1 2 3 4 5	
6 7 8 9	Diagnostic analysis of ozone concentrations simulated by two regional-scale air quality models
11 12 13 14 15	Jerold A. Herwehe*, Tanya L. Otte, Rohit Mathur, and S. Trivikrama Rao
17 18 19 20	Atmospheric Modeling and Analysis Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Research Triangle Park, NC 27711, USA
22 23 24 25 26	
27 28 29 30 31	
32 33 34 35	Revised 19 July 2011
37 38 39 40	Submitted to Atmospheric Environment
41 42 43 44 45	
46 47 48 49 50	 *Corresponding author. U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Drop E243-01, Research Triangle Park, NC 27711. Tel.: +1 919 541 0166; fax: +1 919 541 1379. <i>E-mail address:</i> <u>herwehe.jerry@epa.gov</u> (J. Herwehe)

51 Abstract

Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather 52 53 Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the 54 interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality 55 simulation results for a month-long retrospective study period (August 2006) over the eastern United 56 States, including comparisons with data from several observation networks. To help improve the 57 comparability of the two models, the 2005 Carbon Bond chemical mechanism (CB05) was implemented 58 into WRF/Chem. In addition, the same emissions, initial and boundary conditions have been used in both 59 models to inter-compare simulated ozone (O_3) from the WRF-driven CMAQ and WRF/Chem models. 60 Results reveal that ground-level O_3 from both models is biased high, especially in the central South and 61 Ohio River Valley; however, WRF/Chem predicts roughly 10% more O₃ aloft (1000-2500 m AGL) than 62 CMAQ. Different model configurations due to the choice of land surface model (LSM), planetary 63 boundary layer (PBL) physics scheme, and convective cloud parameterization contributed to the 64 differences seen in simulated O₃, but most important were the different treatments of the radiative effects 65 of clouds by their respective photolysis schemes. 66 67 Keywords 68 CMAQ, WRF/Chem, ozone, air quality model, model evaluation, model intercomparison 69 70 1. Introduction 71 72 For the past decade, the Community Multiscale Air Quality modeling system (CMAQ; Byun and 73 Schere, 2006) has been an offline chemical transport model driven by meteorological fields from models 74 such as the Weather Research and Forecasting model (WRF; Skamarock and Klemp, 2008). During this 75 decade, CMAQ has built a worldwide community of several thousand users who have successfully 76 employed the modeling system for a variety of research, regulatory, forecasting, and climate applications.

77 However, offline chemistry does not allow aerosol feedbacks from the chemical transport model to affect 78 the radiation budget, cloud microphysics, and precipitation in the meteorological model. Such feedbacks 79 are particularly important in light of the increased focus on the interactions of air quality and climate 80 change. An alternative approach is to use an online coupled chemistry and dynamics model, such as the 81 WRF with Chemistry model (WRF/Chem; Grell et al., 2005) or the coupled WRF-CMAQ system 82 (Mathur et al., 2010) because they treat the physical and chemical feedback processes. However, 83 regional-scale online modeling is relatively new (Zhang, 2008), and there are still many unresolved issues 84 related to the simulation of aqueous chemical processes in an online system. This deficiency affects the 85 online system's ability to properly handle the physical feedback mechanisms. In addition, online systems 86 require increased computational resources to run both the meteorology and chemistry modules 87 concurrently, which may render the online systems impractical for some research and regulatory groups. 88 Thus, both offline and online modeling systems will continue to be used for various applications for some 89 time.

90 This study presents a diagnostic analysis of Eulerian (i.e., grid-based), limited-area offline and 91 online meteorology and chemistry modeling systems. Here, the WRF-driven CMAQ modeling system 92 and the WRF/Chem model are compared by analyzing simulated ozone (O_3) for a summer month (August 93 2006) and selected physical and chemical processes that are responsible for differences in modeled O_3 at 94 the surface and aloft. The object of this intercomparison is not to determine which modeling system 95 (offline WRF-CMAQ vs. online WRF/Chem) is most skillful in reproducing the observations. Rather, it 96 is to diagnose and understand the differences between the two modeling systems, to identify strengths and 97 weaknesses of the systems, and to inform future development to improve the simulation of air quality 98 (AQ) by both systems.

99

100 **2. Modeling configuration and approach**

102 The 2008 versions of the two air quality modeling systems were used for this intercomparison 103 study. CMAQ v4.7 was driven by WRF-ARW v2.2 (WRF-for-CMAQ in this paper) which included 104 additional physics packages that were later released in v3.0 (Gilliam and Pleim, 2010). The 2005 update 105 to the Carbon Bond mechanism (CB05; Yarwood et al., 2005) was implemented into WRF/Chem v3.0.1.1 106 to conduct a more compatible comparison of gas phase chemistry results with the CMAQ modeling 107 system. In addition, CB05 was coupled to WRF/Chem's Modal Aerosol Dynamics model for Europe 108 (MADE; Ackermann et al., 1998) and Secondary Organic Aerosol Model (SORGAM; Schell et al., 2001) 109 schemes to allow direct and indirect aerosol feedback to the shortwave (SW) radiation and cloud 110 microphysics. Specialized software converted CMAQ-ready initial and boundary conditions (ICs/BCs) 111 and CB05-speciated emissions for WRF/Chem to enable both systems to use the same initial, lateral 112 boundary, and emissions forcing. Hourly meteorological input data for offline ingestion by CMAQ were 113 prepared from the WRF output by the Meteorology-Chemistry Interface Processor (MCIP; Otte and 114 Pleim, 2010). CMAO then linearly interpolated the hourly meteorological input data for each model time 115 step (e.g., every five minutes) during the CMAQ simulation. In contrast, the online coupled WRF/Chem 116 drove its chemistry with meteorological values from every model time step (every minute for this study), 117 thereby allowing temporally nonlinear changes in the meteorology within each hour to more realistically 118 affect the transport, mixing, and effective reaction rates of the chemical species.

119 The input fields and geophysical dimensions of the offline and online modeling systems were set 120 to be as similar as possible (Table 1), but each modeling system was allowed to use the physics options in 121 the meteorological module that are typically recommended by the developers of the AQ models (Table 2). 122 The modeling domain covered the eastern United States with 12-km horizontal grid cells with vertical 123 extent to 100 hPa using 34 terrain-following layers and the lowest layer is 35-m thick. A month-long 124 period was chosen for this study to permit robust statistical analyses on the regional scale. August 2006 125 was selected because of expected summer season high O₃ values and a partial overlap with the 126 observational period of an intensive field campaign conducted around Houston, Texas. Meteorological 127 ICs/BCs originated from the National Centers for Environmental Prediction (NCEP) North American

128	Mesoscale model (NAM), which also provided fields for four-dimensional data assimilation (FDDA), as
129	documented by Gilliam and Pleim (2010). Chemical ICs/BCs were created from a CMAQ simulation for
130	the same period but which used 36-km horizontal grid spacing (Foley et al., 2010). Anthropogenic
131	emissions were projected to 2006 from the 2001 U.S. Environmental Protection Agency's (USEPA's)
132	National Emissions Inventory (NEI; http://www.epa.gov/ttn/chief/net/critsummary.html) and include
133	mobile emissions from the Mobile6 emissions model (http://www.epa.gov/otaq/m6.htm). The biogenic
134	emissions were processed using the Biogenic Emissions Inventory System (BEIS) v3.13. WRF, CMAQ,
135	and WRF/Chem were initialized at 00 UTC 29 July 2006 to allow for a three-day spin-up period for the
136	chemical processes, and this spin-up period is not used in the analyses described later in this paper.
137	Table 2 also lists differences in the recommended near-surface physics options for each modeling
138	system. WRF-for-CMAQ and CMAQ utilized the Pleim-Xiu (PX) LSM, the Pleim surface layer scheme,
139	and the Asymmetric Convective Model version 2 (ACM2) PBL scheme, while WRF/Chem used the
140	NCEP – Oregon State University – Air Force – Hydrologic Research Laboratory (Noah) LSM, Monin-
141	Obukhov surface layer, and Yonsei University (YSU) PBL schemes. The important effects of these
142	choices are described later as appropriate during the discussion of the results and analyses.
143	The Rapid Radiative Transfer Model (RRTM) used in both modeling systems for longwave (LW)
144	radiation processes considers cloud optical depth; and distributions of water vapor, O ₃ , carbon dioxide
145	(CO ₂), and other trace gases, such as methane (CH ₄) and nitrous oxide (N ₂ O), if available. Neither
146	modeling system treats the effects of prognostic aerosols on LW radiation. However, both modeling
147	systems simulate the direct effects of scattering and absorption on SW radiation and photolysis due to
148	resolved water vapor and cloud droplets. In addition, WRF/Chem allows for direct feedback effects from
149	parameterized subgrid convective precipitation and prognostic aerosols on the SW radiation and the
150	photolysis rates. WRF/Chem also allows some indirect feedbacks on radiation and cloud microphysics by
151	computing a prognostic cloud droplet number, though there are no aerosol indirect effects from the
152	MADE/SORGAM scheme in this version of WRF/Chem.

153	Photolysis in CMAQ is a two-step process. First, an offline preprocessor ("JPROC") computes
154	clear-sky climatological photolysis rates as a function of zenith angle, latitude, altitude, and chemical
155	mechanism using prescribed aerosol and interpolated seasonal O ₃ profiles. Second, an online routine
156	("PHOT") then dynamically corrects the preprocessed photolysis rates according to parameterized
157	estimates of cloud cover during the simulation (Roselle et al., 1999). Because JPROC is offline, it does
158	not consider any attenuation by prognostic aerosol parameters during the simulation. The online Fast-J
159	photolysis scheme (Wild et al., 2000) used by WRF/Chem is coupled to the hydrometeor, aerosol, and
160	convective cloud parameterizations to account for scattering and absorption along the optical path.
161	
162	3. Evaluation of simulated ground-level ozone
163	
164	3.1. Comparison of model results with surface observations
165	
166	Surface measurements used for evaluation of the model results were acquired from two different
167	databases: the USEPA's Air Quality System (AQS; http://www.epa.gov/ttn/airs/airsaqs/) and the
168	SouthEastern Aerosol Research and Characterization study (SEARCH; http://www.atmospheric-
169	research.com/studies/SEARCH/index.html). The simulated concentrations in the lowest model layer
170	(layer 1, approximately 35 m thick) are used for comparisons with surface observations.
171	
172	3.1.1. Modeled ozone compared with AQS data
173	Statistics for the daily maximum 8-h average O ₃ for August 2006 were generated by the
174	Atmospheric Model Evaluation Tool (AMET; Appel et al., 2011) for each of the two AQ modeling
175	systems by comparing with archived quality assured and quality controlled hourly O_3 data from AQS sites
176	within the grid cells. Selected statistics from this analysis, shown in Table 3, reveal that both models are
177	biased high when predicting surface O ₃ for the month of August 2006, but CMAQ's predictions are in

179 The diurnal variations in O_3 for the domain-wide AOS observations and the CMAO and 180 WRF/Chem models indicate the general overprediction by each model, especially during nighttime hours 181 (Fig. 1). Despite some overestimation, model results and observations are closer during the 1-2-hour 182 morning transition to daytime convective conditions, with a 1-h phase lag by both models to begin the 183 morning increase in surface O_3 . Fig. 1 also shows that the WRF/Chem surface O_3 exhibits some phase 184 lag during the afternoon and evening, reaching its peak O₃ values about one hour after CMAQ and the 185 observations, and showing a slower decay of O₃ in the evening. This behavior is likely due to the more 186 vigorous vertical mixing of WRF/Chem's YSU scheme, especially during stable conditions when YSU's 187 stronger downward heat flux (Hu et al., 2010) would delay the collapse of the PBL. 188 To examine spatial relationships, Fig. 2 displays full month-averaged August 2006 surface O_3 189 mixing ratios and differences for both modeling systems with the available AQS site averages overlaid 190 along with the NMB for modeled O₃ at each AQS site. Both models are biased high in the southeastern 191 U.S. (hereafter SE), but the O_3 overprediction by WRF/Chem is more pronounced and extends into the 192 Ohio River Valley (ORV), northward along the Appalachians, and northwestward into Minnesota (Figs. 193 2b and e). This may be due to the nocturnal transport of larger amounts of ozone trapped aloft in the 194 residual layer by WRF/Chem. The month-averaged AQS data (Fig. 2) showed relatively low O₃ mixing 195 ratios, influenced by low nocturnal O₃ observations which, as was seen in Fig. 1, the models had 196 difficulty achieving. To examine the contributions of different periods of the day to the month-averaged 197 O₃, month-long averages were produced for three selected daily time periods, each consisting of four 198 hourly values (or 124 hourly values for each average): local time nocturnal conditions (06-09 UTC), 199 local morning conditions (11-14 UTC), and local afternoon conditions (17-20 UTC). Month-averaged 200 morning and afternoon periods are shown in Fig. 3 for surface O_3 and differences with the 201 correspondingly-averaged AQS O₃ data overlaid. WRF/Chem's inability to reduce surface O₃ as rapidly 202 as CMAQ overnight was evident in the nocturnal-averaged O₃ (not shown). By the morning hours, 203 WRF/Chem's O₃ has decreased noticeably, but is still biased high in the central South and southern 204 Appalachians (Fig. 3b). Relatively significant O_3 advection is evident over water off the Eastern

205 Seaboard for CMAQ (Figs. 3a and d), but no observations are available over water for verification. In the 206 afternoon, WRF/Chem tended to underestimate O₃ in the western Plains states and further west, but 207 showed significant overestimation of O₃ in the SE and ORV (Fig. 3e). As seen in the month-average and 208 morning O_3 differences (Figs. 2c and 3c), CMAQ continued to have significantly more O_3 than 209 WRF/Chem in the afternoon over areas likely to be stably stratified, such as over ocean waters and the far 210 western Plains and Rocky Mountains (Fig. 3f). Figures 1 and 3 show that AQ modeling systems are 211 better at predicting the high afternoon O₃ mixing ratios than the lower nighttime values. Reduced vertical 212 mixing during stable nocturnal conditions leads to a significant vertical gradient close to the ground since 213 O₃ continues to decrease due to dry deposition and titration by its reaction with NO and the resultant low 214 observed surface O₃ mixing ratios are not represented well owing to the models' 35-m thick lowest layer.

215

216 3.1.2. Ozone chemistry characteristics at selected SEARCH sites

217 To gain some insight into the O_3 chemical production in the August 2006 air masses in the SE, 218 net ozone production efficiency (OPE) and air mass photochemical age were computed at selected 219 SEARCH sites using results from the two AQ modeling system and from SEARCH observations for 220 comparison. The two SEARCH sites discussed here represent different land use patterns and proximity to 221 emissions sources: Centreville, AL (rural, forest; 32.90289° N, 87.24968° W, 126 m MSL) and 222 Birmingham, AL (urban, industrial-residential; 33.55303° N, 86.81482° W, 177 m MSL), referred to as 223 CTR and BHM, respectively, in this paper. The hourly SEARCH trace gas measurements for O_3 , nitric 224 oxide (NO), nitrogen dioxide (NO₂), and total reactive nitrogen (NO_y) were used in this study. 225 OPE is defined as the amount of O_3 produced for each molecule of nitrogen oxides (NO_x; where 226 $NO_x = NO + NO_2$) consumed and is indicated by the relationship of O₃ to the NO_x photooxidation 227 products surrogate, NO_z, defined by NO_z = NO_y - NO_x. Although NO_y was one of the measured 228 quantities at the SEARCH sites, NO_v is not typically provided in AQ model output. Therefore, from the 229 CB05 chemical mechanism, NO_v is defined as

231
$$NO_{v} = NO + NO_{2} + NO_{3} + 2N_{2}O_{5} + HONO + HNO_{3} + PAN + PANX + PNA + NTR$$
(1)

233 where NO₃ is the nitrate radical, N_2O_5 is dinitrogen pentoxide, HONO is nitrous acid, HNO₃ is nitric acid, 234 PAN is peroxyacetyl nitrate, PANX is C3 and higher peroxyacyl nitrates, PNA is peroxynitric acid, and 235 NTR is organic nitrate (Yarwood et al., 2005). Once NO_x, NO_y, and NO_z were calculated, OPE was then 236 determined from a linear regression fit of O_3 versus the NO₇ distribution binned in 5% intervals for the 237 daytime hours of 10:00-17:00 local standard time (LST) following the technique of Olszyna et al. (1994). 238 As described in Olszyna et al., the binning of NO_z facilitates visualizing data relationships by indicating 239 the frequency distribution of the data. Because differential dry deposition rates between O₃ and the NO_z 240 species were not considered, the net OPE presented here should be considered upper bounds. 241 The value of "SLOPE" shown in each O_3 v. NO₂ plot of Fig. 4 gives the OPE as determined by 242 the regression fit for August 2006. At these selected sites, OPE values from the SEARCH observations 243 range from 10.32-23.67, while OPE values from the two models range from 3.22-6.03, with the 244 WRF/Chem OPE values noticeably smaller than those of CMAQ. In simulations of summer 2002 using 245 CMAQ with the CB4 mechanism, Godowitch et al. (2008) also reported that model-based OPE was 246 significantly less than observation-based OPE at many SEARCH sites. For August 2006, CMAQ and 247 WRF/Chem exhibit less potential for O_3 production at CTR and BHM (less than half as much as 248 observed), and yet have positive O_3 biases compared with the AQS observations as seen previously in 249 Figs. 2 and 3. A plausible explanation is that the models produce O_3 too rapidly from the available NO_x 250 and organic carbon precursors and then underestimate processes for O_3 loss, such as too little dry 251 deposition, thus allowing O_3 to accumulate and maintain relatively high values despite relatively low OPE 252 in the models. 253 According to Olszyna et al. (1994), a measure of air mass photochemical age can be provided by 254 $1 - (NO_x/NO_y)$, which is the fraction of the initial NO_x emissions that have been converted to 255 photooxidation products, thereby providing some indication of whether the air parcel is fresh or aged. Air 256 masses are considered to be chemically mature when their air mass photochemical age values are greater

257 than 0.6 (Trainer et al., 1993). The percentage of August 2006 data at the two Alabama SEARCH sites 258 that can be considered photochemically-aged is as follows: at CTR, SEARCH = 80% (Fig. 5a), CMAQ = 259 100% (Fig. 5b), WRF/Chem = 100% (Fig. 5c) and at BHM, SEARCH = 10% (Fig. 5d), CMAQ = 45% 260 (Fig. 5e), WRF/Chem = 60% (Fig. 5f). The rural site (CTR) is far enough removed from fresh emissions 261 that most air masses moving over CTR are chemically mature with much of their original NOx 262 photooxidized. In contrast, the urban BHM site indicates its proximity to fresh emissions with fewer aged 263 air masses passing through. The modeled air masses for these sites are clearly more aged than shown by 264 the observations. Because the mid-day modeled air is more aged, it is less efficient in producing O_3 (Figs. 265 4 and 5). These results are also likely due to the model reactions taking place over a relatively large grid 266 cell volume which dilutes extreme values, while the observation network sites may be influenced by local 267 emissions and finer-scale features that are unresolved by the models.

268

269 3.2. Comparison of key processes affecting surface ozone

270

271 Differences in modeled physical processes caused differences in simulated surface O_3 despite the 272 similar chemical conditions (i.e., the same chemical mechanism, emissions, and ICs/BCs) used by the two 273 modeling systems. The month-averaged O₃ difference plot of Fig. 2c revealed systematic differences in 274 how each model treated metropolitan areas, and also showed that, on average, WRF/Chem has 7-11 ppbv 275 more O₃ than CMAQ in many areas of the central South, Appalachians, and ORV, while CMAQ has 276 similar greater amounts of O₃ than WRF/Chem in many areas in the eastern Rocky Mountains and over 277 water off the coasts. The corresponding month-averaged PBL heights from WRF-for-CMAQ and 278 WRF/Chem (Figs. 6a and b, respectively) and their differences (Fig. 6c) show the generally deeper 279 average PBLs for WRF/Chem everywhere, especially in the western Plains and west Texas. Analysis of 280 the monthly-averaged 2-m temperature and water vapor mixing ratio (not shown) revealed that 281 WRF/Chem with its Noah LSM and YSU PBL scheme was generally biased warmer and drier than WRF-282 for-CMAQ with its PX LSM and ACM2 PBL scheme, especially in the South and Plains states, which

283 would contribute to the deeper PBLs seen in the WRF/Chem simulation. This is corroborated by Hu et al. 284 (2010) which reported that at night ACM2 produces greater static stability near the surface than YSU, but 285 that the stronger nighttime thermal and moisture fluxes of YSU lead to low-level temperatures and 286 moisture closer to observations. The metropolitan areas are not as apparent in the PBL height differences 287 (Fig. 6c), which is likely due to the displayed difference scale range. Month-averaged surface carbon 288 monoxide (CO) and its differences between the models (not shown) revealed that CMAQ had 289 significantly greater CO mixing ratios over metropolitan areas than WRF/Chem, indicating less dilution 290 over CMAQ's urban areas. Similar plots for NO (not shown) support the idea that titration of O_3 by 291 higher NO mixing ratios in CMAQ could be the cause for lower O_3 in its urban areas compared to 292 WRF/Chem. From the generally deeper PBLs generated by WRF/Chem, one would expect that, because 293 of dilution, WRF/Chem's surface O₃ would be less than that from WRF-driven CMAQ, but that is not the 294 case in the eastern half of the U.S.

295 Average afternoon (17-20 UTC) PBL heights with differences (Fig. 7) are similar to the pattern 296 for the full-month PBL averages (Fig. 6), but normalized afternoon PBL height differences are generally 297 smaller in magnitude (note that Fig. 7 has double the scale range of Fig. 6), mixing afternoon O₃ through 298 relatively more similar PBL heights. The parameterization of convection in the ACM2 and YSU PBL 299 schemes both account for nonlocal mixing, thus reducing the impact of urban areas on afternoon O_3 300 mixing ratios. However, model difference plots of average afternoon CO and NO₂ (not shown) still show 301 CMAQ with higher mixing ratios than WRF/Chem over the urban areas. This is likely due to the use of 302 fractional land-use categories by the PX LSM in CMAQ which better accounts for urban heterogeneity, 303 and thus, differing from the single dominant land-use category utilized by the Noah LSM in WRF/Chem. 304 Another process affecting surface O₃ distributions is dry deposition. MCIP (Otte and Pleim, 305 2010) was used to compute the O_3 dry deposition velocity (V_{dO3}) fields from relevant meteorological 306 fields from WRF-for-CMAQ and WRF/Chem. Because O₃ dry deposition velocity was not part of the WRF/Chem August 2006 simulation output variable set, MCIP v3.4.1.1 was used to produce V_{d03}. An 307 308 earlier version of MCIP (v3.3) was used to process the WRF-for-CMAQ fields before the start of the

309 current study. Average afternoon V_{dO3} and its differences between the two modeling systems (Fig. 8) 310 partially support the O₃ differences in Fig. 3f. For example, where CMAQ has larger O₃ deposition 311 velocity, such as along the Appalachians and the Alleghenies (Fig. 8c), WRF/Chem has more O₃ than 312 CMAQ (Fig. 3f), and the converse is true in some areas near the southeast coast and in central Florida. 313 However, other large areas of the field patterns of differences in Figs. 3f and 8c do not match, indicating 314 that additional processes are responsible for the differences in simulated O₃.

315 MCIP also estimated total cloud fractional coverage from WRF-for-CMAQ and WRF/Chem, and 316 their average afternoon values, with differences, are shown in Fig. 9. In general, WRF-for-CMAQ, with 317 its Kain-Fritsch (KF) cumulus parameterization, produced more clouds in the afternoon than WRF/Chem 318 with its Grell-Dévényi (GD) cumulus parameterization, with this difference being most pronounced in the 319 South and the southwestern Plains (Fig. 9c). The influence of afternoon total cloud fraction is evident in 320 the patterns for afternoon PBL heights for both WRF-for-CMAQ (comparing Figs. 9a and 7a) and 321 WRF/Chem (comparing Figs. 9b and 7b), but is not readily seen in the afternoon surface O₃ patterns 322 (Figs. 3d and e). An examination of MCIP-estimated cloud liquid water content and convective and 323 nonconvective precipitation (not shown) also showed little influence on average surface O_3 patterns.

324

325 4. Examination of simulated ozone aloft

326

The near surface (i.e., lowest model layer) analyses and comparisons with surface measurements
discussed thus far have not enabled us to provide adequate explanation of why the WRF/Chem August
2006 simulation shows more surface O₃ than CMAQ in the eastern U.S. while having a deeper PBL.
Therefore, some examination of O₃ in the lower troposphere was conducted.

332 *4.1. Ozone in the residual layer*

334 After sunset, radiative cooling forms a strong temperature inversion at the surface, effectively 335 cutting off vertical mixing, thereby allowing deposition and chemical processes (primarily NO titration) at 336 the surface to significantly reduce O_3 mixing ratios, often to just a few parts per billion. Ozone and other 337 pollutants aloft from the afternoon mixed layer become trapped in the residual layer above the shallow 338 nocturnal, or stable, boundary layer (SBL). Thus, the residual layer acts as an O₃ reservoir and provides a 339 source for the next day's ground-level O₃ as mid-morning surface heating erodes away the SBL and initial 340 daytime convection mixes O₃ from the residual layer down to the surface (Zhang and Rao, 1999). 341 Average morning (11-14 UTC) O_3 aloft for August 2006 from both modeling systems and their 342 differences (Fig. 10) at ~1100 m above ground level (AGL) (model layer 14) and a sampled west-east 343 vertical cross section (model row 90) reveal that WRF/Chem has about 3-7 ppbv, or about 10%, more O₃ 344 in the residual layer than CMAQ up to 2500 m AGL (model layer 20) over the central South, ORV, and 345 Mid-Atlantic coast (Figs. 10c and f). Therefore, on average, WRF/Chem has more O_3 available over this 346 area at the beginning of daytime mixing and O₃ production than CMAQ, and the stronger vertical mixing 347 of WRF/Chem's YSU PBL scheme leads to greater entrainment (Hu et al., 2010) of O₃ aloft into the 348 daytime mixed layer. 349 350 4.2. Davtime ozone in the lower troposphere 351 352 4.2.1. Comparison with IONS-06 observations 353 For comparison with upper air ozone, O₃ profile observations from the INTEX-B Ozonesonde 354 Network Study 2006 (IONS-06; Thompson et al., 2008) were paired, both temporally and spatially, with 355 instantaneous extracted model profiles from the CMAQ and WRF/Chem simulations for August 2006. 356 Monthly mean and median O_3 profiles, and their standard deviations, were computed from all available 357 matching profiles from 12 IONS-06 sites in the eastern U.S. domain. Because both models used the same 358 boundary conditions, their O_3 profiles are generally similar, except within the daytime PBL where 359 WRF/Chem had up to 5-20 ppbv more O_3 than CMAQ at some of the inland sites, such as Huntsville,

360	Alabama, and Beltsville, Maryland (Fig. 11). For this comparison, daytime profiles were separated from
361	nocturnal profiles; the averaged profiles for Huntsville (Fig. 11a) consist of 29 daytime profiles, while the
362	less-smooth averaged profiles for Beltsville (Fig. 11b) came from only six available daytime profiles.
363	The CMAQ and WRF/Chem O ₃ profiles are in somewhat better agreement (within 10 ppbv or less, and
364	having similar profile shapes) when based on the six nocturnal and dawn profiles available from
365	Beltsville for August 2006 (not shown). Compared to observations, both CMAQ and WRF/Chem tended
366	to overestimate O ₃ within the PBL at most sites, except for a 5-15 ppbv underprediction for Huntsville,
367	Boulder, Colorado, and Bratt's Lake, Saskatchewan. In addition, both models had fairly uniform,
368	underpredicted O ₃ profiles above the PBL, with underpredictions of 20-40 ppbv in the middle troposphere
369	increasing to 150-200 ppbv near the 100 hPa level (not shown).
370	
371	4.2.2. Modeled afternoon ozone
372	Average August 2006 simulated afternoon O3 aloft at selected levels, with differences, are shown
373	in Fig. 12, which, when combined with the afternoon surface O ₃ of Figs. 3d-e, illustrates the 3-D
374	distribution of O_3 in the lower atmosphere. The influence of the stably stratified areas on the O_3
375	differences (i.e., where CMAQ O ₃ is greater than WRF/Chem) decreases with height (Figs. 3f, 12f and c),
376	but in the eastern U.S., CMAQ and WRF/Chem O ₃ differences of 5-9 ppbv occur higher in the PBL as
377	seen at ~1100 m AGL near the middle of the PBL (Fig. 12f). At slightly over 2 km AGL, afternoon O_3
378	mixing ratios have decreased (Figs. 12a and b) and differences in modeled O ₃ have diminished to
379	generally less than 3-5 ppbv (Fig. 12c). In particular, the selected west-east vertical cross section of
380	simulated afternoon O ₃ with differences (Fig. 13) also illustrates that WRF/Chem has more O ₃ aloft than
381	CMAQ in the upper portions of the afternoon mixed layer over areas with greater surface O ₃ mixing
382	ratios.
383	
384	4.3. Afternoon J_{NO2} photolysis rates

386 Analyses comparing the afternoon-averaged NO₂ photolysis rates (J_{NO2}) (Fig. 14), which include 387 cloud effects, revealed that J_{NO2} values from WRF/Chem using Fast-J increase with height more rapidly 388 than J_{NO2} values from CMAQ using JPROC/PHOT, especially over water in the Gulf of Mexico and the 389 Atlantic Ocean off the SE coast where at \sim 2200 m AGL the WRF/Chem J_{NO2} can be nearly double the 390 J_{NO2} in CMAQ (Fig. 14a-c). The sampled west-east vertical cross section of J_{NO2} (Fig. 15) from both 391 modeling systems shows that afternoon J_{NO2} differences were greatest around 2-2.5 km AGL (Fig. 15c), 392 then generally decrease with height above that. A comparison of modeled J_{NO2} values aloft with 393 measurements taken by the NOAA WP-3D Orion aircraft (P3) along a 31 August 2006 flight track from 394 Tampa Bay, Florida, to the Houston, Texas, area is shown in Fig. 16. Cloud cover from Tropical 395 Depression Ernesto (off the Georgia coast) affected the flight until ~19 UTC. After that, modeled J_{NO2} 396 values more closely follow observations under mostly clear skies, even during the aircraft ramp "profiles" 397 around 19:50 and 21:15 UTC. The greater J_{NO2} values aloft from WRF/Chem's Fast-J occur within 398 clouds or between cloud layers (Wild et al., 2000) over areas with greater cloud liquid water content, 399 whereas CMAQ's JPROC tables are only attenuated by clouds as a function of single-layer total cloud 400 fraction (Roselle et al., 1999) without consideration of within-cloud scattering of radiation and interaction 401 between multiple overlapping cloud layers. Real and Sartelet (2010) reported that the greatest photolysis 402 rate differences occurred mainly within clouds in their comparison of attenuated clear-sky JPROC-403 generated tables and a newer version of the Fast-J scheme; in fact, the greater the cloud optical depth, the 404 greater the photolysis rate differences between the offline and online photolysis schemes. Thus in this 405 intercomparison, WRF/Chem's often greater photolysis rates aloft may be the primary reason for its 406 greater average surface O₃ mixing ratios in the central South, ORV, and Mid-Atlantic when compared to 407 CMAQ. 408 409 5. Conclusions

411 Air quality simulations were performed with the WRF-driven CMAQ and WRF/Chem for August 412 2006 using the same emissions, and initial and boundary conditions. Intercomparison of modeled gas 413 phase chemistry was made more compatible by implementing the CB05 photochemical mechanism into 414 WRF/Chem v3.0.1.1 and configuring the models to be as similar as practical, using recommended options 415 where configuration differences were necessary. Simulated month-averaged ozone in the lower 416 troposphere from the two AQ modeling systems was described and compared, along with observations, 417 and processes that may be responsible for any O_3 differences were examined.

418 Both WRF-driven CMAQ and WRF/Chem air quality modeling systems generally overestimated 419 surface ozone during August 2006, mainly in the central South and the Ohio River Valley, with a positive 420 normalized mean bias in the range of 20-100+%. WRF/Chem produced more O₃ than CMAQ despite 421 having a generally deeper afternoon boundary layer of more aged air. Over regions where the simulated 422 O₃ was biased high, WRF/Chem built up and maintained a reservoir of roughly 10% more O₃ aloft than 423 CMAQ. The online Fast-J photolysis scheme used by WRF/Chem takes into account convective cloud 424 optical properties, complex cloud layer structures, and within-cloud scattering of radiation which 425 amplified photolysis rates critical to O_3 production compared to the simpler offline JPROC-based 426 photolysis scheme of CMAQ. Differences between the LSMs (PX or Noah), vertical mixing and 427 entrainment in boundary layer physics (ACM2 or YSU), dry deposition, and convective cloud schemes 428 (KF or GD) all contributed to the presence of more O₃ in the WRF/Chem results than in the WRF-driven 429 CMAQ results. However, the photolysis scheme (JPROC/PHOT or Fast-J) likely had the greatest impact 430 on the modeled O_3 .

Our findings confirm the importance of thoughtful selection of AQ modeling system
configuration options. We demonstrated that subtle changes in model configurations can strongly
influence the air quality predictions. When this study began, the online WRF-CMAQ modeling system
(Mathur et al., 2010) was under active development. A shift in AQ modeling toward online systems is
anticipated as scientific and technological advances permit. A similar study comparing the online WRF-

436 CMA	Q (publicly	^r available ir	n Fall 2011) with 1	updated	WRF/	Chem i	s plann	ed to	further	infor	m
---------	-------------	---------------------------	-------------	----------	---------	------	--------	---------	-------	---------	-------	---

437 developments of coupled meteorological-chemical modeling systems.

439	Acknowledgements
440	We would like to thank Chris Nolte, Rob Gilliam, Wyat Appel, Shawn Roselle, George Pouliot,
441	Ken Schere, Jon Pleim, Golam Sarwar, Steve Howard, David Wong, and Jim Godowitch (U.S.
442	EPA/ORD/NERL/AMAD) for their discussions during this study, Harald Stark and Ken Aikin
443	(NOAA/ESRL/CSD) for the TexAQS II WP-3D airborne data, and Anne Thompson (The Pennsylvania
444	State Univ.) for the IONS-06 data.
445	Although this paper has been reviewed and approved for publication by the U.S. Environmental
446	Protection Agency, it does not reflect the views and policies of the Agency.
447	
448	References
449	
450	Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S., Shankar, U., 1998. Modal
451	aerosol dynamics model for Europe: development and first applications. Atmospheric
452	Environment 32, 2981-2999.
453	Appel, K.W., Gilliam, R.C., Davis, N., Zubrow, A., Howard, S.C., 2011. Overview of the atmospheric
454	model evaluation tool (AMET) v1.1 for evaluating meteorological and air quality models.
455	Environmental Modelling & Software 26, 434-443.
456	Binkowski, F.S., Roselle, S.J., 2003. Models-3 Community Multiscale Air Quality (CMAQ) model
457	aerosol component 1. Model description. Journal of Geophysical Research 108, 4183.
458	Byun, D., Schere, K.L., 2006. Review of the Governing Equations, Computational Algorithms, and Other
459	Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System.
460	Applied Mechanics Reviews 59, 51-77.

- Chen, F., Dudhia, J., 2001. Coupling an advanced land surface-hydrology model with the Penn State NCAR MM5 modeling system. Part I: model implementation and sensitivity. Monthly Weather
 Review 129, 569-585.
- 464 Chou, M.-D., Suarez, M.J., 1994. An efficient thermal infrared radiation parameterization for use in
 465 general circulation models, NASA Tech. Memo. 104606. Climate and Radiation Branch,
 466 Laboratory for Atmospheres, NASA/Goddard Space Flight Center.
- Davis, J.M., Bhave, P.V., Foley, K.M., 2008. Parameterization of N2O5 reaction probabilities on the
 surface of particles containing ammonium, sulfate, and nitrate. Atmos. Chem. Phys. 8, 5295-
- **469 5311**.
- 470 Dudhia, J., 1989. Numerical study of convection observed during the Winter Monsoon Experiment using
 471 a mesoscale two-dimensional model. Journal of the Atmospheric Sciences 46, 3077–3107.
- 472 Eder, B., Kang, D., Mathur, R., Yu, S., Schere, K., 2006. An operational evaluation of the Eta-CMAQ air
 473 quality forecast model. Atmospheric Environment 40, 4894-4905.
- 474 Foley, K.M., Roselle, S.J., Appel, K.W., Bhave, P.V., Pleim, J.E., Otte, T.L., Mathur, R., Sarwar, G.,

475 Young, J.O., Gilliam, R.C., Nolte, C.G., Kelly, J.T., Gilliland, A.B., Bash, J.O., 2010.

- 476 Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version
 477 4.7. Geoscientific Model Development 3, 205-226.
- Gilliam, R.C., Pleim, J.E., 2010. Performance assessment of new land surface and planetary boundary
 layer physics in the WRF-ARW. Journal of Applied Meteorology and Climatology 49, 760-774.
- 480 Godowitch, J.M., Hogrefe, C., Rao, S.T., 2008. Diagnostic analyses of a regional air quality model:
- 481 Changes in modeled processes affecting ozone and chemical-transport indicators from NOx point
 482 source emission reductions. Journal of Geophysical Research 113, D19303.
- 483 Grell, G.A., Dévényi, D., 2002. A generalized approach to parameterizing convection combining
- 484 ensemble and data assimilation techniques. Geophysical Research Letters 29, 1693.

- 485 Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., Eder, B., 2005.
- 486 Fully coupled "online" chemistry within the WRF model. Atmospheric Environment 39, 6957487 6975.
- 488 Hong, S.-Y., 2010. A new stable boundary-layer mixing scheme and its impact on the simulated East
- 489 Asian summer monsoon. Quarterly Journal of the Royal Meteorological Society 136, 1481-1496.
- Hong, S.-Y., Lim, J.-O.J., 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Journal
 of the Korean Meteorological Society 42, 129-151.
- Hong, S.-Y., Noh, Y., Dudhia, J., 2006. A new vertical diffusion package with an explicit treatment of
 entrainment processes. Monthly Weather Review 134, 2318-2341.
- Hu, X.-M., Nielsen-Gammon, J.W., Zhang, F., 2010. Evaluation of three planetary boundary layer
- 495 schemes in the WRF model. Journal of Applied Meteorology and Climatology 49, 1831-1844.
- Kain, J.S., 2004. The Kain–Fritsch convective parameterization: an update. Journal of Applied
 Meteorology 43, 170-181.
- 498 Mathur, R., Pleim, J., Wong, D., Otte, T., Gilliam, R., Roselle, S., Young, J., Binkowski, F., Xiu, A.,
- 499 2010. The WRF-CMAQ integrated on-line modeling system: development, testing, and initial
- applications, in: Steyn, D.G., Rao, S.T. (Eds.), Air Pollution Modeling and its Application XX.
 Springer, Dordrecht, pp. 155-159.
- Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., 1997. Radiative transfer for
 inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of
 Geophysical Research 102, 16663-16682.
- Olszyna, K.J., Bailey, E.M., Simonaitis, R., Meagher, J.F., 1994. O₃ and NO_y relationships at a rural site.
 Journal of Geophysical Research 99, 14557-14563.
- 507 Otte, T.L., Pleim, J.E., 2010. The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ
- 508 modeling system: updates through MCIPv3.4.1. Geoscientific Model Development 3, 243-256.
- 509 Pleim, J.E., 2006. A simple, efficient solution of flux-profile relationships in the atmospheric surface
- 510 layer. Journal of Applied Meteorology and Climatology 45, 341-347.

- Pleim, J.E., 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. Part
 I: model description and testing. Journal of Applied Meteorology and Climatology 46, 13831395.
- 514 Real, E., Sartelet, K., 2010. Modeling of photolysis rates over Europe: impact on chemical gaseous
- 515 species and aerosols. Atmospheric Chemistry and Physics Discussions 10, 16691-16745.
- 516 Roselle, S.J., Schere, K.L., Pleim, J.E., Hanna, A.F., 1999. Photolysis rates for CMAQ, in: Byun, D.W.,
- 517 Ching, J.K.S. (Eds.), Science Algorithms of the EPA Models-3 Community Multiscale Air
- 518 Quality (CMAQ) Modeling System. U.S. Environmental Protection Agency, Office of Research
 519 and Development, Washington, D.C., pp. 14-1 to 14-8.
- Schell, B., Ackermann, I.J., Hass, H., Binkowski, F.S., Ebel, A., 2001. Modeling the formation of
 secondary organic aerosol within a comprehensive air quality model system. Journal of
 Geophysical Research 106, 28275-28293.
- Skamarock, W.C., Klemp, J.B., 2008. A time-split nonhydrostatic atmospheric model for weather
 research and forecasting applications. Journal of Computational Physics 227, 3465-3485.
- 525 Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang,
- 526 W., Powers, J.G., 2008. A description of the Advanced Research WRF version 3. NCAR
- 527 Technical Note NCAR/TN-475+STR. Available at:
- 528 <u>http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf</u>.
- Tao, W.-K., Simpson, J., McCumber, M., 1989. An ice-water saturation adjustment. Monthly Weather
 Review 117, 231-235.
- 531 Thompson, A.M., Yorks, J.E., Miller, S.K., Witte, J.C., Dougherty, K.M., Morris, G.A., Baumgardner,
- 532 D., Ladino, L., Rappenglück, B., 2008. Tropospheric ozone sources and wave activity over
- 533 Mexico City and Houston during MILAGRO/Intercontinental Transport Experiment (INTEX-B)
- 534 Ozonesonde Network Study, 2006 (IONS-06). Atmospheric Chemistry and Physics 8, 5113-
- 535 5125.

- 536 Trainer, M., Parrish, D.D., Buhr, M.P., Norton, R.B., Fehsenfeld, F.C., Anlauf, K.G., Bottenheim, J.W.,
- 537 Tang, Y.Z., Wiebe, H.A., Roberts, J.M., Tanner, R.L., Newman, L., Bowersox, V.C., Meagher,
- 538 J.F., Olszyna, K.J., Rodgers, M.O., Wang, T., Berresheim, H., Demerjian, K.L., Roychowdhury,
- 539 U.K., 1993. Correlations of ozone with NO_y in photochemically aged air. Journal of Geophysical
- 540 Research 98, 2917-2925.
- Wild, O., Zhu, X., Prather, M.J., 2000. Fast-J: accurate simulation of in- and below-cloud photolysis in
 tropospheric chemical models. Journal of Atmospheric Chemistry 37, 245-282.
- 543 Xiu, A., Pleim, J.E., 2001. Development of a land surface model. Part I: application in a mesoscale
- 544 meteorological model. Journal of Applied Meteorology 40, 192-209.
- 545 Yarwood, G., Rao, S., Yocke, M., Whitten, G.Z., 2005. Updates to the carbon bond chemical mechanism:
- 546 CB05, Final Report to the U.S. EPA, RT-04-00675. Available at:
- 547 <u>http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf.</u>
- Zhang, J., Rao, S.T., 1999. The role of vertical mixing in the temporal evolution of ground-level ozone
 concentrations. Journal of Applied Meteorology 38, 1674-1691.
- 550 Zhang, Y., 2008. Online-coupled meteorology and chemistry models: history, current status, and outlook.
- 551 Atmospheric Chemistry and Physics 8, 2895-2932.

Figure Captions

Fig. 1. Diurnal domain-wide hourly O_3 statistics for August 2006 for AQS observations (black solid line with crosses), CMAQ (blue dashed line with triangles), and WRF/Chem (red dashed line with plus signs). Lines with symbols represent the median O_3 mixing ratios, while the shaded box extremes represent the first and third quartiles.

Fig. 2. The top row shows August 2006 month-averaged modeled O_3 mixing ratios (ppbv) as filled contours from (a) CMAQ and (b) WRF/Chem with overlaid month-averaged AQS observations (filled circles), along with the O_3 difference field as (c) CMAQ – WRF/Chem. Month averages were computed from the 744 hourly values at each location for the 31 days of August. The bottom row shows the normalized mean bias (NMB in %) of the simulated O_3 at the AQS sites for (d) CMAQ and (e) WRF/Chem.

Fig. 3. Month-averaged O_3 for August 2006 comparing simulated values to observations when averaged over two different diurnal time periods. CMAQ results are shown in the left column (a and d), WRF/Chem results in the middle column (b and e), and CMAQ – WRF/Chem differences in the right column (c and f) for local morning (11-14 UTC, top row) and afternoon (17-20 UTC, bottom row) time periods. Appropriately averaged O_3 mixing ratios (ppbv) are shown as filled contours for the simulations and filled circles for the AQS observations.

Fig. 4. Ozone production efficiency (the slope of the dashed regression line) calculated for 10-17 LST for August 2006 from (a and d) SEARCH observations, (b and e) CMAQ, and (c and f) WRF/Chem at Centreville, Alabama (top row) and Birmingham, Alabama (bottom row). Each dot represents a bin average of 5% of available data values plotted with the standard deviation from the O₃ mean.

Fig. 5. Air mass photochemical age versus NO_z calculated for 10-17 LST for August 2006 from (a and d) SEARCH observations, (b and e) CMAQ, and (c and f) WRF/Chem at Centreville, Alabama (top row) and Birmingham, Alabama (bottom row). Similar to Fig. 4, each dot represents a bin average of 5% of available data values plotted with the standard deviation from the NO_z mean.

Fig. 6. Month-averaged August 2006 PBL height (m AGL) from (a) WRF-for-CMAQ and (b) WRF/Chem, and differences in meters (c) for WRF-for-CMAQ – WRF/Chem.

Fig. 7. August 2006 month-averaged local afternoon (17-20 UTC) PBL height (m AGL) and differences (m) from (a) WRF-for-CMAQ, (b) WRF/Chem, and (c) WRF-for-CMAQ – WRF/Chem.

Fig. 8. August 2006 month-averaged local afternoon (17-20 UTC) diagnosed dry deposition velocity (cm s⁻¹) for O_3 and differences (cm s⁻¹) from (a) WRF-for-CMAQ, (b) WRF/Chem, and (c) WRF-for-CMAQ – WRF/Chem.

Fig. 9. August 2006 month-averaged local afternoon (17-20 UTC) total cloud fraction and differences from (a) WRF-for-CMAQ, (b) WRF/Chem, and (c) WRF-for-CMAQ – WRF/Chem.

Fig. 10. Local morning (11-14 UTC) averaged O_3 mixing ratios (ppbv) and differences (ppbv) for August 2006 for O_3 aloft (model layer 14, ~1100 m AGL) (top row) and a vertical west-east cross section (model row 90) (bottom row) from (a and d) CMAQ, (b and e) WRF/Chem, and (c and f) CMAQ – WRF/Chem. The ordinate of the cross sections (d-f) is linear in layer number, which is not scaled to geophysical height.

Fig. 11. Averaged daytime median (solid) and mean (dashed) O₃ mixing ratio profiles (ppbv) from IONS-06 observations (black), CMAQ (red), and WRF/Chem (blue) for August 2006 at (a) Huntsville, Alabama, and (b) Beltsville, Maryland.

Fig. 12. Month-averaged local afternoon (17-20 UTC) O_3 aloft for August 2006 showing mixing ratios (ppbv) from CMAQ in the left column (a and d) and WRF/Chem in the middle column (b and e), and CMAQ – WRF/Chem differences (ppbv) in the right column (c and f) for model layer 19 (~2150-2200 m AGL; top row) and layer 14 (~1100 m AGL; bottom row).

Fig. 13. Vertical west-east cross sections (model row 90) of local afternoon (17-20 UTC) averaged O_3 mixing ratios (ppbv) and differences (ppbv) for August 2006 from (a) CMAQ, (b) WRF/Chem, and (c) CMAQ – WRF/Chem. As before, the cross section ordinate is linear in layer number.

Fig. 14. August 2006 month-averaged local afternoon (17-20 UTC) NO₂ photolysis rates (J_{NO2}) in the lower troposphere showing J_{NO2} (min⁻¹) from CMAQ in the left column (a, d, and g) and WRF/Chem in the middle column (b, e, and h), and CMAQ – WRF/Chem J_{NO2} differences (min⁻¹) in the right column (c, f, and i) for model layer 19 (~2150-2200 m AGL; top row), layer 14 (~1100 m AGL; middle row), and layer 1 (~35 m AGL; bottom row). **Fig. 15.** Vertical west-east cross sections of local afternoon (17-20 UTC) averaged J_{NO2} photolysis rates (min⁻¹) and differences (min⁻¹) for August 2006 from (a) CMAQ, (b) WRF/Chem, and (c) CMAQ – WRF/Chem for model row 90. As before, the cross section ordinate is linear in layer number. **Fig. 16.** Observed and modeled J_{NO2} photolysis rates (min⁻¹) along the P3 aircraft flight path of 31 August 2006 from Tampa Bay, Florida, along the Gulf Coast to the Houston, Texas, area. P3 observations (gray) are shown at the one-second data frequency, while the simulation results from CMAQ (red) and

WRF/Chem (blue) show the expected step-like transitions from one volume-averaged grid cell to another. Refer to http://www.esrl.noaa.gov/csd/modeleval/tx06/p3/0831/ for altitude and map plots of the flight track.

Table Captions

Table 1. Air quality simulation configuration similarities.

Table 2. Air quality simulation configuration differences.

Table 3. Selected maximum 8-h average O_3 statistics from the one-month (August 2006) simulations when compared to AQS observations. Statistical metrics are as defined in Eder et al. (2006) and computed in AMET (Appel et al., 2011).

Table 1.

Feature	Selected for both AQ simulations
Domain	Eastern U.S. on 12-km grid with 34 layers
Domain top	100 hPa
Initial and boundary conditions	NAM for meteorology; CMAQ simulation on 36- km grid for chemistry
Chemical mechanism	CB05 (Yarwood et al., 2005)
Emissions	USEPA 2001 NEI projected to 2006, BEIS Ver. 3.13, and Mobile6
Longwave radiation	RRTM (Mlawer et al., 1997)
Nudging	Grid (analysis) FDDA
Surface updates	SST, albedo, vegetative fraction
Land-use classification	USGS
Topographic effects	Slope and topographic shading on radiation
Eddy coefficient	Horizontal Smagorinsky first-order closure
Subgrid transport	Subgrid convective chemistry transport

Table 2.

Feature	WRF and CMAQ	WRF/Chem		
Microphysics	WSM 6-class (Hong and Lim, 2006)	Purdue Lin (Tao et al., 1989)		
Shortwave radiation	Dudhia (Dudhia, 1989)	Goddard (Chou and Suarez, 1994)		
Surface layer physics	Pleim (Pleim, 2006)	Monin-Obukhov (Skamarock et al., 2008)		
Land surface model	Pleim-Xiu (Xiu and Pleim, 2001)	Noah (Chen and Dudhia, 2001)		
Planetary boundary layer	ACM2 (Pleim, 2007)	YSU (Hong et al., 2006; Hong, 2010)		
Cumulus parameterization	Kain-Fritsch (Kain, 2004)	Grell-Dévényi (Grell and Dévényi, 2002)		
Vertical velocity damping	no	yes		
Positive-definite advection	moisture, chemistry	moisture, scalars, chemistry		
Photolysis	JPROC/PHOT (Roselle et al., 1999)	Fast-J (Wild et al., 2000)		
Aerosols	AE4 with updated N ₂ O ₅ gamma parameterization (Binkowski and Roselle, 2003; Davis et al., 2008)	MADE/SORGAM (Ackermann et al., 1998; Schell et al., 2001)		

Table 3.

Max. 8-h Avg. O ₃ Statistic	CMAQ	WRF/Chem
Root Mean Square Error (RMSE) (ppbv)	11.52	13.57
Normalized Mean Error (NME) (%)	18.2	21.5
Mean Bias (MB) (ppbv)	3.62	6.18
Normalized Mean Bias (NMB) (%)	7.4	12.7
Correlation coeff. (r)	0.72	0.66

2 4

NO_z (ppbv)

12 14

2 4 6 8 10

NO_z (ppbv)

NO_z (ppbv)

0 2 4

Figure 11.

Figure 12.

Figure 13.

-0.25 -0.3

0.45 0.35 0.25

0.15

-0.25 -0.35 -0.45

Figure 14. (a) (b) (c) 1.00 0.95 0.90 0.85 0.80 0.75 0.75 0.65 0.65 0.65 0.65 0.65 0.45 0.45 0.45 0.44 0.33 0.30 0.25 0.55 0.45 0.35 0.25 0.05 -0.05 -0.15 -0.25 -0.35 -0.45 (e) (d) (f) 0.55 0.45 0.35 0.25 0.15 0.05 -0.05 -0.15 -0.25 -0.35 -0.45 (i) (g) (h) 11 1.00 0.95 0.90 0.85 0.76 0.76 0.76 0.65 0.66 0.56 0.55 0.46 0.46 0.46 0.35 0.35 0.25 0.15 0.05 -0.15

0.20

Figure 16.

