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Abstract: Ecologists are often faced with problem of smafthple size, correlated and large
number of predictors, and high noise-to-signaltreteships. This necessitates excluding
important variables from the model when applyirapstard multiple or multivariate regression
analyses. In this paper, we present the resultpplfying partial least square (PLS) regression to
explore relationships among biotic indicators aface water quality and landscape conditions
accounting for the above problems. Available figdanpling and remotely sensed data sets for
the Savannah Basin are used. We were able toatesedels and compare results for the
whole basin and for each ecoregion (Blue RidgejRant, and Coastal Plain) in spite of the
data constraints. The amount of variability in aagf water biota explained by each model
reflects the scale, spatial location and the comipasof contributing landscape metrics. The
landscape-biota model developed for the whole hasimg PLS explains 43% and 80% of the
variation in water biota and landscape data sespeactively. Models developed for each of the
three ecoregions indicates dominance of landscapables which reflect the geophysical

characteristics of that ecoregion.
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1. Introduction
The primary objective of the U.S. EnvironmentaltBation Agency’s (EPA) Landscape
Ecology research program is investigation of aggmeis among indicators of water quality and
landscapes. Statistically valid predictive mogets an important means of expressing these
associations. The analyses presented here repeesatiempt to develop a statistical predictive
model of biotic indicators of water quality basedassociations with a selected suite of
landscape indicators.

Investigation of associations among indicators afer quality and landscapes involves
statistical analyses of fundamentally differentadsgts. Data on surface water conditions are
generally obtained through field sampling prograand may include several different methods
of data production, i.e., on-site observation, cicahanalysis of collected samples, and expert
identification of biotic organisms. Each methodimsque in its precision and variability. Field
samples are representative of specific pointsreast reaches. Field/analysis programs are
expensive and labor intensive; consequently, tted tmmber of sample sites is usually small.
The data base may contain missing values due tee#iéies of field sampling: malfunctioning
equipment, lost or destroyed samples, invalidatioresults due to poor quality control. Much
of the data on watershed characteristics, or lapésdata, is derived from remote sensing
platforms, thereby permitting wall-to-wall coveragéthough the data may be of lesser or more
guestionable quality than surface water sample dil& landscape indicators data sets may
contain a very large number of variables, althoongimy of these are not wholly independent
(i.e., they may be collinear).

The characteristics of these data sets and theréif€tes between point sample collection

and remote sensing derivation present a challengeléction of statistical methods for data
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analyses and model definition. Single- and mudti@gression analysis has frequently been
used to relate water nutrient concentrations tectetl landscape variables [1, 2, 3]. Regression
analyses, however, are sensitive to missing valnddependence of explanatory variables
(landscape variables). Reliable statistically gigant results generally cannot be obtained
unless the total number of samples greatly excemrlsumber of variables. Canonical
correlation is well suited to exploring the relaships among two or more distinct data sets to
describe their association and connection to tlysipal environment [4, 5, 6]. However,
canonical correlation is sensitive to collineartypredictors and requires multinormal data sets
when testing the significance level of the coriielat The ratio of the number of variables to
sample size is critical in canonical correlatiomato of 0.025 — 0.05 at a minimum is
recommended [7, 8, 9].

Partial least squares (PLS) analysis offers a numib&dvantages over the more
traditionally used regression analyses. Througlextensive use in the field of chemometrics,
PLS has been shown to produce significant resdiesswthe number of samples is small
compared to the number of variables [10, 11, 22jas been found to be useful both for
providing accurate predictions and for interpretiai@tionships between data sets containing a
high degree of collinearity [13, 14, 15]. Additidiyathe prediction error in PLS is smaller than
in other multivariate methods [16, 17]. AlthoughSPis a primary statistical tool in
chemometric studies, it has only occasionally hesad in ecological studies for exploratory
analyses in engineered revegetation studies [17, 18

The advantages of PLS, described above, makesitractive candidate statistical tool
for development of landscape ecology models. imghper, we present the results of applying

PLS to exploration of the relationships among ssgfaater biota and landscape conditions.
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Available real-world data sets for the SavannahBasd its three component ecoregions are
used. These data sets contain all of the limitattbat hinder use of other multivariate statistics,

i.e., small number of sampling sites and large remalb variables.

2. Methods and M aterials

The water data used in this analysis were provileBPA Region 1V, Science and Ecosystem
Support Division. As a Regional Environmental Moning and Assessment Program (REMAP)
project, site selection and sampling were complatabrding to standard EMAP protocols.
This included a random site selection process, willeable stream (generally first to third
Strahler order) sites selected without considematiowatershed size, proximity to other
sampling sites, ecoregion, or ease of access. IBamoltection was completed one time during
base flow conditions (generally late summer inth,falthough selected sites may be visited a
second time for quality assurance purposes. 8dedmates were checked with a global
positioning system (GPS) unit and against topogcamiaps to verify the selected sampling
location. Macroinvertebrate samples were collectezt a 100-m stream stretch above the water
sampling point and, at some sites, fish samples a#so collected. Macroinvertebrate
identification was completed in a biological laborg following collection. Stream water
samples were collected and filtered for subseqiadatratory analyses. All collected samples
were sealed, labeled, and transported in coolatsrurhain-of-custody [19].

For each of the selected sites, the watershed sugaa was delineated and a suite of
landscape variables was calculated [20]. Watepbgiphnd landscape variables (n = 86 sites)
used in the analyses are described in Table 1lleTahlso provides the abbreviations of variable

names used in the figures and tables in this papae to the great number of variables and the
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need for very short abbreviations for use in lalgefigures, at each occurrence of a variable
name throughout this text, the full variable namklve used with the abbreviation provided in

parentheses.

2.1.Site Description

The Multi-Resolution Landscape Characterization $ootium (MRLC) landcover/land use data
(January 17, 2007; http://www.epa.gov/nerlesd1Ascitkavannah.htmeveals distinctive spatial
patterns within the Savannah River Basin. The Weasals of the Savannah River are located in
the Blue Ridge mountains in which evergreen forpegslominate. Below this lies a region of
mixed and deciduous forest, agriculture dominateddsture and hay fields, and several urban
centers. Two large reservoirs are located on thi& stem river. Below Augusta, Georgia,
extensive row crop agriculture is evident, alonthwvetland areas. The city of Savannah is
located near the outlet of the river to the Atlarfiicean. The spatial patterns seen in the
landcover correspond closely to the three ecoregiBlue Ridge, Piedmont, and Coastal Plain.
Two data sets were used (see Tablel): four vasdblevater biology and 26 variables for

landscape condition.



Table 1. Water Biota (Response) Variables

Abbreviation  Full name Methodology
HAB Macroinvertebrate A weighted composite score derived from a paranratdrix of on-site observations [21] and
habitat modified to fit specific geographical area [19]r&aeters within the matrix are categorized as
primary (microscale), secondary (macroscale), miaty (riparian zone). Higher scores
indicate better conditions for sustaining healtrgcoinvertebrate populations.
EPT Ephemeroptera-  An index of three macroinvertebrate orders knowhdaensitive to environmental impacts:
Plecoptera- Ephemeroptera (mayflies), Plecoptera (stonefles)l, Trichoptera (caddisflies), calculated as

Trichoptera Index

a percentage of the number of organisms contamadLDO-organism randomly selected
subset of the sample collected for macroinvertelspecies richness [21]. In this data set,
values >10% indicate non-impacted conditions (>1@#@ values 4% indicate severely

impacted conditions.



Abbreviation

Full name

Methodology

RICH

AGPT

Macroinvertebrate

Species Richness

Algal Growth

Potential Test

A count of the total number of taxa in a sampldéextéd over a 100-m stream reach [21].
Higher numbers indicate a greater diversity of faxahis data set, counts > 26 indicated non-

impaired conditions and count < 11 indicated sdyenmepacted conditions.

Indicator of the amount of nutrients biologicaliyadable to support algal growth. A bioassay
is performed in the laboratory on aliquots of fiété water collected from the site using
standard methodology [22] by Schultz [23]. As asgate measurement of nutrient

concentration, higher values indicate higher leweélsutrients.




2.2.Water Biology Variables
The four water biology variables (Table 1) usethis analysis were Algal Growth Potential
Test (AGPT), macroinvertebrate habitat (HAB), maovertebrate species richness (RICH), and

Ephemeroptera/Plecoptera/Trichoptera (EPT).

2.2.1.Algal Growth Potential Test

The Algal Growth Potential Test (AGPT) is a bioasparformed in the laboratory in which
known amounts of nutrients (nitrogen and phosphand a standard test alga are added to
aliquots of filtered water collected from the 42]. Its purpose is to provide an indication of
the amount of nutrients biologically available tgpport algal growth, as opposed to analytical
methodologies that measure the total amount ofifspeatrients of which only a portion may be
biologically available. The specific methodologsed by EPA Region IV was based on the
standard method but included a modification by @33peed the analytical process [19]. As a
surrogate measurement of nutrient concentratighdrivalues indicate higher levels of

nutrients.

2.2.2.Macroinvertebrate Habitat

Based on the Rapid Bioassessment Protocols [21iexdified by EPA Region IV to fit their
specific ecoregions [19], the macroinvertebratatab(HAB) data was derived from visual
observations at the sampling site of specific p&tens categorized as primary, secondary, and
tertiary parameters. Primary parameters charaetéine stream habitat at a microscale; these

parameters were bottom substrate, available cevalneddedness, and flow regime. Secondary



parameters characterize stream habitat at the s@adey these parameters were channel
alteration, bottom scouring/deposition, and sinugusThe tertiary parameters of bank stability,
bank vegetation, and streamside cover charactiérzeparian zone composition and integrity
[19]. From this parameter matrix, a single, weaghtomposition score was derived, with higher

scores indicating better conditions for sustairfieglthy macoinvertebrate populations.

2.2.3 Macroinvertebrate Species Richness

Macroinvertebrate species richness (RICH) is sinaptpunt of the number of distinct taxa
observed in a sample [21]. In this study, samplee collected from a 100-m stream segment
above the water sample collection site. D-frame A-frame dipnets were used to collect
organisms from all substrate types within the stre@aach [19]. Higher numbers indicate a
greater diversity of taxa. The authors assignades based on natural breaks in the data set:
non-impacted (greater than 26 taxa), slightly imed¢19 — 26 taxa), moderately impacted (11 —

18 taxa), and severely impacted (less than 11 taxa)

2.2.4. Ephemeroptera/Plecoptera/Trichoptera

TheEphemeroptera/Plecoptera/Trichoptera (EPT) variable is an index of three macroinverédr
orders known to be sensitive to environmental ing&phemeroptera (mayflies), Plecoptera
(stoneflies), and Trichoptera (caddisflies). It is calculated as a percentage of the nuraber
organisms in these three orders contained in aot@&ism sample [21]. The 100-organism
samples used were a randomly selected subset sathple collected for macroinvertebrate

species richness, above. As with macroinvertelseeies richness, the authors assigned



classifications based on natural breaks in the sittanon-impacted (greater than 10 percent),
slightly impacted (6 — 10 percent), moderately iotpd (2 — 5 percent), and severely impacted

(less than 2 percent).

2.3. Landscape Variables

All of the landscape variables used in this analysre derived from available digital data sets
in a geographic information system (GIS). Theigpdata sets used were obtained from a
variety of sources. The abbreviation, full name daslcription of each of the landscape variables
are given in Table 2. The primary data sets usetbtive the 26 variables used in this analysis
were: Multi Resolution Land Characteristics (MRLU@)eragency Consortium landcover/landuse
[24], State Soil Geographic data base (STATSGQ$ $2b], RF3 streams [26], USGS 8-digit
HUCs, Georgia and South Carolina subbasins, Rdgi@ampling site locational data, 30-m and
100-m digital elevation models (DEM) [27], and dadiline graph (DLG) roads [28]. Slope was
derived as percent rise from the 30-m DEM. Modgheflandscape variables were calculated
using the derived watershed above the sampling psithe base unit. The single exception in
the variables used here is total roads locatedm@0 meters of a stream (r); for this variable,
the base unit was the streams within the waterdhdtered out 30 meters on both sides.

The seven landcover variables were calculated fremMRLC cover classes: Percent crops (c)
is the amount of landcover within each watershedtified in the MRLC data as “row crops”,
percent pasture (p) is the amount of landcoverimigach watershed identified in the MRLC

data as “pasture or grassland”, percent barrers the amount of landcover within each



Table 2. Landscape (Predictor) Variables

Full name Description

C Percent crop Percentage of total Multi Resolutiandscape Characterization (MRLC)
landcover in row crops types

p Percent pasture Percentage of total MRLC landdavgasture/grassland types

b Percent barren Percentage of total MRLC landciovearren types (Quarries, Strip Mines)

u Percent urban Percentage of total MRLC landcmvarban types (Commercial, High- and Low-
Density Residential)

f Percent forest Percentage of total MRLC landcavédorest types

q Percent wetlands Percentage of total MRLC laneicovwetland types

w Percent water Percentage of total MRLC landcavevater types

ah Agriculture on highly erodible Percent of total area in agriculture (row cropsastpre) on highly erodible soils

soils (STATSGO K-factor0.4)



az

azh

am

azm

bzh

bzm

Cz

Full name Description

i 0, . .
Agriculture on slopes >3%  percent of total area in agriculture (row crops#mas on slopes greater than 3

percent

Agriculture on slopes > 3%  Percent of total area in agriculture (row cropsastpre) on slopes greater than 3

with highly erodible soils percent with highly erodible soils (STATSGO K-fact0.4)

Agriculture on moderately Percent of total area in agriculture (row cropsastpre) on moderately erodible

erodible soils soils (STATSGO K-factor0.2 and < 0.4)

Agriculture on slopes > 3%  Percent of total area in agriculture (row cropsastpre) on slopes greater than 3

with moderately erodible soils percent with moderately erodible soils (STATSGOa€tbr 0.2 and < 0.4)

Barren on slopes > 3% and Percent of total area in barren cover types oneslgpeater than 3 percent with

highly erodible soils highly erodible soils (STATSGO K-factod.4)

Barren on slopes > 3% with  Barren on slopes > 3% with moderately erodiblessoll

moderately erodible soils

Crops on slopes > 3% Percent of total areavincrops on slopes greater than 3 percent



czm

Pz

zm

Full name Description

Crops on slopes > 3% with ~ Percent of total area in row crops on slopes greélase 3 percent with moderately

moderately erodible soils erodible soils (STATSGO K-facto0.2 and < 0.4)

Pasture on slopes > 3% Hay pasture on slop&egitban 3 percent

Erodible soils Percent of total area with highilgdible soils (STATSCO K-facd.4)
Slope > 3% Percent of total area with slope grehan 3 percent

Mean slope Mean or average percent slope

Standard deviation slope Standard deviation afgoe: slope

Moderately erodible soils on Percent of total area with moderately erodibless(BTATSGO K-factor0.2 and <

slopes > 3% 0.4) and slope greater than 3 percent

Stream Density Stream density as total lenggtrems from USGS TIGER data divided by

watershed area



Full name Description
Total road length within 30  Total length of types 0 through 4 roads and radsssidings within 30 m of

meters of streams streams from USGS TIGER data divided by total stréangth

Total road length in watershedTOtal length of types 0 through 4 roads from USGSHR data divided by
watershed area

Total Power, Pipe, and Total length of power, pipe, and telephone linesflUSGS TIGER data divided

Telephone line length in by watershed area

watershed




watershed identified in the MRLC data as barrentdwnthropogenic activities (e.g., “quarries,
strip mines”), percent urban (u) is the total anmtafrlandcover within each watershed identified
in the MRLC data as “commercial”, “high-densityidemntial”, and “low-density residential”,
percent forest (f) is the total amount of landcowéhin each watershed identified in the MRLC
data as “evergreen”, “deciduous”, and “mixed” fay@ercent wetlands (q) is the total amount of
landcover within each watershed identified in thRIMC data as “woody” and “herbaceous”
wetlands, and percent water (w) is the amountraddaver within each watershed identified in
the MRLC data as “water.”

Slopes (z) were considered to be all areas withtgrehan 3 percent rise slope, while
mean slope (X) is the arithmetic mean of the 3dapespixels within the watershed and standard
deviation of slope (s) is the first standard deweiapf the total number of slope pixels within the
watershed. The STATSGO K-factor was used to peoaid estimation of slope erodibility; a K-
factor greater than or equal to 0.4 was considérigghly erodible” (e) while a K-factor of
greater than or equal to 0.2 but less than 0.4cmasidered “moderately erodible.” Moderately
erodible soils were used in overlays with landcauvat slope data, but not as a variable by itself.

Stream density (d) was calculated as the totalthleofjRF3 stream vectors within the
watershed divided by the total area of the watetsh®werlines, pipelines, and telephone lines
(t) was calculated as the total length of theséoredrom USGS TIGER files within the
watershed divided by the total area of the watetsHetal roads within the watershed (r) is the
total length of all USGS TIGER file road classeadid by the total watershed area and total
roads within 30 meters of streams (v) is that subsmads located within the buffered stream

boundary, divided by the total stream length. idial roads within 30 meters of streams (v)



also included railroads and sidings as these qmaduce an impact to streams equal to or
greater than some passenger vehicle road claBsalsoads, however, were not included in the
total roads within the watershed (r) variable.

The remaining eleven landscape variables were ayedf two or three of the landcover,
slope, and soil erodibility variables. Five usetalt agriculture (MRLC data classified as “row
crops” and “pasture or grassland”) in combinatiathwslope [agriculture on slopes greater than
3 percent, (az)], or soils [agriculture on hightgdible soils (ah) and agriculture on moderately
erodible soils (am)], or both [agriculture on higllrodible soils on slopes greater than 3 percent
(azh) and agriculture on moderately erodible smiislopes greater than 3 percent (azm)]. The
subclassifications of agriculture overlayed witbpgs and/or soils yielded another three
variables [row crops on slopes greater than 3 pé ce), row crops on slopes greater than 3
percent with moderately erodible soils (czm), aadtpres or grasslands on slopes greater than 3
percent (pz)]. Landcover classified as barrentduthropogenic activities overlayed with
slopes and soils accounted for two variables [loaoreslopes with highly erodible soils (bzh)
and barren on slopes with moderately erodible gb#m)]. The last overlay variable used was
slopes with moderately erodible soils (zm). Othessible overlay variables (e.g., row crops on
slopes with highly erodible soils) were not usedthiis analysis primarily because they were non-
existent in the majority of the watersheds. Forifitations, landscape variables abbreviations in

Tables 2 and 3 were used in figures.



3. STATISTICAL METHODOL OGY

The PLS method is based on first computing a fdewemt projections (latent variables), i.e.

linear combinations of the independent or predietsrable X and then using these new

variables in a regression equation for predictmgresponse Y. In contrast, principal

components analysis (PCA) uses only the predi¢¥rsIn PLS, both X- and Y- matrices are

decomposed into scores- and weights- matrices TR'=where TT = | is identity), then Y is

estimated a¥ = TBV' where B is the regression coefficient and V isdinweight. The matrix

column “T” is the latent vectors. Decompositiontloé X- and Y- matrices and forming linear

combinations continues until the number of latestters is equal the number of variables in the

X- matrix. PLS begins by:

1

Centering and scaling each of the response (Y pagdictor (X) variables, Yand X,

respectively.

Constructing linear combinations of the predicas®)(score =X °c«(weight). Scores are
orthogonal.

Constructing linear combinations of the responsega Y°v.

Verifying the linear combination in (2) has maximewvariance(d'y) with the response

linear combination in (3); in addition constraint8 w=1 and d' d = Ishould be met.

Predicting for both ¥and X by regression o (scores):

X°=a

A

ve=a,



whereL; (= (0'0)™"dX°) andL, (= (0'9)"JY°)are the X- and Y- loadings,

respectively.
6- The above steps are for constructing the first Rickr.
7- Residuals for each X and Y are produced as:
X, = X°- X°
Y, = Y- ¥
8- The second factor is constructed by applying steiigough 5 to the residual (7);
additional factors are constructed by repeating pinocess for each residual until the X
matrix becomes null.
In interpretation, the scores as well as weightp&2 and 3) are computed and plotted in simple
scatter plots (Figures 1 and 2). Weights are tméritmtion of each the predictors in X to the
PLS factor. Landscape metrics clustered nearrigenondicate these provide little significant
contribution to the predictive model. Clustersafiables with approximately equal weights
indicate these variables may be collinear. Theescare the regression coefficients of the
variables in X and Y regressed upon the varioumkibas ind and represent how the different
manifest variables are related to the sca¥ygé-igure 2). The scores are sometimes thought of as
latent unobservable variables. Detailed discussibd.S and other methods can be found in

[29, 16, 12, 15, 30].

3.1. Validation
Validation of a prediction is always important fmssessing the properties of the equation

developed. Just testing the model on data alresdg for building the model is not enough and



can lead to highly overoptimistic results [16].0€s validation, as used here, was accomplished
by dividing the data into five groups, of which agreup was left out (test data). The model was
fitted on the remaining four groups (training datahe fitted models (n factor model, step 8)
were tested via cross validation using the test dats and the predicted values were compared
with that observed to calculate residuals. The stisguares of these residuals for all models
(null- and n- factor models) was calculated givRiRESS (Predictive Residual Sum of Square),
which can be used to define the optimum model had¢ce, assess the predictive power of the
model. A model with number of factors that minineZeRESS is the optimum one to be chosen.
However, several models may have PRESS valuestbaiose and do not differ greatly from
the absolute minimum, therefore, it is importantast whether these differences are significant.
A statistical test (Hotelling'd?) was suggested [31] to test the significant differes between

root means PRESS of models was used here. THerfodel was chosen based on the lowest

significant PRESS value (Table 3).

3.2. Variable Influence on Projection (VIP)

VIP is also known as variable importance for progc(Wold, 1995). VIP is calculated as:
VIP=+V * nx

nf 1) _2 * r.
— nj yi
V= z nf
i=1
ryi
i=1



X
i~ cav. -
USXw)

Xw is the predictor (here it is landscape variablesight per each model factor. For

example, if the model has three significant fagttren there are three weights for each of

the landscape variables. Each weight is normaljzgd) by dividing by the uncorrected
sum of squares of predictor weights per factgis the percent variability in the response

variables (here, biota data) that is explaineddphdactornf is the number of significant
factors in the model, andx is the number of predictor variables. The valiethe
regression coefficients and the relative importaiuiP) of each predictor can be used to
evaluate the contribution of each variable in th& Ihodel (Figure 3). Regression
coefficient values indicate the contribution of lkegeedictor (lines in Figure 3) for an
individual response. The VIP value, as indicatethenabove equations, is based on both
response and predictor measures. Therefore, WitRdor a predictor is small in value, it
implies that variable has a relatively small cdnition to the prediction and may be deleted
from the PLS model. Variable with VIP values add¢han 0.8 should be considered small
contributors [15]. An improved model can be bbiftincluding variables with high VIP
values and excluding others with low VIP. For theole Basin, we refined the preliminary
model by removing 18 predictors which increasedatime@unt of variability explained by the
responses by 9% (Table 4) in the refined model.

The quality of the model developed here was detexthby examining the residuals for
both the biota and the landscape variables. Am@ation of any possible outliers using

residuals and leverages was carried out to finatieditted PLS model. The above analyses



Table 3. Root minimum of predictive residual (PRES& its statistics, and percent variation
accounted for by the three PLS significant factBesctors for preliminary PLS model for
the surface water biota (4) and landscape (26akbbas. Only eight factors were shown

below. Bold number denotes the first absolute mimmroot means PRESS and its

statistics.
# Factors 0 1 2 3 4 5 6 7 8
Root Mean PRESS 1.071 0.997 0.9849€.968 0.998 1.047 1.132 1.149 1.179
T? 17.064 12.556 7.709 0.000 5.748 12.00 3.580 5.099 3.647
P>T 0.001 0.006 0.092 1.000 0.172 0.003 0.493 0.245 0.468
Variation in Landscape (%) 25.180 19.978 9.727 54.88
Variation in Biota (%) 21.7546.676 5.374 o 33.80

were done on all data, and by ecoregion to dematestine utility of PLS in different

geographical settings.

3.3. Predictive Capabilities Usage

Water quality data (response variables) are predantly collected by manual methods at
selected points. Often, permitting restrictiorsstoof sampling, equipment malfunction or other
reasons may prohibit collection of a complete $stamples. Landscape variables (predictors),
on the other hand, can generally be obtained faitak. Use of satellite imagery provides nearly

complete spatial coverage of the data used in ctatipo of landscape variables. A low



Table 4. Number of sites (n), response and pradwetoables, the relative importance (VIP) of eacédictor, root mean
predictive residual sum of squares (PRESS) for tsoaglighout (null) and with predictors and perceatiability
explained by responses and predictors.

Response Predictor PRESS* % Variability
n Variables VIP Variables Null  Model ResponsesPredictors
Whole Basin
All data 86 AGPT,EPT,HAB,RICH >1.0 s,x,f,z,az,p,cz 1.071 0.968 34 55
1.0- 0.8 e, zm,czm,azm,c,pz,
ah,azh,u,d,am,r
<0.8 g,b,w,bzm,v,t,bzh
EPT,HAB >1.0 S,z 1.067 0.837 43 80
Refined
1.0- 0.8 e,f,am,c,czm,p,u
<0.8
Ecoregion:
Blue Ridge 20 EPT, HAB >1.0 s,r 1.033 0.832 59 94

1.0- 0.8 zm,z,pz,f

<0.8



Piedmont 59 AGPT,EPT, HAB >1.0 sf 1.055 0.937 42 65
1.0- 0.8 z,e,azh,ah,am
<0.8 u,q
Coastal Plain 7 AGPT, EPT, HAB >1.0 e, am 1.200 1.132 65 86
1.0- 0.8 r,s,x,az

<0.8 u

“*” number of significant factors were three excépt the Coastal Plain, with two factors.
PRESS = root mean predictive residual etisguare for the null and predictors model.



numbers of sites, collinearity in the landscapealdes, missing values in water quality
parameters, and low signal to noise ratios iniglahips between landscape variables and
biological data, can all be overcome in describlgtionships, quantifying variability, modeling

and prediction using PLS. We useAS[32] for all statistical analyses.

4, RESULTS
The results for all PLS models are summarized inld4. Two models are presented for the
whole basin: a preliminary model in which all bétresponse and predictor variables are used
and a refined model using a selected subset adlvas. Table 4 also presents results of models

for each of the three ecoregions.

4.1. Whole basin
In the preliminary model, three factors are siguaifit explaining 34% of the variability in the
biota and 55% of the variability in the landscapéadsets. Figure 1 is a plot of the landscape
and biota scores for the first factor, indicatihg strength of the relationship between the
response and predictor variables in this facter@t64). Landscape metrics weights among the
three significant factors (Figure 2) shows thadéste soil, slope standard deviation, mean slope,
agriculture on slopes, and pasture are heavily tedyin all three factors, while forest is heavily
weighted only in factor 1, wetlands in factor 2damops in factor 3. Agriculture-related
variables, including overlays with slopes and saiks approximately equal weights within the
PLS factor indicating collinearity.

Table 4 shows the predictor variables grouped B YAlue. Figure 3 depicts the

regression coefficients for each response/predicaable combination with the predictor



variables listed in order of increasing VIP valueaandscape variables with regression
coefficients close to zero and VIP < 0.8 indicdii#e or insignificant associations between
these landscape metrics and water biota in thdystBased on these low values for both
regression coefficient and VIP, the following lacdge variables are excluded from further
analyses, including the PLS models for the indigidecoregions: barren on slopes with either
highly or moderately erodible soils, water, stredensity, transmission lines, and roads near
streams. Several of the agriculture/slope/sorkslated landscape variables have similar VIP
values and factor weights (Figure 2), indicatingragimately equal contribution to the model.
Only those variables with high values for both \AR regression coefficient are selected to
create a final refined model for the whole basithwie strongest possible predictive capability;
the nine predictor values selected are shown viildled VIP bars in Figure 3.

The refined model (Table 4) has three significactdrs with predictive ability that is
more than twice that of the preliminary model. Theee factors explain 43% and 80% of the
variation in the biota (response) and landscapbias (predictors), respectively. The
importance of the nine landscape variables is (iR > 0.8). The agriculture-related variables
contribute equally and minimally to the model, withPs close to 0.84. All of agriculture-
related variables have a negative effect on EPTH#IE. The most significant contributors
(VIP > 1) are slope standard deviation, slope, forest,emadible soils. Slope standard deviation
was the most important variable (VIP = 1.5) andnglwith forest, has a positive effect on EPT

and HAB. Urban is also an important contributart tanks in between the above two groups;
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variables that cluster near each other indicatalegeight on a factor and possibly

collinearity.
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several landscape variables with respect to biatebles, indicating little or

insignificant associations.



i.e., urban contributes more than agriculture,léss than slope standard deviation, forest, and

erodible soils. Like agriculture and erodible spurban negatively impacts biotic condition.

4.2. Ecoregions

4.2.1 Blue Ridge

Two water biota and six landscape variables (Tdpler twenty sites are included in the model.
There are three significant factors that accounb8%6 and 94% of the variability for the biota
and landscape variables, respectively. The stinepigihe relationship between the two linear
components for the first factor is moderate (r650[33]. Slope standard deviation and roads
are the most important variables (VIP > 1), foll@a®y slopes with erodible soils (V1

Table 4). Forest, slope and pastures on slopes raaked in the middle with VIPs greater than
0.8 but less than 1. Slope standard deviationt@adesser extent, forest, are positively
correlated with EPT and HAB, while the remainingdacape variables are negatively correlated
with the biota variables (Figure 4A). Normalitytbe response is met (p > 0.13) and no outliers

are found in the landscape metric data.

4.2.2. Piedmont

The PLS model for the Piedmont contains three wat#a and nine landscape variables for 59
sites (Table 4), producing three significant fastexplaining 42% of the variability in the biota
and 65% of the variability in the landscape vaeal(Table 4). The strength of the relationship
between the two linear compositions for the fiegttbr is strong (r = 0.75) [33]. Slope features,

and forest are the most important variables (VIE Fable 4). Slope features, forest, and



wetlands (marginally) are positively correlatediPT, whereas agriculture/slope/soils
variables, and urban are negatively correlated &R (Figure 4B).

Wetlands, slope standard deviation, and forespaséively correlated with HAB while
urban and all agriculture-related variables areatiegly correlated (Figure 4B). AGPT is
heavily weighted and positively correlated withamband agriculture, and negatively correlated
with forest (Figure 4B). Normality of the responsgiables is met (p > 0.05) and no serious

outliers in the landscape variables are found.

4.2.3. Coastal Plain
In spite of the scarcity of sampling sites (n sr7)he Coastal Plain, a valid PLS model is
constructed. Three water biota variables and skaretscape variables (Table 4) are included in
the model. There are two significant factors ttatoaint for 66% and 86% of the variability for
the biota and landscape variables, respectivehe skrength of the relationship between the two
linear compositions for the first factor is strang 0.85). HAB and AGPT are positively
correlated with erodible soils and agriculture coderately erodible soils, and negatively
correlated with the remaining predictor variabl&RT is negatively correlated with agriculture
on moderately erodible soils, erodible soils, arithn and positively correlated with the
remaining variables (Figure 4C).

5. DISCUSSION
PLS models for the whole basin and for each othinee ecoregions revealed different sets of
variables of landscape variables that have relatitimthat of water quality. A number of
variables are found to have little or no contribatto the predictive capability of the model and,

therefore, can reasonably be excluded from refaredyses. Variables which are known to have



a high degree of collinearity (specifically, theieais overlays of agriculture/slopes/soils) are
correctly identified in the analyses with similaeights, VIP values, and regression coefficients.
This clustering permits further reduction of themher of variables in refined analyses. From an
initial pool of 26 landscape variables, final madate produced with six to nine variables, all
significant contributors to the predictive model.

On the ecological aspect, one may ask, do therB&dts identify meaningful
associations between biotic and landscape indgat®ith the exception of the Coastal Plain,
this objective is successful. Macroinvertebratidators are positively correlated with natural
landcover types (forest in the Blue Ridge and P=abywetlands in the Piedmont) and
negatively correlated with indicators of anthropaigeactivities (agriculture, urban development,
roads). As an indicator of nutrient enrichment,;AIGcould be expected to be positively
correlated with agriculture and erodible soils.sifhee correlations are obtained in the models
for the whole basin and for the Piedmont. In tlea€ial Plain model, however, AGPT is
positively correlated with agriculture on modenrgtetodible soils and with erodible soils, but is
negatively correlated with agriculture on slopédso, EPT is negatively correlated with
erodible soils and agriculture on moderately erledgoils as could be expected, but EPT is
positively correlated with agriculture on slopesl avith roads, which is contrary to what would
be expected. Although the positive correlatiolovger in magnitude than that of the negative,
this unexpected relationship is possible due ttiemearity between predictors. Soils in this
ecoregion are generally of low erodibility and thgain is much flatter than the other two
ecoregions, so possibly the detrimental effectgoicultural runoff are greatly lessened.

The model results also indicate slope is a sigaifi@redictor variable in the whole basin

and in each of the ecoregions. In the Blue Ridipme variables receive the highest weightings



and VIP values. This region is the upland headwaitthe Savannah River Basin and is
characterized by hilly to mountainous terrain. fgloariables are also heavily weighted in the
Piedmont and standard deviation of slope produmesighest VIP in any of the ecoregion-
specific models. The Piedmont is a transitionalezbetween the mountains of the Blue Ridge
and the flat terrain of the Coastal Plain and enzasees terrain varying from hilly to nearly flat.
Slope is significant in the Coastal Plain modet, ot as much as in the other ecoregions.
Unlike the Blue Ridge and Piedmont, standard dmnatf slope in the Coastal Plain is
negatively correlated with HAB. This may be a fiimie of the methodology used to score HAB
which gives higher weights to areas with a vard@tpool and riffle habitats. The Coastal Plain
may lack this variety due to the lack of slopehis tecoregion.

An unexpected result is seen in the preliminarglehdor the whole basin. Forest is
weighted heavily only on factor 1, wetlands onlyfaator 2, and row crops only on factor 3
(Figure 2). Forests are the dominant landcoves tyghe Blue Ridge and row crops are
dominant in the Coastal Plain. Wetlands are algmeatentage of the total landcover in the
Piedmont, but may play a critical role in water lifyd20]. It appears the linear combinations in
the whole basin model factors may correspond ta@hiaeacteristics which distinguish individual
ecoregions. This result merits further investigati

Species richness in 362 1-kigrid squares in the Kevo Nature Reserve, Finlarde
predicted using 227 vascular plant taxa and 27renmiental variables [17]. The resultant PLS
model contained two factors which explained 40.3%be variance in the single response
variable. PLS was also used to relate ripariantgeowth and survival to duration and
frequency of flooding in a controlled experimergaldy [18]. The availability of remote sensing

data for an area can be used to monitor vegetatéhoator continuously over time and space



with cost effective and ease of implementation nibam that with field measurements.
Schmidtlein [34] used transformed reflectance imé#elength bands to predict averaged
Ellenberg indicator values (soil pH, soil fertiliznd water supply) from 46 field sites using PLS
regression. In each field site, all vascular pkpecies were also identified and their cover was
estimated. Predicted Ellenberg indicators for thelysarea were mapped showing the
continuous environmental gradient that can be ts@dsess the floristic composition.

These studies used plant indicators as the respanisdle and a variety of predictor
variables. Our approach using PLS regressionrdiffem these studies in a number of ways:
we use multiple response variables, our responsablas are indicators of nutrients and
macroinvertebrates, and our response data origirfieden ambient field sampling rather than
from controlled experimental studies. These diffiees are encouraging in that it implies PLS

may have utility in a broad range of ecologicatigts.

6. CONCLUSIONS

In both the preliminary and refined models for Wgole basin, associations among water biota
and landscape variables largely conform to knownoggcal processes. Agriculture and urban
variables, with their potential for nutrient rundfdm fertilizer usage, are positively associated
with AGPT measurements while forest is negativelyomiated with AGPT. Agriculture, urban,
moderately eroded soils on slopes, and roads gatiaely associated with HAB while
wetlands, which filter and remove pollutants ashaslslow runoff, are positively associated
with HAB.

In each case the dominant landscape variable games to a critical aspect of the

ecoregion; forest in the evergreen forest-dominBiee Ridge, wetland in the transitional



Piedmont, and row crops in the agriculture-domid&eastal Plain. For both the Blue Ridge
and the Coastal Plain, the ecoregion-specific myigdédls improved results over the basin-wide
model, despite the reduction in sample size. @@yPiedmont model fails to improve on the
basin-wide model results, with 42% of the varidpiin the water biota data set and 65% of the
variability in the landscape variables explainedhrge significant factors on a sample size of
59. The Piedmont is a transitional zone with pastlominant in the upper region transitioning
to row crop dominated agriculture in the lower cggiSpatial variation across the ecoregion may
at least partially explain the model results. Intcast, three significant factors in the Blue Ridge
together explain 59% of the variability in the wabéota data set and 94% of the variability in
the landscape variables data set, based on a saiglef 20. Even with a very limited sample
size of 7, the PLS model for the Coastal Plaindgeivo significant factors, together explaining
66% of the variability in the water biota data &&¥o of the variability in the landscapes data.
Although further testing in different biogeophyaisetting is needed, the results indicate
PLS may prove to be a valuable statistical analggkfor ecological studies. The data sets used
in these analyses contain limitations typical aflegical studies: a small number of sampling
sites, a large number of variables, missing vallog signal to noise ratio, differences in spatial
extent, and different collection methodologies ledwthe field-collection surface water samples
and the remote sensing-derived landscape variables.PLS methodology is less sensitive to
these limitations than other statistical metho@lke correlations among water biota variables
and landscape variables provide much more infoonatinen they are all considered in
multivariate regression than in univariate-multippgressions. Univariate-multiple regression
analyses with these data sets will not reveal @ndisv/e pattern of association due to a weak

correlation. Summarizing information in the predrctariables by reduction into a few



variables, i.e. latent variables, conditioned oximam covariance with the linear composition
of the predictor variables, makes PLS more suitabbéemultivariate context than other, more

commonly used, multivariate methods.

Acknowledgments and Notice

We thank the effort of Dr. Chad Cross, Dr. Tormaa4$\y Daniel Heggem and the
anonymous reviewers for their input and review. €baetribution of the U.S. Environmental
Protection Agency, Region IV, Science and Ecosysseipport Division in the collection of the
surface water data used in the statistical analysesented here is gratefully acknowledged. The
U.S. Environmental Protection Agency (EPA), throutghOffice of Research and Development
(ORD), funded and performed the research deschbesl It has been peer reviewed by the EPA
and approved for publication. Mention of trade earmr commercial products does not

constitute endorsement or recommendation for use.



REFRENCES

1. I.Noy-Meir; ‘Multivariate analysis of the semidivegetation in south-eastern Australia. Il
Vegetation Catenae and environmental gradientsst AuBot 22, 115(1974).

2. K.Jones, A.C.Neale, M.S.Nash, R.D.Van Remoitél,Wickham, K.H.Riitters, R.V.O’Neuil;
‘Predicting Nutrient and Sediment Loadings to Strtedrom Landscape Metrics: A
Multiple Watersheds study from the United Statedtlantic Region’, Landscape
Ecology,16, 301(2002).

3. H.Mehaffey, T.G.Wade, M.S.Nash, C.M.Edmonds; I¢sia of Land Cover and Water
Quality in the New York Catskill-Delaware Basing}. 1327-1339 in D.J.Rapport,
W.L.Lasley, D.E.Rolston, N.O.Nielsen, C.O.QualgeB.Damania Eds. ‘Managing for
Healthy Ecosystems’, Lewis Publishers, Boca Raktorjda (USA)(2003).

4. M.S.Nash, D.J.Chaloud; ‘Multivariate Analys€ationical Correlation Analysis and Partial
Least Square, PLS) to Model and Assess the Assartiat Landscape Metrics to Surface
Water Chemical and Biological Properties using 8aaa River Basin Datalas Vegas
(NV): Report no.EPA/600-R-02-09(2002).

5. S.Cumming, P.Vernier; ‘Statistical models ofdacape pattern metrics, with applications to
regional scale dynamic forest simulations’, LanggcBcology,17, 433(2002).

6. M.S.Nash, D.J.Chaloud, S.E.Franson; ‘AssoaiatioLandscape Metrics to Surface Water
Biology in the Savannah River Basin’, Journal oftManatics and Statistics, 29,
(2005).

7. R.Barcikowski, J.P.Stevens; ‘A Monte Carlo stadigtability of canonical weights, and

canonical variate-variable correlation’, MultivagaBehavioral ResearchQ, 353(1975).



8. R.M.Thorndike; ‘Correlation procedure for resgay Gardner Press, New Yori.978).

9. RGittins; ‘Canonical analysis: A review with applia in ecology’, Springer Verlag,

10.

11.

12.

13.

14.

15.

16.

17.

NewYork (1985).

W.Lindberg, P.Jane-Ake, S.Wold; ‘Partial Le&gtiare method for Spectrofluorimetric
analysis of mixture of humic acid and lignisulfogiatAnal. Chem.55, 643(1983).

S.de Jong, H.A.L.Kiers; ‘Principal covariategmession. Part | TheoryChemometric and
Intelligent Laboratory System#4, 155(1992).

L.E.Frank, J.H.Friedman; ‘A statistical viewsafme chemometrics regression tools’,
Technometric85:109-135(1993).

I.S.Helland; ‘On the structure of partial lesgtiare regression’, Commun. Statist. Simula.,
17, 581(1988).

S.Wold; ‘The collinearity problem in linear regsion: The partial Leats squares (PLS)
approach to generalized inverses’, Soc. Indus. Maih.: J. Sci. Stat Compus, 735
(1984).

S.Wold; PLS for multivariate Linear Modelingy.[d95-218, in H.van de Waterbeeads,
‘Chemometric methods in molecular design methodgandiples in medicinal
chemistry’, Weinheim, Germany: Verlag-Chen(i£995).

H.Martens, T.Nees; ‘Multivariate calibrationghh Wiley and Sons, Chichester (England)
(1989).

R.K.Heikkinen; ‘Predicting patterns of vascyéant species richness with composite

variables: A meso-scale study in Finnish Laplai@getation 126(2), 151 (1996).



18. M.E.Johansson, C.Nilsson; ‘Responses of apgulants to flooding in free-flowing and
regulated boreal rivers: an experimental studyirdal of Applied Ecology39, 971
(2002).

19. [USEPA] Environmental Protection Agency; A Daratration of the Usefulness of
Probability Sampling for the Purpose of Estimatiugplogical Condition in State
Monitoring Programs, Athens (GA): Region IReport no.EPA/904-R-99-0(02999).

20. D.J.Chaloud, C.M.Edmond, D.T.Heggem; ‘SavariRafer basin landscape analysis’, Las
Vegas (NV): U.S. Environmental Protection Agencyfice of Research and
Development, Report no.EPA/600-R-01-0@001).

21. M.T.Barbour, J.Gerritsen, B.D.Snyder, J.B.l#itrg; ‘Rapid Bioassessment Protocols for
Use in Streams and Wadeable Rivers: PeriphytonthBeMacroinvertebrates, and
Fish’, 2" Eds. Washington (DC): U.S. Environmental Protec#gency, Office of
Water, Report no.EPA/841-B-99-002999).

22. APHA,; ‘Standard Methods for the Examination/¢éter and Wastewater’, 1&d.,
American Public Health Association, Washington, D(C995).

23. D.Schultz, R.Raschke, R.Jones; ‘A shorteneal gigpwth potential test’. Environmental
Monitoring and Assessmer#2, 201(1994).

24. T.J.Bara; ‘Multi-Resolution Land CharacteristiConsortium= Documentation Notebook.
U.S. Environmental Protection Agency, Researchnle Park, North Caroling,1994).

25. Natural Resource Conservation Service; ‘StateShirvey Geographic Data Base
(STATSGO) Metadata’U.S. Department of Agriculture, Natural Resources&vation

Service, Washington (DG)1996).



26. [USEPA] Environmental Protection Agency; Th&SUEPA reach file version 3.0 Alpha

27

28

29

30

31

32

33

34

Release (RF3-AlphaJ,echnical Reference, Washington (DC): Office of \Afads,
Oceans, and watersheds, Office of WatE394).

. [USGS] US Geological Survey; ‘Digital ElevatiModels, National Mapping Program
Technical Instructions, Data Users Guide 5% Rrinting (Revised), Reston (VA1990).

. [USGS] US Geological Survey; ‘Digital Line Gregpfrom 1:100,000-Scale Maps — Data
Users Guide 2’, Reston (VA1989).

. T.Nees, H.Martens; ‘Comparison of predicted m@shfor multicolinear data’, Commun.
Statist. -Simula. Computal4, 545(1985).

. T.Hastie, R.Tibshirani, J.Friedman; ‘The eletaefi statistical learning; Data mining,
inference, and predictionSpringer, New York(2001).

. H.van der Voet; ‘Comparing the predictive aecyrof models using a simple randomization
test’, Chemometric and Intelligent Laboratory Sygse?5, 313(1994).

. SAS; ‘StatUser’s Guide’ SASInstitute. Inc. Cary, NC, USA1998)

. D.J.Sheskin; ‘Handbook of Parametric and naapatric statistical procedures’, Chapman
& Hall/CRC, New York,(2000).

. S.Schmidtlein; ‘Imaging spectroscopy as a toomapping Ellenberg indicator values’,

Journal of Applied Ecology2, 966(2005).



