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ABSTRACT 

A challenge with multiple chemical risk assessment is the need 

to consider the joint behavior of chemicals in mixtures.  To 

address this need, pharmacologists and toxicologists have 

developed methods over the years to evaluate and test chemical 

interaction.  In practice, however, testing of chemical 

interaction more often comprises ad hoc binary combinations and 

rarely examines higher order combinations. One explanation for 

this practice is the belief that there are simply too many 

possible combinations of chemicals to consider.  Indeed, under 

stochastic conditions the possible number of chemical 

combinations scales geometrically as the pool of chemicals 

increases.  However, the occurrence of chemicals in the 

environment is determined by factors, economic in part, which 

favor some chemicals over others.  We investigate methods from 

the field of biogeography, originally developed to study avian 

species co-occurrence patterns, and adapt these approaches to 

examine chemical co-occurrence.  These methods were applied to a 

national survey of pesticide residues in 168 child care centers 

from across the country.  Our findings show that pesticide co-

occurrence in the child care center was not random but highly 

structured, leading to the co-occurrence of specific pesticide 

combinations.  Thus, ecological studies of species co-occurrence 

parallel the issue of chemical co-occurrence at specific 
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locations. Both are driven by processes that introduce structure 

in the pattern of co-occurrence.  We conclude that the 

biogeographical tools used to determine when this structure 

occurs in ecological studies are relevant to evaluations of 

pesticide mixtures for exposure and risk assessment.  
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1. INTRODUCTION 

The last couple of decades have seen increased legislation 

concerning chemical mixtures (reviewed by Monosson(1)).  The Food 

Quality Protection Act requires the US EPA to consider the 

combined effect of pesticides that share a common mechanism of 

toxicity.(2) Similarly, 1996 amendments to the Safe Drinking 

Water Act require new approaches for studying the adverse 

effects of contaminant mixtures in drinking water.(3)  Under the 

Clean Air Act, the EPA is directed to include information on air 

pollutants that ‘may interact with such pollutant to produce an 

adverse effect on public health or welfare’.(4)  Consequently, 

the EPA and the Agency for Toxic Substances and Disease Registry 

(ATSDR) have developed guidance documents that outline specific 

methods for risk assessment of chemical mixtures.(5-8)  An 

important aim of these methods is to assess the nature of the 

chemical interaction and determine if the effect of mixtures of 

chemicals is predicted according to additive action.(9-14) From a 

regulatory standpoint additive action is a simplifying condition 

because it means that the response of a chemical mixture can be 

predicted from the individual chemical dose-response curves.  On 

the other hand if additive action does not prevail, the 

interactions must be accounted for and these are potentially 
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numerous. The guidance documents suggest that it is beneficial 

to identify and test ‘mixtures of concern’.   

Mixtures may be intentionally formulated, or generated by a 

chemical process such as combustion or drinking water 

chlorination, or arise coincidentally in the environment. The 

question is whether the apparent coincidental mixture is random 

or structured.  Randomness increases the combinatorial 

possibilities, whereas structuring favors specific combinations 

and reduces the numbers of realized combinations.  At first 

glance, assessing exposure to mixtures is an intimidating 

prospect because under stochastic conditions the number of 

combinations arising by chance increases in a geometric 

progression, 2r, as the number of individual species r in the 

source pool grows.  Whereas a source pool of 3 species permits 8 

unique combinations, a moderately sized pool of 15 species 

permits an astounding 32,768 possible combinations (illustrated 

in Supporting Information).  

If chemical co-occurrence is mediated by human actions – 

with underlying economic, social, and technical drivers – might 

these actions favor specific combinations of chemicals in the 

environment?  Interestingly, the answer to this question may be 

informed by the observations of ecologists applying 

biogeographic approaches. Ecologists have grappled with the 

question of randomness in the formation of communities of animal 
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species for at least some forty years.(15)  Specifically, how do 

co-occurrence patterns indicate that an observed community is 

not simply a chance occurrence?  Two important findings came 

about from the observations of ecologists.  First, considering 

all the combinations that can be formed from a group of related 

species, only certain ones of these combinations exist in nature 

.(16) In studying fungus-dwelling insects ecologists Pielou and 

Pielou(17) observed that many possible combinations of species are 

never realized.  Secondly, species interactions exhibit 

characteristic “checkerboard” patterns.  In studying birds in 

New Guinea and the broader island archipelago in which it 

resides, Diamond(16) observed a “checkerboard pattern” of 

“forbidden” species combinations suggestive of competition.   

To facilitate the study of species interactions the 

presence–absence matrix with "null model" randomization arose as 

the fundamental unit of analysis.(18)  Herein, we adapt this 

approach to study chemical co-occurrence in the environment. The 

question at hand is whether chemical co-occurrence is random or 

structured, and if structured, which chemical species associate 

with one another?  Null model analysis addresses this question 

by comparing the observed matrix with a set of matrices which 

are obtained through Monte Carlo randomization.  Constraints are 

imposed in the randomization in accordance with the hypothesized 

form of structure so that the generated matrices embody the 
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‘null model’.  The null model is therefore biased to reflect 

structuring in the mapping of the species source pool to a 

realized community.    In this study we apply the null model 

analysis to investigate co-occurrence patterns of chemical 

species (ie., pyrethroid pesticides) in a nationwide survey of 

child care centers,(19) and ask whether chemical co-occurrence is 

due to chance or to structuring processes.  In addition, we have 

developed methods to identify and test specific combinations to 

help inform risk assessors of potential ‘mixtures of concern’.      
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2. METHODS  

2.1 Pesticide Measurements   

The First National Environmental Health Survey of Child 

Care Centers (CCC) was a collaborative study of the U.S. 

Department of Housing and Urban Development (HUD), the U.S. 

Consumer Product Safety Commission (CPSC), and the EPA.(19)  The 

objectives of the pesticide portion of the study were to 

evaluate pesticide use patterns in child care centers, and to 

determine pesticide residue concentrations in and around child 

care centers.  

Licensed, institutional child care centers serving children 

less than 6 years of age within the 48 contiguous United States 

were randomly selected for participation.  Probability-based 

sampling resulted in the selection of 334 child care centers 

with 168 eligible centers completing the survey. Up to two 

classrooms and one multipurpose room where children younger than 

6 years of age regularly spent time were randomly selected for 

sample collection.  The community ecology method was applied to 

the set of averaged floor wipe samples (N=168). 

The details of the wipe sample procedure are provided in 

detail by Tulve et al. 2006.(19)  Briefly, floor wipe samples were 

collected from hard surfaces and in the same room from a fixed 

area of 929 cm2.  The area was wiped twice, each time with a 

sterile gauze containing alcohol, and the two wipe samples were 
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combined and extracted.  A multi-residue analysis method was 

developed and validated for this sampling procedure. The method 

included 22 organophosphate pesticides, 13 synthetic pyrethroid 

pesticides, pyrethrins I and II, one synergist (piperonyl 

butoxide), and one phenyl pyrazole (fipronil).  The analysis of 

deltamethrin by gas chromatography (GC) was unable to rule out 

determination of tralomethrin which degrades to deltamethrinin 

in the GC injection port(20) and in the environment.(21) 

 

2.2 Null Model Analysis 

Figure 1A shows a presence-absence matrix for an avian 

community in the Caribbean. This matrix is a subset of the West 

Indian Finch (WIF) matrix (see Supplemental Information for the 

full matrix). Figure 1B shows the analogous matrix for study of 

chemical co-occurrence. In both cases, rows are species and 

columns are sites, and the entries are the presence (1) or 

absence (0) of a species at a site. The matrix dimensions 

consist of the species source pool, specified as R distinct 

species (rows), and C distinct sites (columns) to be observed.  

The most basic property of the observed matrix is the overall 

species occurrence, N.  The full WIF archipelago consists of 19 

islands (C=19), 17 species of finch (R=17), and 55 total 

occurrences (N=55).  Species were not distributed uniformly 

throughout the islands. Whereas the Tiara Canora finch resided 
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in just 1 island, the Tiara Bicolor populated 17 islands.  This 

finding is not unlike the distribution of pesticides in the 

environment where one pesticide in a class may dominate the 

market.   

Gotelli(15) has reviewed the origins and evolution of null 

model analysis and has shown how the various null models relate 

to one another based on the degree of structuring (Table I).  

Under Null 1, species are equally likely to occupy all sites and 

all sites are equally diverse, and therefore Null 1 is the least 

structured null model, requiring only that the N occurrences in 

the observed matrix be randomly allocated to an empty R x C 

matrix.  Under Null 8, species are randomized in proportion to 

their row and column sums. Randomization under Null 8 maintains 

that some species are dispersed across more sites than others, 

and some sites exhibit more species diversity than others. Null 

9 is the most structured null model, in principle similar to 

Null 8 yet requiring that row and column marginal totals are 

maintained fixed in randomization.  This is accomplished through 

the swap procedure, described in method section 2.7.  The other 

null models (2-7) vary in how they impose constraints on 

randomization with respect to sites and species: equally 

probable, proportional, or fixed marginal totals. 

 

2.3 Presence-Absence Matrix  
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Application of the community ecology method was limited to 

the set of 13 pyrethroids and 2 pyrethrins (hereafter, 

‘pyrethroids’).  Thus, a 15 x 168 matrix of 15 distinct 

pyrethroids assessed in 168 child care centers constituted the 

surface residue matrix (ng/cm2).  This matrix was converted into 

a presence-absence matrix (0,1 matrix) by comparison of the 

pyrethroid surface residue (ng/cm2) at each child care center 

with the appropriate method of detection limit (MDL, ng/cm2) for 

each pyrethroid. Figure 2 shows the construction of the 0,1 

matrix and its column and row marginal totals.  By convention, 

ecologist use ‘sites’ as column headers and ‘species’ as row 

headers.  To maintain consistency with our internal databases we 

assigned species to columns (pyrethroids) and sites to rows 

(child care centers). The marginal totals are as follows: let Tj 

equal the column total for column j (pesticide species j), 

across all rows 1 to R, where xij represents the presence (1) or 

absence (0) of the individual pesticide species. Let Si equal the 

row total for row i (child care center i), for all columns 1 to 

C.  Thus,  
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The initial probabilities, P(Xij), of null models 1-8 in Table I 

are calculated using R, C, Si, Tj, and N.  

 

2.4 The Null Model Analysis Algorithm  

Details of specific null models are described in subsequent 

sections.  Regardless of the specific null model, the following 

were the main steps:  

(1) The 0,1-matrix was developed as described above.   

(2) The identities and frequencies of occurrence of all k-way 

(1-way, 2-way, 3-way, etc.) combinations in the observed 

0,1-matrix Mobs were assessed.   

(3) Mobs was randomized according to null model 1-9 to 

generate Msim.   

(4) Unique k-way combinations observed in Mobs were counted in 

Msim.  

(5) The third and fourth steps were repeated 1000 times to 

generate a frequency histogram for each unique k-way 

combination. Each histogram represents the expected 

distribution of occurrence of a particular k-way 

combination observed in Mobs given that the null is true.  
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(6) An empirical cumulative distribution function (ECDF) was 

developed for each k-way combination and the 

corresponding cumulative probability, PECDF, for Mobs with 

respect to the simulated set Msim was determined.  By 

convention, the null was accepted for values of 

0.05<PECDF<0.95. 

 

2.5 Randomization by Null Models 1 - 8 

The observed matrix was randomized according to Null 1 by 

first specifying an R X C matrix of zeroes.  The empty matrix 

was filled with 1s such that there was equal probability of 

converting 0s to 1s for all elements of the matrix. For Null 

Model 1, the probability of selecting a cell is p(Xij)=1/RC 

(Table I).  If the matrix element was already converted to 1, 

another element was randomly selected. This procedure continued 

until a 0,1 matrix of N ones was produced, Msim.  This 

constituted 1 randomization of the observed matrix according to 

Null 1, and was used for Null 1-8 in accordance with the 

constraints for each null model (Table I). Figure 3 shows a 

hypothetical 5x6 observed presence-absence matrix and 

corresponding probabilities, p(Xij), for matrix randomization 

according to Null 1, 2, and 8.   For Null 1 and 8 the 

probabilities of selecting elements are different but sum to 1 

for all elements of the matrix.  One simulated matrix is 
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complete when ten 1s have been assigned.  Null 2 is an example 

of a null model with a fixed margin constraint. For Null 2 the 

probabilities sum to 1 by row.  Randomization starts with 

placements of 1s in the first row until three 1s have been 

placed (Figure 3, S1=3), and then starts with the second row 

until all of its placements are complete and so on.  The 

difference between Null 2 and 4, both of which stipulate fixed 

row sums, is the probability of selecting a column within a 

given row.  Column selection is equally probable for Null 2, 

while for Null 4 it is proportional to the column marginal 

totals.   

    

2.6 Null Model 8 

Two methods were used to randomize according to Null 8.  In 

the first, the probability of converting a matrix element from 0 

to 1, was based on the formula for Null 8 in Table I, 

p(Xij)=SiTj/N2.  Gotelli (15) is clear to indicate that this 

probability applies strictly to the first entry, and so this 

method is designated ‘Null8’. The second approach uses a 

statistical fitting procedure of Navarro-Alberto and Manly(22) to 

derive p(Xij), designated ‘Null8 NM’.   These authors note that 

the underlying species abundance data may be modeled with a log-

linear model where the expected value of abundance E(Aij) is 
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given by a constant overall effect γ, a species effect δj , and a 

location effect ϑi . 

 

ln(Aui)= γ + δj + ϑI   (4) 

 

Species j is absent (0) in location if and only if its quasi-

abundance is 0 and is present (1) in location i if and only if 

its quasi-abundance is greater than 0.  The Aij and Yij are linked 

by  

 

πij = P(Yij=1)=P(Aij> 0)  (5) 

 

The generalized linear model for the probability of occurrence 

of species j on location i is given by  

 

πij = 1-exp(-exp(γ+δj+ϑi))  (6) 

 

Thus, there is set of γ, δj and ϑi resulting in the optimal 

probability matrix, πij, for randomizing matrices according to 

Null 8.  Filling a zero matrix with N 1s according to the 

probability πij, will lead to expected values Si and Ti which are 

consistent with the observed matrix.   Considering each row 

total Si and column total Tj is a random variable, Eqn 6 was 
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optimized to produce the optimal set γ, δj and ϑi resulting in πij 

which minimized the following objective function: 

 

( ) ( )∑∑ −+−=
R

ii

C
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2
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2 ˆˆ   (7) 

Where jT̂  and iŜ  are the column and row totals, respectively, of 

the simulated matrix.  The matrix πij specified the correct 

probability for randomizing matrices under Null 8.  

 

2.7 Randomization by Null 9 

Creating a set of random matrices with identical row and 

column sums is a challenging problem.  Filling an empty matrix 

with randomly placed 1s is challenging because eventually a 

point is reached in which any further placements violates either 

a row or column sum.  The ‘swap’ algorithm provides a solution 

to this problem, beginning with the observed matrices as the 

starting point, “checkerboard” sub-matrices are identified 

1 0
0 1   (‘down’)  or    

0 1
1 0   (‘up’) 

and swapped: a ‘down’ 2 x 2 sub-matrix is replaced with  an ‘up’ 

sub-matrix and vice versa. It is important to note that the 

elements of these sub-matrices do not have to be physically 

adjacent.  The “checkerboard” represents a species pair that 

does not co-occur on two sites. The first iterations of the swap 
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algorithm produce matrices that are similar to the observed 

matrix. Thus, a “burn-in” phase of 10,000 swaps was applied to 

lose the ‘memory’ of the observed matrix and an additional set 

of 10,000 swaps was used to compute ECDFs for specific 

combinations identified in the observed matrix.  

 

2.8 Software 

Programs were written in MATLAB (MathWorks, Inc., Natick, 

MA, USA) to: 1) generate a 0,1-matrix from the surface residue 

data; 2) search the 0,1-matrix for all k-way combinations and 

their frequencies of occurrence; 3) randomize matrices according 

to Null Models 1-9; and, 4) determine PECDF.  In order to 

randomize according to Null8 NM, an optimization routine 

employing the Nelder-Mead methods was written to solve for Eqn. 

(6).  The procedure is explained in the Supplemental Information 

section. 

The EcoSim software package(23) was used to compute general 

measures of species co-occurrence and test for nonrandom 

patterns.  EcoSim applies the same randomization of the observed 

matrix as used with the MATLAB programs, but with focus on 

general metrics instead of specific species combinations.  We 

selected a statistic based on Diamond’s checkerboard concept, 

“CHECKER”(16). This index quantifies the number of species pairs 

forming perfect checkerboard distributions in a presence–absence 
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matrix(15); this means perfect segregation between species. We 

also evaluated the “COMBO” statistic, the sum of unique 

combinations. The raw data for the CCC study and presence-

absence matrix is provided in the Supplemental Information. 

 

3. RESULTS 

Table II summarizes the general findings of species 

interaction in the CCC presence-absence matrix. We found 34 

pairs of pyrethroids forming perfect checkerboard distributions 

(CHECKER=34). Randomization by Null 1 produced a mean of 7.21 

perfect checkerboards distributions per simulated community 

(5000 simulations).   If the observed matrix has a significantly 

higher CHECKER score than randomly generated matrices, then a 

substantial number of species pairs co-occur less often than by 

chance, suggesting structuring. Randomization by Null 8 and 9 

resulted in CHECKER statistics compatible with the observed 

matrix, 35.9 and 34.9, respectively.   

Structured data should exhibit less unique species 

combinations than chance data. Whereas 39 unique species 

combinations were observed in the CCC matrix, randomization by 

Null Model 1 produced a mean of 101 combinations per simulated 

community (5000 simulations).  Randomization by Null 8 and 9 

resulted in a COMBO statistic closer to the observed matrix, yet 

still significantly larger. Is the finding of structuring in the 
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CCC matrix due to an artifact arising from formulation mixtures?  

Of the 15 chemical species in the CCC matrix, 3 are isomeric 

pairs in products: cis-/trans-allethrin, cis-/trans-permethrin, 

and pyrethrin I and II.  To avoid artifacts from these ‘embedded 

mixtures’ we lumped these compounds, resulting in 13 distinct 

species (CCC Matrix, Lumped), and repeated the analysis with 

EcoSim.  We observed the same essential finding: the CHECKER and 

COMBO measures could not be reproduced by a chance process (Null 

1).  We were able to generate non-significant COMBO statistics 

with NULL Model 9, indicating we had removed some structure by 

lumping.  Interestingly, the same pattern was observed with the 

West Indian finch (WIF) Matrix. This matrix served as a positive 

control for our analysis. As expected, the CHECKER statistic was 

higher than expected for a chance process and the COMBO 

statistic was lower than expected.  Randomization of the WIF 

matrix by Null 9 rendered a non-significant CHECKER statistic, 

however the observed COMBO statistic could not be explained by 

Null 9.    

These findings motivated an examination of specific 

combinations. Figure 4 shows the overall abundance of binary, 

tertiary, and higher-order combinations as percent of all 

centers with those combinations.  Most pyrethroid mixtures in 

the 168 child center study were low-order, including many binary 

combinations (50/168).  The majority of these binary 
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combinations reflected pairing of cis-and trans-permethrin 

(46/50).  Although we lumped isomer pairs for the EcoSim 

analysis, we kept them distinct to confirm logical pairings in 

the identification of specific combinations. Environmental co-

occurrence of cis- and trans-permethrin is expected because of 

their co-occurrence in the formulation, often as a 40:60 

cis:trans mixture.  Figure 5 provides a list of the high-order 

combinations realized in the Child Care Center study. None of 

the observed combinations conformed to a process where species 

are equally probable (See Table I; Null 1, 2, 7).  Of the 20 

observed combinations 10 conformed to processes where some 

species have greater presence across sites.  Interestingly, the 

choice of site model did not matter. What mattered was whether 

the randomization process was proportional to species sums (Null 

4, 6, 8) or whether it maintained fixed species sums (Null 3, 5, 

9).   

The most robust high-order combinations captured by these 

randomizations were the two 5-way combinations: species 4, 6, 8, 

9, and 10 and species 5, 6, 8, 9, and 10).  Higher order 

combinations (7-, 8-, and 9-way) were not consistent with any of 

the null models (PECDF>0.994).  The first of the 5-way co-

occurrences consists of cyfluthrin (4), cypermethrin (6), 

esfenvalerate (8), and cis-permethrin (9), and trans-permethrin 

(10), respectively.  The 4-way subset (all except 
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esfenvalerate), occurred three times and was consistent with the 

same null models (Null 4, 6, 8 and Null 3, 5, 9). The second 5-

way combination consisted of cyhalothrin (5), cypermethrin (6), 

esfenvalerate (8), and cis-permethrin (9), and trans-permethrin 

(10). The 4-way subset (all except cyhalothrin), was the only 

other 4-way combination to occur three times and was consistent 

with same null models. Six other 4-way combinations were 

consistent with same null models (Null 4,6,8 and Null 3,5,9) and 

shared many of the same pyrethroids.  

 Null model analysis was less informative when examining 

low-order combinations (Figure 6). Consistent with the high-

order findings, none of the observed 3-way combinations 

conformed to a process where species are equally probable (Null 

1,2,7); however the most frequently observed 3-way combination 

cypermethrin, cis-permethrin, and trans-permethrin(6,9,10) was 

simulated only by two null models specifying fixed species sums 

(Null 3 and 5). Curiously, the observed high frequency (14) of 

the 6,9,10 combination was not consistent with Null 9 

(PECDF=0.9736). 

Most of the single pyrethroid occurrences and half of the 

binary occurrences were consistent with null models 1, 7, and 2 

(randomization is equally likely across species).   The 9,10 

paring (cis/trans-permethrin) was frequently observed as a 
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binary combination, but was not explained by any of the null 

models.   

Although not reported in Figure 5 and 6, the method of 

Navarro-Alberto and Manly (“Null 8 NM”) gave a similar PECDF value 

as that of the Gotelli (“Null 8”, Table I): PECDF (Null8NM= 0.991 

Null8 + 0.012, R2 = 0.906) for all combinations (2-way or 

greater), and rendered the same decision to reject or accept the 

null model. 

 

4. Discussion 

We draw a parallel with island biogeography in representing 

the set of child care centers as an ecological niche. Whereas 

the structuring of avian species result from competition, 

communalism, and other forms of interaction, the use and 

occurrence of consumer chemicals at specific locations (daycare 

centers) is structured in part by social and economic forces.   

The centers are licensed institutional centers and therefore 

share properties that may not transfer to home-based day cares, 

residences, or other settings.  Processing the CCC pyrethroid 

presence-absence matrix through the EcoSim software provided 

evidence of a “structured community” of pyrethroids.  A parallel 

finding was observed between the CCC pyrethroid matrix and the 

WIF finch matrix (a positive control): both showed greater 

numbers of perfect checkerboard distributions and lower numbers 
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of unique combinations than predicted by chance. Pesticide 

checkerboards could have resulted because of technical factors. 

Some pyrethroids are known for their ‘knockdown’ effectiveness, 

while others are optimized killing agents.(24)  This may provide a 

technical basis for combining some pyrethroids and not others. 

Null model analysis allows for investigation of the degree 

of structuring and follows classical statistical randomization 

tests.(25)  By classical MacArthur competition theory, species co-

occurrence is nonrandom and is less than would be expected if 

species occurrences were purely stochastic and independent.(26)   

Here we applied null model analysis to investigate specific 

combinations with apparent success.  The Child Care Center study 

consisted of 168 centers across the country, thus the realized 

observations of the CCC can only possess a maximum of 168 unique 

combinations from a possible set of 32,768.  Therefore, it is 

important to distinguish those combinations which may be 

spurious from those which are robust and reflective of the 

underlying structuring process. To achieve this, we conducted 

null model analysis, comparing observed findings with simulated 

communities.  We calculated tail probabilities from the 

cumulative frequency of the simulated observations, which were 

generated according to the rules of the null model in question.   

By convention we accepted the null hypothesis if the 0.05 < PECDF 

< 0.95.  If the particular metric of interest (e.g., a specific 
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combination, or general measure such as COMBO) was so rare that 

it was not contained between the 5th and 95th of ranked simulated 

observations, then we rejected the null model.   Initially, this 

was the aim: to discern whether structure is present and 

understand it. Once structuring is understood to be operative, 

the next question is whether particular observations are robust 

or spurious; that is, to which mixtures should we direct 

toxicity testing efforts. Of the four observed 5-way 

combinations, null model analysis differentiated between two 5-

way combinations which were structured from two which were 

apparently spurious (Figure 5). The two 5-way combinations 

consistent with null models involving chemical species presence 

(proportional or fixed) contained sub-elements that tended to 

repeat more often in the 4-way combinations.   

Null model analyses did not identify robust combinations 

higher order than 5-way. Whereas the theoretical distribution of 

unique numbers of k-way combinations has peak density for 7- and 

8-way combinations (see Supplemental Information), the observed 

density is shifted left with a mode at 4-way combinations. This 

suggests that structuring forces are operative, thus reducing 

higher order co-occurrences. Interestingly, null model analyses 

did not differentiate on the type of randomization of sites, 

whether equally likely or involving the site occurrence totals.  

We had anticipated that Null models 8 and/or 9 would prevail and 
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thus Si (site sums) and Tj (species sums) would both be important 

parameters for predicting mixtures.  Our findings suggest that Tj 

is the critical constraint for randomization and predicting 

mixtures.      

In a preliminary analysis, 168 surface wipe samples were 

sorted by total surface residue (ng/cm2), and the relative 

proportions of pyrethroids computed (Figure 5).  A pattern 

emerged at the greatest 10% of loadings indicating a relevant 

mixture of permethrin (50.1%), cypermethrin (27.7%), cyfluthrin 

(12.4%), deltamethrin (3.25%), esfenvalerate (2.65%), and 

cyhalothrin (1.92%).  Examining the relative proportions in the 

top 10% most concentrated samples (Figure 7) helps draw 

attention to co-occurrences by reducing sample size.  Notice the 

overlap between the most prevalent pyrethroids in the 16 most 

concentrated samples with the most frequent constituents of the 

higher order combinations (Figure 5)  observed in the full CCC 

sample (N=168).  However, co-occurrence assessment by such means 

is not as rigorously addressed as is the case with null model 

approach; that is, all identified pesticides did not co-occur in 

any one center.  

Ecologists favor general measures of species interaction in 

null model analysis rather than specific species co-occurrences.   

The single checkerboard represents two species claiming two 

distinct sites in a mutually exclusive manner.(16) Whether this 
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pattern arises from competitive interaction or because each site 

is suited to host just one of the two species remains unknown.  

Either process represents a form of structuring; therefore, the 

CHECKER statistic, the total pairs of species forming perfect 

checkerboard distributions is an overall measure of structure.  

Through simulations, Gotelli (15) has investigated the Type I 

error rate for null model analysis using four measures of 

species co-occurrence, including the COMBO and CHECKER score.  

Null Models 2 and 9 showed the lowest Type I error rates (< 10%) 

for both COMBO and CHECKER.  Null 8 exhibited a low Type I error 

rate, but only for the COMBO statistic (6%) (15).  Extending 

these analyses to evaluate the Type I error rate for the study 

of specific combinations would provide a better understanding of 

the ability of null model analysis to identify robust mixtures 

of varying complexity; that is, how the test behaves with low-

order and high-order combinations.  The inability to adequately 

simulate the 9,10 binary combination by any of null models, 

suggest that these approaches may not be suited for identifying 

low-order combinations. A partial solution to this problem may 

be to lump isomers. Lumping of isomers for the EcoSim analysis 

rendered acceptance of the COMBO statistic with null model 9.  

However, we chose not to lump isomers as we were interested to 

confirm and show their logical pairing in the observed mixtures. 

Indeed, the 9/10 cis-/trans-permethrin pair co-occur in 19 of 
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the 20 higher-order mixtures.  The 4-way mixture in which they 

do not co-occur contains neither cis- nor trans-permethrin (9 

nor 10).  Acceptance of null models involving equally probable 

species (Null 1, 7, and 2) for single and binary occurrences 

suggests a high Type II error rate (accepting the null model 

when it is false).  In short, the confirmation of structuring 

process in the formation of mixtures requires analysis of 

higher-order combinations or general measures of species 

interaction (e.g., COMBO).  Even so, the algorithms we have 

developed can be used to identify the most frequently occurring 

low-order combinations, even if these are not informative with 

regards to structuring.   

In summary, ecological studies of species co-occurrence 

patterns parallels the issue of chemical co-occurrence at 

specific locations.  Both are driven by processes that introduce 

structure in the pattern of co-occurrence.  Tools have been 

developed to determine when this structure occurs in ecological 

studies and are relevant to the evaluation of pesticide 

mixtures.  Chemical mixtures arise, in part, through non-random 

processes (economic factors, engineered formulations, 

differential degradation, etc) such that the observed set of 

combinations tends to be less diverse than the theoretical 

random set.  The biogeography methods tested here with the CCC 

case study can be used to identify mixtures of concern to 
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prioritize risk assessment efforts, to calculate co-occurrence 

probabilities, and to test if mixtures arise by structuring 

processes and develop hypotheses. Structuring forces favor 

specific combinations, and it is those combinations that draw 

our attention because they have the greatest chance to be 

realized in the future.  This is true provided that the ensemble 

of structuring forces is a stationary process.  In reality, 

structuring forces shift in time with advances in technology, 

market factors, and social trends.  This speaks to the 

importance of surveys such as the CCC study of Tulve et al.(19), 

designed to efficiently survey many sites.   
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Table I.  Nine null models based on the observed presence-

absence matrix 

              
  Columns Column Sums  Column Sums 

    Equally Likely Proportional Fixed 
  

Rows   Null 1 Null 6 Null 3 
Equally Likely P(Xij)=1/RC P(Xij)=Tj/NR P(Xij)=1/R 

  Constraint: N Constraint: N Constraint: Tj 
  
  

Row Sums   Null 7 Null 8 Null 5 
Proportional P(Xij)=Si/NC P(Xij)=SiTj/N2 P(Xij)=Si/N 

  Constraint: N Constraint: N Constraint: Tj 
  
  

Row Sum   Null 2 Null 4 Null 9 

Fixed   P(Xij)=1/C P(Xij)=Tj/N
P(Xij)=[Markov 
Process] 

    Constraint: Si Constraint: Si Constraint: Si, Tj 

 

Adapted from Gotelli(15).   Each entry specifies one of nine 

possible null models which impose structure on the random set of 

matrices, depending on the observed matrix.  In the observed 

matrix, N is the total species occurrence, R the number of rows, 

C the number of columns, Si the marginal row sums, and Tj the 

marginal column sums. Structuring increases left-to-right and 

top-down, so that Null 1 is the least structured null, and Null 

9 the most structured.  For null model 1-8, for any given 

randomized matrix, P(Xij) estimates probability of occupancy of 

the first cell in the matrix. 
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Table II.  Null Model Analyses on the Child Center Center and 

West Indian Finch Matrices 

 Child Care Center 

(CCC) Matrix 

CCC Matrix, 

Lumped 

West Indian Finch 

Matrix 

 15 species x 168 

sites 

12 species X 168 

sites 

17 species X 19 

sites 

 CHECKER COMBO CHECKER COMBO CHECKER COMBO 

Observed 34 39 20 35 91 10 

Null 1 7.21** 101.53** 8.76** 65.61** 70.78** 18.57** 

Null 8 35.91 61.91** 21.70 46.33** 51.00** 17.18** 

Null 9 34.99 42.78* 19.67 35.41 89.44 15.14** 

To remove the effect of structuring due to co-occurring isomers, 

“CCC Matrix, Lumped” combines 3 species pairs, cis-/trans-

allethrin, cis-/trans-permethrin, and pyrethrins I and II into 3 

single species (allethrin, permethrin, and pyrethrins).   The 

CHECKER index is the number of species forming checker patterns, 

and has a theoretical range of 0 to R(R-1)/2, where R = number 

of rows (species).  The COMBO index is the total number of 

unique combinations, and has a theoretical range, 0 to 2R, yet is 

bounded by the number of sites (168). The expected indices are 

based on 5000 simulations, and ** indicates P-value<0.001, * 

indicates P-value <0.05. 
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Figures 

 

Figure 1. A presence-absence matrix for (A)finch species and 

(B)chemical species. Species are specified in the rows, and 

sites in the columns, and the entries are the presence (1) or 

absence (0) of the species.  

 

Figure 2.  Creation of a presence-absence matrix from 

environmental surface wipe data. 

 

Figure 3.  Probability calculations for three null models (1,2, 

and 8) based on the formulas in Table I and the constraints of 

the observed matrix. 

 

Figure 4.  The distribution of mixtures for the CCC study.  A k-

way mixture= 2 indicates binary mixtures.  Thirty percent of 

centers (50/168) showed binary combinations.  

 

Figure 5.  Higher-order pyrethroid combinations observed in the 

Child Care Center study and tested by null models 1-9. Grey 

shading indicates that the combination was consistent with the 

null model, 0.05< PECDF <0.95.  
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Figure 6.  Lower-order pyrethroid combinations observed in the 

Child Care Center study and tested by null models 1-9. Grey 

shading indicates that the combination was consistent the null 

model, 0.05< PECDF <0.95.   

 

Figure 7.  Relative proportions of pyrethroids in surface wipe 

samples of the CCC study for all 168 centers and for those 

centers with the highest 25% and 10% of total surface residues 

(ng/cm2).    
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Figure 1 
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Figure 2 

 

 

 

 

  

Surface Residue Matrix

pesticide 1 pesticide 2 … pesticide C

site 1 surf 1,1 surf 1,2 … surf 1,C  

site 2 surf 2,1 … … …
… … … … …
… … … … …

site R surf R,1 … … surf R,C
 

if surf i ,j  (ng/cm
2) > MDL j (ng/cm

2) then x i j = 1; else x i j = 0

Presence‐Absence Matrix

pesticide 1 pesticide 2 … pesticide C

site 1 x 1,1 x 1,2 … x 1,C S1
site 2 x 2,1 … … … S2

… … … … … …
… … … … … …

site R x R,1 … … x R,C SR
T1 T2 … TC N
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Figure 3 

 

Observed Matrix:
Row 

Species: Total: 
Sites: 1 1 0 1 0 0 3

0 1 0 0 0 0 1
0 0 0 0 1 1 2
0 1 0 0 0 0 1

 1 1 1 0 0 0 3
Column
Totals 2 4 1 1 1 1 10

Null Model 1
pr(Xij)= 1/RC =

0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033

Null Model 8  N=10     ΣΣpr(Xij)= 1

pr(Xij)= SiTj/N
2 =

0.060 0.120 0.030 0.030 0.030 0.030
0.020 0.040 0.010 0.010 0.010 0.010
0.040 0.080 0.020 0.020 0.020 0.020
0.020 0.040 0.010 0.010 0.010 0.010
0.060 0.120 0.030 0.030 0.030 0.030

N=10     ΣΣpr(Xij)= 1

Null Model 2
pr(Xij)= 1/C =

0.167 0.167 0.167 0.167 0.167 0.167   S1=3     Σpr(X1j)= 1

0.167 0.167 0.167 0.167 0.167 0.167   S2=1     Σpr(X2j)= 1

0.167 0.167 0.167 0.167 0.167 0.167   S3=2     Σpr(X3j)= 1

0.167 0.167 0.167 0.167 0.167 0.167   S4=1     Σpr(X4j)= 1

0.167 0.167 0.167 0.167 0.167 0.167   S5=3     Σpr(X5j)= 1
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Figure 4 
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Figure 5 

 

Pyrethroid Key
1  cis ‐allethrin 9  cis ‐permethrin 11  pyrethrin I 13  resemethrin
2  trans ‐allethrin 10  trans ‐permethrin 12  pyrethrin II 14  sumithrin

15  tetramethrin

Null1 Null7 Null2 Null6 Null8 Null4 Null3 Null5 Null9

Species Counts Sites E Sites P Sites SF Sites E Sites SP Sites SF Sites E Sites P Sites SF
4, 6, 9, 10 3 0.9995 0.9995 0.9995 0.9125 0.8660 0.8985 0.9085 0.8505 0.79730
6, 8, 9, 10 3 0.9995 0.9995 0.9995 0.9305 0.9150 0.8950 0.9265 0.8820 0.83135
1, 2, 9, 10  1 0.9925 0.9905 0.9915 0.9885 0.9855 0.9870 0.9875 0.9920 0.99605
3, 6, 9, 10 1 0.9940 0.9960 0.9910 0.6100 0.5615 0.5700 0.5685 0.5275 0.44865
4, 5, 6, 7 1 0.9950 0.9935 0.9935 0.9995 0.9975 0.9990 0.9995 0.9995 0.99995
4, 5, 9, 10 1 0.9965 0.9920 0.9915 0.8135 0.7965 0.7950 0.8205 0.8045 0.79175
4, 8, 9, 10 1 0.9900 0.9955 0.9945 0.8410 0.8210 0.8265 0.8230 0.8190 0.84330
5, 6, 9, 10 1 0.9910 0.9945 0.9915 0.4475 0.4075 0.4015 0.4035 0.3340 0.27160
5, 7, 9, 10 1 0.9920 0.9930 0.9955 0.9535 0.9465 0.9570 0.9555 0.9515 0.96110
5, 9, 10, 12 1 0.9950 0.9930 0.9955 0.9125 0.8920 0.8900 0.8850 0.8930 0.92130
6, 9, 10, 14 1 0.9920 0.9940 0.9915 0.8025 0.7685 0.7835 0.7850 0.7690 0.69890
9, 10, 12, 13 1 0.9925 0.9935 0.9945 0.9695 0.9615 0.9625 0.9685 0.9615 0.96645
9, 10, 12, 15 1 0.9950 0.9935 0.9950 0.9710 0.9750 0.9710 0.9730 0.9745 0.98515

Null1 Null7 Null2 Null6 Null8 Null4 Null3 Null5 Null9

Species Counts Sites E Sites P Sites SF Sites E Sites SP Sites SF Sites E Sites P Sites SF
3, 6, 9, 10, 13 1 0.9980 0.9985 0.9995 0.9850 0.9600 0.9790 0.9820 0.9760 0.98820
4, 6, 8, 9, 10 1 0.9990 0.9985 0.9995 0.9075 0.8410 0.9095 0.9320 0.8750 0.91740
5, 6, 8, 9, 10 1 0.9965 0.9990 0.9970 0.9190 0.8545 0.9125 0.9405 0.8895 0.90125

9, 10, 11, 14, 15 1 0.9980 0.9975 0.9980 0.9990 0.9995 0.9990 0.9995 0.9995 0.99995

Null1 Null7 Null2 Null6 Null8 Null4 Null3 Null5 Null9

Species Counts Sites E Sites P Sites SF Sites E Sites SP Sites SF Sites E Sites P Sites SF
1,2,3,4,6,9,10 1 0.9995 0.9995 0.9990 0.9995 0.9985 0.9995 0.9995 0.9995 0.99995

 3,4,5,6,7,8,9,10 1 0.9995 0.9995 0.9995 0.9995 0.9990 0.9945 0.9995 0.9990 0.99565
 1,2,5,6,8,9,10,14,15 1 0.9995 0.9995 0.9995 0.9995 0.9995 0.9990 0.9995 0.9995 0.99999

3  bifenthrin
4  cyfluthrin

Observed 7, 8, and  9‐way Species Equilikely Species Sums Proportional Species Sums Fixed

Species Equilikely Species Sums Proportional Species Sums Fixed

Species Equilikely Species Sums Proportional Species Sums Fixed

5  cyhalothrin
6  cypermethrin
7  deltamethin

 
Observed 4‐way

Observed 5‐way

8  esfenvalerate
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Figure 6 
 
 

 

 

 

 

 

 

 

Pyrethroid Key
1  cis ‐allethrin 9  cis ‐permethrin 11  pyrethrin I 13  resemethrin
2  trans ‐allethrin 10  trans ‐permethrin 12  pyrethrin II 14  sumithrin

15  tetramethrin

Null1 Null7 Null2 Null6 Null8 Null4 Null3 Null5 Null9

Species Counts Sites E Sites P Sites SF Sites E Sites P Sites SF Sites E Sites P Sites SF
10 13 0.9995 0.9995 0.9995 0.9490 0.8915 0.9140 0.9650 0.9045 0.1562
9 7 0.9985 0.9965 0.9985 0.4100 0.2610 0.1650 0.5815 0.4020 0.0013
4 3 0.8290 0.7990 0.8045 0.9925 0.9865 0.9490 0.9995 0.9990 0.9998
6 2 0.6510 0.5780 0.5765 0.6110 0.4625 0.2840 0.9245 0.9085 0.8926
5 1 0.3475 0.2845 0.2775 0.7425 0.6545 0.5235 0.9155 0.8910 0.8979
12 1 0.3140 0.3290 0.2685 0.8505 0.8145 0.7020 0.9600 0.9505 0.9516
13 1 0.3535 0.3240 0.2795 0.9055 0.8900 0.8325 0.9725 0.9630 0.9600

Null1 Null7 Null2 Null6 Null8 Null4 Null3 Null5 Null9

Species Counts Sites E Sites P Sites SF Sites E Sites SP Sites SF Sites E Sites P Sites SF
9, 10 46 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9980 0.9995 1.0000
3, 6 2 0.9775 0.9850 0.9565 0.9940 0.9945 0.9785 0.9990 0.9990 0.9998
6, 9 1 0.8300 0.8650 0.7830 0.0605 0.1015 0.0230 0.1550 0.3065 0.1688
8, 9 1 0.8210 0.8765 0.7660 0.5250 0.5870 0.3955 0.7090 0.7860 0.8028

Null1 Null7 Null2 Null6 Null8 Null4 Null3 Null5 Null9

Species Counts Sites E Sites P Sites SF Sites E Sites SP Sites SF Sites E Sites P Sites SF
6, 9, 10 14 0.9995 0.9995 0.9995 0.9580 0.9820 0.9995 0.6200 0.6485 0.9736
5, 9, 10 3 0.9995 0.9995 0.9995 0.5815 0.7145 0.8130 0.3520 0.4015 0.7315
9, 10, 12 3 0.9995 0.9995 0.9995 0.8650 0.8990 0.9475 0.7890 0.8285 0.9545
3, 9, 12 2 0.9995 0.9995 0.9990 0.6130 0.7015 0.7685 0.4475 0.4955 0.7072
8, 9, 10 1 0.9640 0.9705 0.9695 0.1780 0.2605 0.3495 0.0575 0.0865 0.1780
8, 10, 14 1 0.9600 0.9730 0.9715 0.9760 0.9795 0.9820 0.9845 0.9885 0.9943
9, 10, 13  1 0.9625 0.9725 0.9720 0.6135 0.6740 0.7225 0.4575 0.5205 0.7356

8  esfenvalerate

3  bifenthrin
4  cyfluthrin
5  cyhalothrin
6  cypermethrin
7  deltamethin

Species Sums Fixed

Species Equilikely Species Sums Proportional Species Sums Fixed

Species  Equilikely Species Sums Proportional Species Sums Fixed

 
Observed Singles Species Equilikely Species Sums Proportional

 
Observed Binary

Observed 3‐way
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Figure 7 
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Supplemental Information 

 

 

 
 
Fig. SI-1. Eight possible combinations from a source pool of 

three distinct species are enumerated with the binomial 

coefficient, C(n,k) =n!/(k!(n-k)!. Totals for the null set, 1-

way, 2-way, and 3-way possibilities are, respectively, C(3,0)=1, 

C(3,1)=3, C(3,2)=3, C(3,3)=1.  This gives a total of eight (2r; 

23 = 8).  

  

1 [      ] 1 1 1

2 2

3 3

1 null           3 one‐way 3 two‐way 1 three‐way
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Fig. SI-2. Enumeration of the possible combinations from random 

sampling of moderately sized source pool of fifteen distinct 

chemicals is depicted with a histogram.  There is a total of 

32,768 (215) unique k-way combinations. The binomial coefficient, 

C(n,k) =n!/(k!(n-k)!), computes the outcome for the possible k-

way combinations; for example, there are 105 binary (two-way) 

combinations C(15,2)=105. 
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Fig. SI-3. The West Indian Finch Matrix (Gotelli and Abele, 

1982), an example a species presence-absence matrix used by 

ecologists.    
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Table SI-1 

                

Gotteli iterations: 1000   
Navarro-
Alberto iterations: 1000   

  Total cost 28.3779   
and 
Manly Cost 3.5187   

expected observed expected observed expected observed expected observed 

T col S row T  S row 
1 1.306 1 1.26 1 1.094 1 1.375
1 1.283 2 2.24 1 1.44 2 2.331
1 1.309 2 2.26 1 1.115 2 2.31
1 1.309 2 2.22 1 1.136 2 2.283
2 2.557 2 2.21 2 1.945 2 2.288
1 1.349 2 2.27 1 1.087 2 2.292
2 2.583 1 1.30 2 1.987 1 1.402
12 10.253 2 2.22 12 11.662 2 2.283
1 1.273 4 3.88 1 1.118 4 3.694
5 5.596 2 2.24 5 4.887 2 2.23
17 12.604 2 2.25 17 16.24 2 2.245
1 1.326 4 3.85 1 1.167 4 3.498
1 1.295 3 3.08 1 1.05 3 2.946
4 4.666 3 3.09 4 3.969 3 2.892
1 1.327 3 3.05 1 1.084 3 3.009
3 3.632 4 3.71 3 2.913 4 3.682
1 1.332 5 4.45 1 1.106 5 4.225

   7 5.55    7 6.479

   4 3.89    4 3.536

           
  25.1972   3.5708   1.0207   2.498
      
 

Table SI-1 compares the simulation of the WIF matrix with the 

two methods for null model 8.   Specifically, how accurately 

does either method estimate the row and column marginal totals?  

Randomizing under Null 8G1 was accomplished using the formula 

p(Xij)=TjSi/N2 .  Randomization under Null 8NM required estimation 

of P(Xij)= 1-exp(-exp(γ+δj+ϑi)).  Nelder Mead method was applied 

to find the best set of parameters γ, δj   and ϑI minimizing the 

objective function: 
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For each method Null 8G1 and 8M, 1000 matrices were created and 

the row and column marginal were computed for each.   The means 

of these were compared to the marginal totals of the observed 

WIF matrix, and the sums of squares were computed, and totaled 

28.3779.  The same procedure using Null 8 NM gave a sums-of-

squares of 3.5187.      
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Fig. SI-3 shows that 300 iterations of Nelder-Mead are required 

to optimize the WIF probability matrix for Null 8 NM.   The 

optimized probability matrix was used to randomized matrices 

under Null 8NM (reported in Table SI-1).  
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