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Abstract: Ecologists are often faced with problem of small sample size, correlated and large 

number of predictors, and high noise-to-signal relationships. This necessitates excluding 

important variables from the model when applying standard multiple or multivariate regression 

analyses.  In this paper, we present the results of applying partial least square (PLS) regression to 

explore relationships among biotic indicators of surface water quality and landscape conditions 

accounting for the above problems.  Available field sampling and remotely sensed data sets for 

the Savannah Basin are used.  We were able to develop models and compare results for the 

whole basin and for each ecoregion (Blue Ridge, Piedmont, and Coastal Plain) in spite of the 

data constraints. The amount of variability in surface water biota explained by each model 

reflects the scale, spatial location and the composition of contributing landscape metrics.  The 

landscape-biota model developed for the whole basin using PLS explains 43% and 80% of the 

variation in water biota and landscape data sets, respectively.  Models developed for each of the 

three ecoregions indicates dominance of landscape variables which reflect the geophysical 

characteristics of that ecoregion.  

 

Key words:  PLS; landscape ecology; water quality; macroinvertebrate; Savannah River Basin.  
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1. Introduction 

The primary objective of the U.S. Environmental Protection Agency’s (EPA) Landscape 

Ecology research program is investigation of associations among indicators of water quality and 

landscapes.  Statistically valid predictive models are an important means of expressing these 

associations.  The analyses presented here represent an attempt to develop a statistical predictive 

model of biotic indicators of water quality based on associations with a selected suite of 

landscape indicators.   

Investigation of associations among indicators of water quality and landscapes involves 

statistical analyses of fundamentally different data sets.  Data on surface water conditions are 

generally obtained through field sampling programs and may include several different methods 

of data production, i.e., on-site observation, chemical analysis of collected samples, and expert 

identification of biotic organisms.  Each method is unique in its precision and variability.  Field 

samples are representative of specific points or stream reaches.  Field/analysis programs are 

expensive and labor intensive; consequently, the total number of sample sites is usually small.  

The data base may contain missing values due to the realities of field sampling: malfunctioning 

equipment, lost or destroyed samples, invalidation of results due to poor quality control.  Much 

of the data on watershed characteristics, or landscape data, is derived from remote sensing 

platforms, thereby permitting wall-to-wall coverage, although the data may be of lesser or more 

questionable quality than surface water sample data.  The landscape indicators data sets may 

contain a very large number of variables, although many of these are not wholly independent 

(i.e., they may be collinear). 

The characteristics of these data sets and the differences between point sample collection 

and remote sensing derivation present a challenge in selection of statistical methods for data 
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analyses and model definition.  Single- and multiple-regression analysis has frequently been 

used to relate water nutrient concentrations to selected landscape variables [1, 2, 3].  Regression 

analyses, however, are sensitive to missing values and dependence of explanatory variables 

(landscape variables).  Reliable statistically significant results generally cannot be obtained 

unless the total number of samples greatly exceeds the number of variables.  Canonical 

correlation is well suited to exploring the relationships among two or more distinct data sets to 

describe their association and connection to the physical environment [4, 5, 6].  However, 

canonical correlation is sensitive to collinearity in predictors and requires multinormal data sets 

when testing the significance level of the correlation.  The ratio of the number of variables to 

sample size is critical in canonical correlation; a ratio of 0.025 – 0.05 at a minimum is 

recommended [7, 8, 9].     

Partial least squares (PLS) analysis offers a number of advantages over the more 

traditionally used regression analyses.  Through its extensive use in the field of chemometrics, 

PLS has been shown to produce significant results when the number of samples is small 

compared to the number of variables [10, 11, 12]. It has been found to be useful both for 

providing accurate predictions and for interpreting relationships between data sets containing a 

high degree of collinearity [13, 14, 15]. Additionally, the prediction error in PLS is smaller than 

in other multivariate methods [16, 17].  Although PLS is a primary statistical tool in 

chemometric studies, it has only occasionally been used in ecological studies for exploratory 

analyses in engineered revegetation studies [17, 18].   

The advantages of PLS, described above, makes it an attractive candidate statistical tool 

for development of landscape ecology models.  In this paper, we present the results of applying 

PLS to exploration of the relationships among surface water biota and landscape conditions.  
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Available real-world data sets for the Savannah Basin and its three component ecoregions are 

used. These data sets contain all of the limitations that hinder use of other multivariate statistics, 

i.e., small number of sampling sites and large number of variables.  

 

2. Methods and Materials 

The water data used in this analysis were provided by EPA Region IV, Science and Ecosystem 

Support Division.  As a Regional Environmental Monitoring and Assessment Program (REMAP) 

project, site selection and sampling were completed according to standard EMAP protocols.  

This included a random site selection process, with wadeable stream (generally first to third 

Strahler order) sites selected without consideration of watershed size, proximity to other 

sampling sites, ecoregion, or ease of access.  Sample collection was completed one time during 

base flow conditions (generally late summer into fall), although selected sites may be visited a 

second time for quality assurance purposes.  Site coordinates were checked with a global 

positioning system (GPS) unit and against topographic maps to verify the selected sampling 

location. Macroinvertebrate samples were collected over a 100-m stream stretch above the water 

sampling point and, at some sites, fish samples were also collected.  Macroinvertebrate 

identification was completed in a biological laboratory following collection.  Stream water 

samples were collected and filtered for subsequent laboratory analyses.  All collected samples 

were sealed, labeled, and transported in coolers under chain-of-custody [19]. 

For each of the selected sites, the watershed support area was delineated and a suite of 

landscape variables was calculated [20]. Water biology and landscape variables (n = 86 sites) 

used in the analyses are described in Table 1.  Table 1 also provides the abbreviations of variable 

names used in the figures and tables in this paper.  Due to the great number of variables and the 



    

 

 

 

need for very short abbreviations for use in labeling figures, at each occurrence of a variable 

name throughout this text, the full variable name will be used with the abbreviation provided in 

parentheses. 

 

2.1. Site Description 

The Multi-Resolution Landscape Characterization Consortium (MRLC) landcover/land use data 

(January 17, 2007; http://www.epa.gov/nerlesd1/land-sci/savannah.htm) reveals distinctive spatial 

patterns within the Savannah River Basin.  The headwaters of the Savannah River are located in 

the Blue Ridge mountains in which evergreen forests predominate.  Below this lies a region of 

mixed and deciduous forest, agriculture dominated by pasture and hay fields, and several urban 

centers.  Two large reservoirs are located on the main stem river.  Below Augusta, Georgia, 

extensive row crop agriculture is evident, along with wetland areas.  The city of Savannah is 

located near the outlet of the river to the Atlantic Ocean.  The spatial patterns seen in the 

landcover correspond closely to the three ecoregions: Blue Ridge, Piedmont, and Coastal Plain. 

Two data sets were used (see Table1): four variables for water biology and 26 variables for 

landscape condition.   

 

 



    

 

 

 

Table 1.  Water Biota (Response) Variables  
 

Abbreviation Full name  Methodology 

HAB Macroinvertebrate 

habitat 

A weighted composite score derived from a parameter matrix of on-site observations [21] and 

modified to fit specific geographical area [19]. Parameters within the matrix are categorized as 

primary (microscale), secondary (macroscale), or tertiary (riparian zone).  Higher scores 

indicate better conditions for sustaining healthy macoinvertebrate populations. 

EPT Ephemeroptera-

Plecoptera-

Trichoptera Index 

An index of three macroinvertebrate orders known to be sensitive to environmental impacts: 

Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), calculated as 

a percentage of the number of organisms contained in a 100-organism randomly selected 

subset of the sample collected for macroinvertebrate species richness [21].  In this data set, 

values >10% indicate non-impacted conditions (>10%) and values < 1% indicate severely 

impacted conditions. 



    

 

 

 

Abbreviation Full name  Methodology 

RICH Macroinvertebrate 

Species Richness 

A count of the total number of taxa in a sample collected over a 100-m stream reach [21]. 

Higher numbers indicate a greater diversity of taxa; in this data set, counts > 26 indicated non-

impaired conditions and count < 11 indicated severely impacted conditions. 

AGPT Algal Growth 

Potential Test 

Indicator of the amount of nutrients biologically available to support algal growth.  A bioassay 

is performed in the laboratory on aliquots of filtered water collected from the site using 

standard methodology [22] by Schultz [23]. As a surrogate measurement of nutrient 

concentration, higher values indicate higher levels of nutrients. 

 



    

 

 

 

2.2. Water Biology Variables 

The four water biology variables (Table 1) used in this analysis were Algal Growth Potential 

Test (AGPT), macroinvertebrate habitat (HAB), macroinvertebrate species richness (RICH), and 

Ephemeroptera/Plecoptera/Trichoptera (EPT).    

 

2.2.1. Algal Growth Potential Test 

The Algal Growth Potential Test (AGPT) is a bioassay performed in the laboratory in which 

known amounts of nutrients (nitrogen and phosphorus) and a standard test alga are added to 

aliquots of filtered water collected from the site [22].  Its purpose is to provide an indication of 

the amount of nutrients biologically available to support algal growth, as opposed to analytical 

methodologies that measure the total amount of specific nutrients of which only a portion may be 

biologically available.  The specific methodology used by EPA Region IV was based on the 

standard method but included a modification by [23] to speed the analytical process [19].  As a 

surrogate measurement of nutrient concentration, higher values indicate higher levels of 

nutrients. 

 

2.2.2. Macroinvertebrate Habitat 

Based on the Rapid Bioassessment Protocols [21] and modified by EPA Region IV to fit their 

specific ecoregions [19], the macroinvertebrate habitat (HAB) data was derived from visual 

observations at the sampling site of specific parameters categorized as primary, secondary, and 

tertiary parameters.  Primary parameters characterize the stream habitat at a microscale; these 

parameters were bottom substrate, available cover, embeddedness, and flow regime.  Secondary 



    

 

 

 

parameters characterize stream habitat at the macroscale; these parameters were channel 

alteration, bottom scouring/deposition, and sinuousity.  The tertiary parameters of bank stability, 

bank vegetation, and streamside cover characterize the riparian zone composition and integrity 

[19].  From this parameter matrix, a single, weighted composition score was derived, with higher 

scores indicating better conditions for sustaining healthy macoinvertebrate populations. 

 

2.2.3. Macroinvertebrate Species Richness 

Macroinvertebrate species richness (RICH) is simply a count of the number of distinct taxa 

observed in a sample [21].  In this study, samples were collected from a 100-m stream segment 

above the water sample collection site.   D-frame and A-frame dipnets were used to collect 

organisms from all substrate types within the stream reach [19].  Higher numbers indicate a 

greater diversity of taxa.  The authors assigned ranges based on natural breaks in the data set:  

non-impacted (greater than 26 taxa), slightly impacted (19 – 26 taxa), moderately impacted (11 – 

18 taxa), and severely impacted (less than 11 taxa). 

 

2.2.4. Ephemeroptera/Plecoptera/Trichoptera 

The Ephemeroptera/Plecoptera/Trichoptera (EPT) variable is an index of three macroinvertebrate 

orders known to be sensitive to environmental impacts: Ephemeroptera (mayflies), Plecoptera 

(stoneflies), and Trichoptera (caddisflies).  It is calculated as a percentage of the number of 

organisms in these three orders contained in a 100-organism sample [21].  The 100-organism 

samples used were a randomly selected subset of the sample collected for macroinvertebrate 

species richness, above.  As with macroinvertebrate species richness, the authors assigned 



    

 

 

 

classifications based on natural breaks in the data set:  non-impacted (greater than 10 percent), 

slightly impacted (6 – 10 percent), moderately impacted (2 – 5 percent), and severely impacted 

(less than 2 percent). 

 

2.3. Landscape Variables 

All of the landscape variables used in this analysis were derived from available digital data sets 

in a geographic information system (GIS).  The spatial data sets used were obtained from a 

variety of sources. The abbreviation, full name and description of each of the landscape variables 

are given in Table 2. The primary data sets used to derive the 26 variables used in this analysis 

were: Multi Resolution Land Characteristics (MRLC) Interagency Consortium landcover/landuse 

[24], State Soil Geographic data base (STATSGO) soils [25], RF3 streams [26], USGS 8-digit 

HUCs, Georgia and South Carolina subbasins, Region IV sampling site locational data, 30-m and 

100-m digital elevation models (DEM) [27], and digital line graph (DLG) roads [28].  Slope was 

derived as percent rise from the 30-m DEM.  Most of the landscape variables were calculated 

using the derived watershed above the sampling point as the base unit.  The single exception in 

the variables used here is total roads located within 30 meters of a stream (r); for this variable, 

the base unit was the streams within the watershed, buffered out 30 meters on both sides.   

The seven landcover variables were calculated from the MRLC cover classes:  Percent crops (c) 

is the amount of landcover within each watershed identified in the MRLC data as “row crops”, 

percent pasture (p) is the amount of landcover within each watershed identified in the MRLC 

data as “pasture or grassland”, percent barren (b) is the amount of landcover within each 



    

 

 

 

Table 2.  Landscape (Predictor) Variables 

 Full name  Description 

c Percent crop Percentage of total Multi Resolution Landscape Characterization (MRLC) 

landcover in row crops types 

p Percent pasture Percentage of total MRLC landcover in pasture/grassland types  

b Percent barren  Percentage of total MRLC landcover in barren types (Quarries, Strip Mines) 

u Percent urban Percentage of total MRLC landcover in urban types (Commercial, High- and Low-

Density Residential) 

f Percent forest Percentage of total MRLC landcover in forest types 

q Percent wetlands Percentage of total MRLC landcover in wetland types 

w Percent water Percentage of total MRLC landcover in water types 

ah Agriculture on highly erodible 

soils 

Percent of total area in agriculture (row crops + pasture) on highly erodible soils 

(STATSGO K-factor  0.4) 



    

 

 

 

 Full name  Description 

az Agriculture on slopes >3% Percent of total area in agriculture (row crops+pasture) on slopes greater than 3 

percent 

azh Agriculture on slopes > 3% 

with highly erodible soils 

Percent of total area in agriculture (row crops + pasture) on slopes greater than 3 

percent with highly erodible soils (STATSGO K-factor  0.4) 

am Agriculture on moderately 

erodible soils 

Percent of total area in agriculture (row crops + pasture) on moderately erodible 

soils (STATSGO K-factor  0.2 and < 0.4) 

azm Agriculture on slopes > 3% 

with moderately erodible soils 

Percent of total area in agriculture (row crops + pasture) on slopes greater than 3 

percent with moderately erodible soils (STATSGO K-factor  0.2 and < 0.4) 

bzh Barren on slopes > 3% and 

highly erodible soils 

Percent of total area in barren cover types on slopes greater than 3 percent with 

highly erodible soils (STATSGO K-factor  0.4) 

bzm Barren on slopes > 3% with 

moderately erodible soils 

Barren on slopes > 3% with moderately erodible soils 

cz Crops on slopes > 3% Percent of total area in row crops on slopes greater than 3 percent 



    

 

 

 

 Full name  Description 

czm  Crops on slopes > 3% with 

moderately erodible soils 

Percent of total area in row crops on slopes greater than 3 percent with moderately 

erodible soils (STATSGO K-factor  0.2 and < 0.4) 

pz Pasture on slopes > 3% Hay pasture on slope greater than 3 percent  

e Erodible soils Percent of total area with highly erodible soils (STATSCO K-facor 0.4) 

z Slope > 3% Percent of total area with slope greater than 3 percent 

x  Mean slope Mean or average percent slope 

s Standard deviation slope Standard deviation of percent slope 

zm  Moderately erodible soils on 

slopes > 3% 

Percent of total area with moderately erodible soils (STATSGO K-factor  0.2 and < 

0.4) and slope greater than 3 percent 

d Stream Density  Stream density as total length of streams from USGS TIGER data divided by 

watershed area 



    

 

 

 

 Full name  Description 

v Total road length within 30 

meters of streams 

Total length of types 0 through 4 roads and railroads/sidings within 30 m of 

streams from USGS TIGER data divided by total stream length 

r Total road length in watershed Total length of types 0 through 4 roads from USGS TIGER data divided by 

watershed area 

t Total Power, Pipe, and 

Telephone line length in 

watershed 

Total length of power, pipe, and telephone lines from USGS TIGER data divided 

by watershed area 

 



    

 

 

 

watershed identified in the MRLC data as barren due to anthropogenic activities (e.g., “quarries, 

strip mines”), percent urban (u) is the total amount of landcover within each watershed identified 

in the MRLC data as “commercial”, “high-density residential”, and “low-density residential”, 

percent forest (f) is the total amount of landcover within each watershed identified in the MRLC 

data as “evergreen”, “deciduous”, and “mixed” forest, percent wetlands (q) is the total amount of 

landcover within each watershed identified in the MRLC data as “woody” and “herbaceous” 

wetlands, and percent water (w) is the amount of landcover within each watershed identified in 

the MRLC data as “water.”   

Slopes (z) were considered to be all areas with greater than 3 percent rise slope, while 

mean slope (x) is the arithmetic mean of the 30-m slope pixels within the watershed and standard 

deviation of slope (s) is the first standard deviation of the total number of slope pixels within the 

watershed.  The STATSGO K-factor was used to provide an estimation of slope erodibility; a K-

factor greater than or equal to 0.4 was considered “highly erodible” (e) while a K-factor of 

greater than or equal to 0.2 but less than 0.4 was considered “moderately erodible.”  Moderately 

erodible soils were used in overlays with landcover and slope data, but not as a variable by itself. 

Stream density (d) was calculated as the total length of RF3 stream vectors within the 

watershed divided by the total area of the watershed.  Powerlines, pipelines, and telephone lines 

(t) was calculated as the total length of these vectors from USGS TIGER files within the 

watershed divided by the total area of the watershed.  Total roads within the watershed (r) is the 

total length of all USGS TIGER file road classes divided by the total watershed area and total 

roads within 30 meters of streams (v) is that subset of roads located within the buffered stream 

boundary, divided by the total stream length.  The total roads within 30 meters of streams (v) 



    

 

 

 

also included railroads and sidings as these could produce an impact to streams equal to or 

greater than some passenger vehicle road classes.  Railroads, however, were not included in the 

total roads within the watershed (r) variable.   

The remaining eleven landscape variables were overlays of two or three of the landcover, 

slope, and soil erodibility variables.  Five used total agriculture (MRLC data classified as “row 

crops” and “pasture or grassland”) in combination with slope [agriculture on slopes greater than 

3 percent, (az)], or soils [agriculture on highly erodible soils (ah) and agriculture on moderately 

erodible soils (am)], or both [agriculture on highly erodible soils on slopes greater than 3 percent 

(azh) and agriculture on moderately erodible soils on slopes greater than 3 percent (azm)].  The 

subclassifications of agriculture overlayed with slopes and/or soils yielded another three 

variables [row crops on slopes greater than 3 percent (cz), row crops on slopes greater than 3 

percent with moderately erodible soils (czm), and pastures or grasslands on slopes greater than 3 

percent (pz)].  Landcover classified as barren due to anthropogenic activities overlayed with 

slopes and soils accounted for two variables [barren on slopes with highly erodible soils (bzh) 

and barren on slopes with moderately erodible soils (bzm)].  The last overlay variable used was 

slopes with moderately erodible soils (zm).  Other possible overlay variables (e.g., row crops on 

slopes with highly erodible soils) were not used in this analysis primarily because they were non-

existent in the majority of the watersheds. For clarifications, landscape variables abbreviations in 

Tables 2 and 3 were used in figures. 



    

 

 

 

3. STATISTICAL METHODOLOGY 

The PLS method is based on first computing a few relevant projections (latent variables), i.e. 

linear combinations of the independent or predictor variable X and then using these new 

variables in a regression equation for predicting the response Y.  In contrast, principal 

components analysis (PCA) uses only the predictors (X).  In PLS, both X- and Y- matrices are 

decomposed into scores- and weights- matrices (X = TPT where TTT = I is identity), then Y is 

estimated as Ŷ   = TBVT where B is the regression coefficient and V is linear weight.  The matrix 

column “T” is the latent vectors.  Decomposition of the X- and Y- matrices and forming linear 

combinations continues until the number of latent vectors is equal the number of variables in the 

X- matrix.  PLS begins by: 

1- Centering and scaling each of the response (Y) and predictor (X) variables, Yo and Xo, 

respectively.   

2- Constructing linear combinations of the predictors as: )()( weightXscore oωδ = . Scores are 

orthogonal.  

3- Constructing linear combinations of the responses as:µ ν= Yo .  

4- Verifying the linear combination in (2) has maximum covariance ( )′δ µ  with the response 

linear combination in (3); in addition constraints 1=ωωT  and 1=δδ T should be met.  

5- Predicting for both Yo and Xo by regression on δ (scores):  
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where ′Lx  ( ( ) )= ′ ′−δ δ δ1 X o  and ′Ly  ( ( ) )= ′ ′−δ δ δ1 Yo are the X- and Y- loadings, 

respectively.  

6- The above steps are for constructing the first PLS factor. 

7-  Residuals for each X and Y are produced as:  

X X X

Y Y Y

o o

o o

1

1

= −

= −

$

$
 

8- The second factor is constructed by applying steps 1 through 5 to the residual (7); 

additional factors are constructed by repeating this process for each residual until the X 

matrix becomes null.  

In interpretation, the scores as well as weights (steps 2 and 3) are computed and plotted in simple 

scatter plots (Figures 1 and 2). Weights are the contribution of each the predictors in X to the 

PLS factor.  Landscape metrics clustered near the origin indicate these provide little significant 

contribution to the predictive model.  Clusters of variables with approximately equal weights 

indicate these variables may be collinear. The scores are the regression coefficients of the 

variables in X and Y regressed upon the various variables in δ  and represent how the different 

manifest variables are related to the scores δ  (Figure 2). The scores are sometimes thought of as 

latent unobservable variables. Detailed discussions of PLS and other methods can be found in 

[29, 16, 12, 15, 30].   

 

3.1. Validation 

Validation of a prediction is always important for assessing the properties of the equation 

developed. Just testing the model on data already used for building the model is not enough and 



    

 

 

 

can lead to highly overoptimistic results [16].  Cross validation, as used here, was accomplished 

by dividing the data into five groups, of which one group was left out (test data). The model was 

fitted on the remaining four groups (training data).  The fitted models (n factor model, step 8) 

were tested via cross validation using the test data sets and the predicted values were compared 

with that observed to calculate residuals.  The sum of squares of these residuals for all models 

(null- and n- factor models) was calculated giving PRESS (Predictive Residual Sum of Square), 

which can be used to define the optimum model and, hence, assess the predictive power of the 

model. A model with number of factors that minimizes PRESS is the optimum one to be chosen.  

However, several models may have PRESS values that are close and do not differ greatly from 

the absolute minimum, therefore, it is important to test whether these differences are significant.  

A statistical test (Hotelling’s T2) was suggested [31] to test the significant differences between 

root means PRESS of models was used here.  The final model was chosen based on the lowest 

significant PRESS value (Table 3).  

 

3.2. Variable Influence on Projection (VIP) 

VIP is also known as variable importance for projection (Wold, 1995).   VIP is calculated as: 

 

nxVVIP *=  
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 iXω  is the predictor (here it is landscape variables) weight  per each model factor.  For 

example, if the model has three significant factors, then there are three weights for each of 

the landscape variables.  Each weight is normalized ( inω ) by dividing by the uncorrected 

sum of squares of predictor weights per factor, yir is the percent variability in the response 

variables (here, biota data) that is explained by each factor, nf is the number of significant 

factors in the model, and nx is the number of predictor variables.  The values of the 

regression coefficients and the relative importance (VIP) of each predictor can be used to 

evaluate the contribution of each variable in the PLS model (Figure 3). Regression 

coefficient values indicate the contribution of each predictor (lines in Figure 3) for an 

individual response. The VIP value, as indicated in the above equations, is based on both 

response and predictor measures.  Therefore, if the VIP for a predictor is small in value, it 

implies that variable has a relatively small contribution to the prediction and may be deleted 

from the PLS model.  Variable with VIP values of less than 0.8 should be considered small 

contributors [15].  An improved model can be built by including variables with high VIP 

values and excluding others with low VIP. For the whole Basin, we refined the preliminary 

model by removing 18 predictors which increased the amount of variability explained by the 

responses by 9% (Table 4) in the refined model.  

 The quality of the model developed here was determined by examining the residuals for 

both the biota and the landscape variables.  An examination of any possible outliers using 

residuals and leverages was carried out to finalize the fitted PLS model.  The above analyses  



    

 

 

 

Table 3. Root minimum of predictive residual (PRESS) and its statistics, and percent variation 

accounted for by the three PLS significant factors. Factors for preliminary PLS model for 

the surface water biota (4) and landscape (26) variables. Only eight factors were shown 

below. Bold number denotes the first absolute minimum root means PRESS and its 

statistics.  

 

were done on all data, and by ecoregion to demonstrate the utility of PLS in different 

geographical settings. 

 

3.3. Predictive Capabilities Usage 

Water quality data (response variables) are predominantly collected by manual methods at 

selected points.  Often, permitting restrictions, cost of sampling, equipment malfunction or other 

reasons may prohibit collection of a complete set of samples. Landscape variables (predictors), 

on the other hand, can generally be obtained for all sites. Use of satellite imagery provides nearly 

complete spatial coverage of the data used in computation of landscape variables.  A low  

# Factors 0 1 2 3 4 5 6 7 8 

Root Mean PRESS 1.071 0.997 0.984 0.968 0.998 1.047 1.132 1.149 1.179 

T2 17.064 12.556 7.709 0.000 5.748 12.00 3.580 5.099 3.647 

P > T2 0.001 0.006 0.092 1.000 0.172 0.003 0.493 0.245 0.468 

Variation in Landscape (%)  25.180 19.978 9.727 54.88    

Variation in Biota (%)  21.754 6.676 5.374 
Total 

33.80    



    

 

 

 

Table 4. Number of sites (n), response and predictor variables, the relative importance (VIP) of each predictor, root mean 
predictive residual sum of squares (PRESS) for models without (null) and with predictors and percent variability 
explained by responses and predictors.    

   

  PRESS* % Variability  
n 

Response 
Variables VIP 

Predictor 
Variables Null Model Responses Predictors 

       

>1.0 

1.0- 0.8  
 
 

s,x,f,z,az,p,cz 

e,zm,czm,azm,c,pz, 

ah,azh,u,d,am,r 

AGPT,EPT,HAB,RICH 

<0.8 q,b,w,bzm,v,t,bzh 

1.071 0.968 34 55 

Whole Basin 

All data 

 

 

 

 
Refined 

 

86 

EPT,HAB >1.0 

1.0- 0.8  

< 0.8 

s,z 

e,f,am,c,czm,p,u 

1.067 0.837 43 80 

Ecoregion:         
Blue Ridge 20 EPT, HAB >1.0 

1.0- 0.8  

< 0.8 

s, r 

zm,z,pz,f 

1.033 0.832 59 94 



    

 

 

 

Piedmont 59 AGPT,EPT, HAB >1.0 

1.0- 0.8  

< 0.8 

s,f 

z,e,azh,ah,am 

u,q 

1.055 0.937 42 65 

Coastal Plain 7 AGPT, EPT, HAB >1.0 

1.0- 0.8  

< 0.8 

e,am 

r,s,x,az 

u 

1.200 1.132 65 86 

 
  “*” number of significant factors were three except for the Coastal Plain, with two factors.  
         PRESS = root mean predictive residual sum of square for the null and predictors model.   



    

            

 
numbers of sites, collinearity in the landscape variables, missing values in water quality 

parameters, and low signal to noise ratios in relationships between landscape variables and 

biological data, can all be overcome in describing relationships, quantifying variability, modeling 

and prediction using PLS.  We used SAS [32] for all statistical analyses. 

 

4. RESULTS 

The results for all PLS models are summarized in Table 4.  Two models are presented for the 

whole basin:  a preliminary model in which all of the response and predictor variables are used 

and a refined model using a selected subset of variables.  Table 4 also presents results of models 

for each of the three ecoregions.    

 

4.1. Whole basin  

In the preliminary model, three factors are significant explaining 34% of the variability in the 

biota and 55% of the variability in the landscape data sets.  Figure 1 is a plot of the landscape 

and biota scores for the first factor, indicating the strength of the relationship between the 

response and predictor variables in this factor (r = 0.64).  Landscape metrics weights among the 

three significant factors (Figure 2) shows that erodible soil, slope standard deviation, mean slope, 

agriculture on slopes, and pasture are heavily weighted in all three factors, while forest is heavily 

weighted only in factor 1, wetlands in factor 2, and crops in factor 3.  Agriculture-related 

variables, including overlays with slopes and soils are approximately equal weights within the 

PLS factor indicating collinearity. 

Table 4 shows the predictor variables grouped by VIP value.  Figure 3 depicts the 

regression coefficients for each response/predictor variable combination with the predictor 



    

            

 
variables listed in order of increasing VIP value.  Landscape variables with regression 

coefficients close to zero and VIP < 0.8 indicates little or insignificant associations between 

these landscape metrics and water biota in this study.  Based on these low values for both  

regression coefficient and VIP, the following landscape variables are excluded from further 

analyses, including the PLS models for the individual ecoregions: barren on slopes with either 

highly or moderately erodible soils, water, stream density, transmission lines, and roads near 

streams.  Several of the agriculture/slope/soils – related landscape variables have similar VIP 

values and factor weights (Figure 2), indicating approximately equal contribution to the model.  

Only those variables with high values for both VIP and regression coefficient are selected to 

create a final refined model for the whole basin with the strongest possible predictive capability; 

the nine predictor values selected are shown with shaded VIP bars in Figure 3. 

The refined model (Table 4) has three significant factors with predictive ability that is 

more than twice that of the preliminary model. The three factors explain 43% and 80% of the 

variation in the biota (response) and landscape variables (predictors), respectively. The 

importance of the nine landscape variables is high (VIP ≥ 0.8).  The agriculture-related variables 

contribute equally and minimally to the model, with VIPs close to 0.84.  All of agriculture-

related variables have a negative effect on EPT and HAB.  The most significant contributors 

(VIP ≥ 1) are slope standard deviation, slope, forest, and erodible soils.  Slope standard deviation 

was the most important variable (VIP = 1.5) and, along with forest, has a positive effect on EPT 

and HAB.  Urban is also an important contributor, but ranks in between the above two groups; 
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Figure 1. Landscape- and biota- scores for the first PLS factor (correlation is 0.64).  
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 2 

 3 

Figure 2. Weight for landscape variables for the three significant PLS factors. See Table 2 for 4 

variable description. Those variables that cluster near the origin (i.e., have low weights on 5 

both factors) do not contribute much to the predictive capability of the model.  Those 6 

variables that cluster near each other indicate equal weight on a factor and possibly 7 

collinearity.   8 



    

            

 

Figure 3. Regression coefficients of each landscape variables on each of response (biota) and the 

VIP values for each landscape variables in the preliminary model. See Table 2 for 

variable description. Shaded VIP bars indicate the landscape metrics used in the refined 

(pruned) model. The regression coefficients were close to zero and their VIP < 0.8 for 

several landscape variables with respect to biota variables, indicating little or 

insignificant associations. 



    

            

 
i.e., urban contributes more than agriculture, but less than slope standard deviation, forest, and 

erodible soils.  Like agriculture and erodible soils, urban negatively impacts biotic condition.  

 

4.2. Ecoregions 

4.2.1 Blue Ridge 

Two water biota and six landscape variables (Table 4) for twenty sites are included in the model.  

There are three significant factors that account for 59% and 94% of the variability for the biota 

and landscape variables, respectively.  The strength of the relationship between the two linear 

components for the first factor is moderate (r = 0.65) [33].  Slope standard deviation and roads 

are the most important variables (VIP > 1), followed by slopes with erodible soils (VIP ≈ 1; 

Table 4).  Forest, slope and pastures on slopes were ranked in the middle with VIPs greater than 

0.8 but less than 1.  Slope standard deviation, and to a lesser extent, forest, are positively 

correlated with EPT and HAB, while the remaining landscape variables are negatively correlated 

with the biota variables (Figure 4A). Normality of the response is met (p > 0.13) and no outliers 

are found in the landscape metric data. 

 

4.2.2. Piedmont 

The PLS model for the Piedmont contains three water biota and nine landscape variables for 59 

sites (Table 4), producing three significant factors explaining 42% of the variability in the biota 

and 65% of the variability in the landscape variables (Table 4).  The strength of the relationship 

between the two linear compositions for the first factor is strong (r = 0.75) [33].  Slope features, 

and forest are the most important variables (VIP > 1; Table 4).  Slope features, forest, and 



    

            

 
wetlands (marginally) are positively correlated with EPT, whereas agriculture/slope/soils 

variables, and urban are negatively correlated with EPT (Figure 4B).   

Wetlands, slope standard deviation, and forest are positively correlated with HAB while 

urban and all agriculture-related variables are negatively correlated (Figure 4B).  AGPT is 

heavily weighted and positively correlated with urban and agriculture, and negatively correlated 

with forest (Figure 4B). Normality of the response variables is met (p > 0.05) and no serious 

outliers in the landscape variables are found. 

 

4.2.3. Coastal Plain 

In spite of the scarcity of sampling sites (n = 7) in the Coastal Plain, a valid PLS model is 

constructed.  Three water biota variables and seven landscape variables (Table 4) are included in 

the model. There are two significant factors that account for 66% and 86% of the variability for 

the biota and landscape variables, respectively.  The strength of the relationship between the two 

linear compositions for the first factor is strong (r = 0.85).  HAB and AGPT are positively 

correlated with erodible soils and agriculture on moderately erodible soils, and negatively 

correlated with the remaining predictor variables.  EPT is negatively correlated with agriculture 

on moderately erodible soils, erodible soils, and urban and positively correlated with the 

remaining variables (Figure 4C).  

5. DISCUSSION 

PLS models for the whole basin and for each of the three ecoregions revealed different sets of 

variables of landscape variables that have relation with that of water quality. A number of 

variables are found to have little or no contribution to the predictive capability of the model and, 

therefore, can reasonably be excluded from refined analyses.  Variables which are known to have 



    

            

 
a high degree of collinearity (specifically, the various overlays of agriculture/slopes/soils) are 

correctly identified in the analyses with similar weights, VIP values, and regression coefficients.  

This clustering permits further reduction of the number of variables in refined analyses.  From an 

initial pool of 26 landscape variables, final models are produced with six to nine variables, all 

significant contributors to the predictive model. 

 On the ecological aspect, one may ask, do the PLS results identify meaningful 

associations between biotic and landscape indicators?  With the exception of the Coastal Plain, 

this objective is successful.  Macroinvertebrate indicators are positively correlated with natural 

landcover types (forest in the Blue Ridge and Piedmont, wetlands in the Piedmont) and 

negatively correlated with indicators of anthropogenic activities (agriculture, urban development, 

roads).  As an indicator of nutrient enrichment, AGPT could be expected to be positively 

correlated with agriculture and erodible soils.  Positive correlations are obtained in the models 

for the whole basin and for the Piedmont.  In the Coastal Plain model, however, AGPT is 

positively correlated with agriculture on moderately erodible soils and with erodible soils, but is 

negatively correlated with agriculture on slopes.  Also, EPT is negatively correlated with 

erodible soils and agriculture on moderately erodible soils as could be expected, but EPT is 

positively correlated with agriculture on slopes and with roads, which is contrary to what would 

be expected.  Although the positive correlation is lower in magnitude than that of the negative, 

this unexpected relationship is possible due the collinearity between predictors.  Soils in this 

ecoregion are generally of low erodibility and the terrain is much flatter than the other two 

ecoregions, so possibly the detrimental effects of agricultural runoff are greatly lessened. 

The model results also indicate slope is a significant predictor variable in the whole basin 

and in each of the ecoregions.  In the Blue Ridge, slope variables receive the highest weightings 



    

            

 
and VIP values.  This region is the upland headwaters of the Savannah River Basin and is 

characterized by hilly to mountainous terrain.  Slope variables are also heavily weighted in the 

Piedmont and standard deviation of slope produces the highest VIP in any of the ecoregion-

specific models.  The Piedmont is a transitional zone between the mountains of the Blue Ridge 

and the flat terrain of the Coastal Plain and encompasses terrain varying from hilly to nearly flat.  

Slope is significant in the Coastal Plain model, but not as much as in the other ecoregions.  

Unlike the Blue Ridge and Piedmont, standard deviation of slope in the Coastal Plain is 

negatively correlated with HAB.  This may be a function of the methodology used to score HAB 

which gives higher weights to areas with a variety of pool and riffle habitats.  The Coastal Plain 

may lack this variety due to the lack of slope in this ecoregion. 

 An unexpected result is seen in the preliminary model for the whole basin.  Forest is 

weighted heavily only on factor 1, wetlands only on factor 2, and row crops only on factor 3 

(Figure 2).  Forests are the dominant landcover type in the Blue Ridge and row crops are 

dominant in the Coastal Plain.  Wetlands are a small percentage of the total landcover in the 

Piedmont, but may play a critical role in water quality [20].  It appears the linear combinations in 

the whole basin model factors may correspond to the characteristics which distinguish individual 

ecoregions.  This result merits further investigation. 

Species richness in 362 1-km2 grid squares in the Kevo Nature Reserve, Finland, were 

predicted using 227 vascular plant taxa and 27 environmental variables [17]. The resultant PLS 

model contained two factors which explained 40.3% of the variance in the single response 

variable.  PLS was also used to relate riparian plant growth and survival to duration and 

frequency of flooding in a controlled experimental study [18].  The availability of remote sensing 

data for an area can be used to monitor vegetation indicator continuously over time and space 



    

            

 
with cost effective and ease of implementation more than that with field measurements.  

Schmidtlein [34] used transformed reflectance in 64 wavelength bands to predict averaged 

Ellenberg indicator values (soil pH, soil fertility and water supply) from 46 field sites using PLS 

regression.  In each field site, all vascular plant species were also identified and their cover was 

estimated. Predicted Ellenberg indicators for the study area were mapped showing the 

continuous environmental gradient that can be used to assess the floristic composition.  

These studies used plant indicators as the response variable and a variety of predictor 

variables.  Our approach using PLS regression differs from these studies in a number of ways:  

we use multiple response variables, our response variables are indicators of nutrients and 

macroinvertebrates, and our response data originated from ambient field sampling rather than 

from controlled experimental studies. These differences are encouraging in that it implies PLS 

may have utility in a broad range of ecological studies. 

 

6. CONCLUSIONS 

In both the preliminary and refined models for the whole basin, associations among water biota 

and landscape variables largely conform to known ecological processes.  Agriculture and urban 

variables, with their potential for nutrient runoff from fertilizer usage, are positively associated 

with AGPT measurements while forest is negatively associated with AGPT.  Agriculture, urban, 

moderately eroded soils on slopes, and roads are negatively associated with HAB while 

wetlands, which filter and remove pollutants as well as slow runoff, are positively associated 

with HAB. 

In each case the dominant landscape variable corresponds to a critical aspect of the 

ecoregion; forest in the evergreen forest-dominated Blue Ridge, wetland in the transitional 



    

            

 
Piedmont, and row crops in the agriculture-dominated Coastal Plain.  For both the Blue Ridge 

and the Coastal Plain, the ecoregion-specific model yields improved results over the basin-wide 

model, despite the reduction in sample size.  Only the Piedmont model fails to improve on the 

basin-wide model results, with 42% of the variability in the water biota data set and 65% of the 

variability in the landscape variables explained by three significant factors on a sample size of 

59.  The Piedmont is a transitional zone with pasture dominant in the upper region transitioning 

to row crop dominated agriculture in the lower region. Spatial variation across the ecoregion may 

at least partially explain the model results. In contrast, three significant factors in the Blue Ridge 

together explain 59% of the variability in the water biota data set and 94% of the variability in 

the landscape variables data set, based on a sample size of 20.  Even with a very limited sample 

size of 7, the PLS model for the Coastal Plain yields two significant factors, together explaining 

66% of the variability in the water biota data and 86% of the variability in the landscapes data. 

 Although further testing in different biogeophysical setting is needed, the results indicate 

PLS may prove to be a valuable statistical analysis tool for ecological studies.  The data sets used 

in these analyses contain limitations typical of ecological studies:  a small number of sampling 

sites, a large number of variables, missing values, low signal to noise ratio, differences in spatial 

extent, and different collection methodologies between the field-collection surface water samples 

and the remote sensing-derived landscape variables.  The PLS methodology is less sensitive to 

these limitations than other statistical methods.  The correlations among water biota variables 

and landscape variables provide much more information when they are all considered in 

multivariate regression than in univariate-multiple regressions. Univariate-multiple regression 

analyses with these data sets will not reveal a distinctive pattern of association due to a weak 

correlation. Summarizing information in the predictor variables by reduction into a few 



    

            

 
variables, i.e. latent variables, conditioned on maximum covariance with the linear composition 

of the predictor variables, makes PLS more suitable in a multivariate context than other, more 

commonly used, multivariate methods.   
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