

1-2-5-7-11 
1-2-3-5-8 
1-2-3-9-11 

1-6-9-10-11 

1-2-4-5-6-11 
1-2-3-4-5-8 

1-2-3-5-8-11 
1-2-6-9-10-11 

1-2-3-4-5-6-11 
1-2-3-4-5-6-8 

1-2-3-5-8-9-11 
1-2-3-6-9-10-11 

NA 
dom1 
dom2 
dom3 
dom4 

1-2 
1-2 
2-3 
1-2 

1-2-3 
1-3-4 
1-2-3 
1-2-3 

1-2-4-6 
1-2-3-4 
1-2-3-4 
1-2-3-4 

1-2-3-4-6 
1-2-3-4-5 
1-2-3-4-5 
1-2-3-4-5 

1-2-3-4-6-7 
1-2-3-4-5-6 
1-2-3-4-5-6 
1-2-3-4-5-6 

 

 900 
 
 902 
 
 904 
 
 906 
 
 908 
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 910 
Table 3. 

  Bias FBias RMSE PCC σ 

EU 

Dom 1 
σobs=27.4 

-5.11 
-0.82 

-0.08 
-0.01 

12.01 
8.49 

0.97
0.96

18.29
22.24

Dom 2 
σobs=24.5 

-8.77 
1.35 

-0.11 
0.02 

13.50 
7.78 

0.93
0.95

17.59
22.29

Dom 3 
σobs=31.7 

-4.87 
-2.34 

-0.06 
-0.03 

17.38 
14.90 

0.89
0.90

20.25
24.17

Dom 4 
σobs=20.7 

-1.11 
-1.25 

-0.013 
-0.014 

8.27 
7.27 

0.92
0.94

17.25
18.34

NA 

Dom 1 
σobs=10.13 

0.66 
-0.11 

0.02 
-0.003 

3.63 
3.45 

0.94
0.94

12.3
12.1

Dom 2 
σobs=12.83 

3.90 
2.05 

0.10 
0.05 

6.40 
4.82 

0.92
0.92

11.80
12.6

Dom 3 
σobs=10.36 

4.51 
2.55 

0.13 
0.07 

7.34 
5.8 

0.85
0.87

12.5
10.5

Dom 4 
σobs=14.50 

10.55 
5.10 

0.26 
0.13 

12.35 
7.98 

0.90
0.91

12.3
14.2

 912 
 
 914 
Table 4 

 distance Number of 
members 

Ranking of cluster 
representatives

EU1 
PCC > 0.06 
PCC =0.05 
PCC = 0.03 

3 
4 
5 

6-2-8/9
3-2-8/9-11 

3-2-8/9- 11-1/10
EU2 PCC>0.045 4 6-1/8-2-7/9

EU3 PCC>0.08 
PCC=0.06 

3 
5 

3-6/7- 1
3-11- 6/7- 1-9

EU4 PCC > 0.04 
PCC =0.02 

4 
6 

1-4/5-2-11
1-4/5-2/10-9-11/7-8

 

NA1 PCC>0.04 3 3/4-1/5- 2
NA2 PCC>0.012 3 3/5-6/7-1

NA3 PCC>0.035 
PCC=0.03 

2 
4 

2/4-6
4-2-3-6/7

NA4 PCC>0.025 3 4/7- 5/6-3
 916 
 
 918 
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EU1

Mod 11-Rank 1

Mod 3-Rank 10
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