
Introduction

The study of environmental influences on human disease 
is composed of two main activities, exposure assessment 
and adverse health effect observation. These comprise 
the basis of human epidemiology and are used to deci-
pher the actual causes of apparently random occurrences 
of disease with the ultimate goal of developing interven-
tion strategies. Understanding the relationship between 
exposures to environmental stressors is complex for 
several reasons. Thousands of anthropogenic trace level 
chemicals in the environment vary spatially and tempo-
rally. The resultant disease onset can be subtle and take 
as long as decades (Karalliedde et al. 2003, Boothe and 
Shendell 2008; Ritz and Wilhelm 2008; Baas et al. 2009). 
Furthermore, many chronic and systemic diseases are 
rare, and so appear to be random in the population pre-
sumably because individuals have different chemical 
exposures and varying responses to external stressors 

including not only the environmental chemicals, but 
also diet, lifestyle choices, and various human activities 
(Perera 1997; Simmons and Portier 2002). Despite this 
apparent randomness, the importance of identifying 
environmental chemicals with linkage to adverse health 
effects has been in the consciousness of the public health 
community for over 30 years (Ames 1979).

Recent advances in proteomics and genomics, and 
the decoding of human DNA structures from the Human 
Genome Project, are now being incorporated into a 
“systems biology” understanding of life processes and 
their perturbations (Stark 2008; Aggarwal and Lee 2003; 
Bruggeman and Westerhoff 2007). Based on systems 
approaches at the molecular and cellular level, research-
ers are beginning to interpret the overall toxicological 
pathways (or networks) that can lead from an environ-
mental trigger to an adverse outcome (Ekins et al. 2005; 
Smith and Rappaport 2009; Wild 2005). High throughput 
in vitro toxicological screening is also being implemented 
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at the cellular level (Rusyn and Datson 2010) but there 
is concern regarding extrapolation to low dose models 
(Crump et al. 2010); addressing this issue is one of the 
goals of this work.

In this article, the underlying concepts of systems 
biology are extended to and integrated with a systems 
exposure framework at the human level of organization. 
We propose that the endpoint for exposure research 
should be dose at the target and simultaneously serve 
as a starting point for a toxicological pathway or effects 
network. Systems exposure explores the relationship 
between external exposure measurements (concentra-
tions in air, water, food, etc.) and “biologically relevant 
exposure metrics” (concentrations in blood, breath, 
urine etc.) that can be related to, or serve as, surrogates 
for a dose at a specific target. Through such biological 
metrics, systems can also be used to statistically evaluate 
the influences on biomarker variability (Birnbaum 2010; 
Pleil 2009, Sobus et  al, 2010). Fundamentally, this is 
analogous to the systems biology approaches of genom-
ics, proteomics, and metabonomics, etc. that interpret 
the complex interactions of human biochemistry at the 
molecular and cellular levels of organization (Edwards 
and Preston 2008; Sheldon and Cohen-Hubal 2009). We 
propose that the traditional concept of assessing expo-
sure based on blood-borne exogenous compounds or 
excreted chemicals in breath and urine (Pleil et al 2007) 
be expanded into a systems exposure approach using 
forward mapping to measured biological parameters 
that can be linked to target dose. Integrating systems 
approaches for exposure and biology will provide 
quantitative estimates of the perturbation to the over-
all systems biology that is caused by the environmental 
factors.

Systems biology concepts

Systems biology approaches are currently being devel-
oped to address quantitative risk assessment with respect 
to environmental stressors (Hubal 2009). The concepts 
of individual susceptibility and toxicological thresholds 
have been explored at the molecular and genetic level 
(Jenkins et al. 2009; Au 2007; Bonassi et al. 2001; Dorne 
2009). In the broadest sense, the systems biology frame-
work of human health has been described as a series of 
complex networks at various levels of organization such 
as human disease networks and gene disease networks 
(Loscalzo et  al. 2007; Barabasi and Oltva 2004). Such 
network concepts have been combined; for example, 
Edwards and Preston (2009) have proposed a system of 
three distinct tiered networks arranged as stacked planes 
representing organism, cellular, and molecular levels of 
organization; Figure 1 shows an adaptation of these pro-
posed networks (Edwards and Preston 2009). We note 
that this illustration is meant to show only the parallels 
among specific research strategies and emphasize that 
all three tiers are always engaged in the overall systemic 
processes.

System exposure concepts

In a complementary fashion to systems biology, a sys-
tems exposure framework links key events to charac-
terize stressors and the processes that will lead from 
environmental concentration to dose at the critical target 
pathways. Environmental stressors are believed to effect 
system biology networks; Gallagher et al. (2009) have pro-
posed that some form of environmental perturbation is 

Tier 1
Organism Level

Tier 2
Cellular Level

Tier 3
Molecular Level

Environmental Perturbation
Toxicity Pathway
Adverse Outcome

Figure 1.  Systems biology framework diagram showing examples of interactions at the organism and population level, at the cellular level, and 
at the molecular level. These networks are not independent, but constantly interact; typically pre-clinical effects appear at the middle (cellular) 
tier (adapted from Edwards and Preston 2009).
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responsible for initiating the adverse events cascade lead-
ing to pathological outcome in the second tier network 
in Figure 1. To quantify such effects prospectively and 
to reconstruct the cause of such events retrospectively 
requires an additional set of linked events: the exposure 
events network.

Herein, we propose a networked structure diagram 
analogous to Figure 1 wherein the key events of exposure 
are connected from the exposure route (dermal, ingestion, 
inhalation, infection, etc.) through absorption, distribu-
tion, metabolism and elimination (ADME) parameters 
and lead to a biomarker measurement. To fully integrate 
with systems biology, systems exposure then relies on 
a final mapping strategy from empirical biomarker to a 
quantitatively parameterized system perturbation that 
serves as an endpoint for the systems exposure network, 
and a beginning point for the key events network shown 
in Figure 1.

Figure 2 shows such a proposed exposure network 
diagram in a planar format. The upper edge represents 
the absorption exposure pathway leading from the skin, 
stomach, or lung to the central compartment (circulating 
blood). The center of the diagram shows mechanisms of 
metabolism that produce a series of short-lived chemicals 
such as reactive oxygen species (ROS), reactive intermedi-
aries, and electrophiles that can quickly transform to more 
stable compounds or possibly attack cells, DNA, proteins, 
etc. (Gracy et al. 1999; Arif and Gupta 1996; van der Vliet 
et al. 2008). The left edge of the planar diagram lists some 
possible measurable biomarkers such as exogenous and 
endogenous metabolites, damage markers, and protein 
response markers (for example: Anderson and Eling 1976; 
Farmer 1995; Wessels et  al. 2003; Pleil 2008; Needham 

2008). Those biomarkers that can be further mapped 
to the bottom edge of the diagram representing system 
perturbations or toxicity starting points are designated 
as measurable biological parameters. The parameters of 
particular value are continuous variables within in the 
larger set of the “biologically relevant exposure metrics” 
that serve as quantitative links between key events in a 
disease process and individual exposure profiles. We note 
that this diagram is not meant to be exhaustively detailed, 
but is instead used to illustrate the potential systems path-
ways and indicate where empirical measurements can be 
made. The overall network is always further impacted by 
individual susceptibility, repair functions, and other host 
factors that cannot all be diagrammed.

Examples of specific exposure networks

There are undoubtedly many examples of environmen-
tal exposures that could result in measurable biological 
parameters of probative value. For this discussion, we 
propose two different examples of exposure networks 
representative of the linkage concepts developed above: 
blood-borne protein adducts and pulmonary cytokines.

Protein adducts

Electrophilic species from various sources, including 
environmental contaminant metabolism, are highly 
likely to form adducts with nucleophilic molecules 
such as proteins and DNA. Thus, chemical adducts can 
serve both as an indicator of previous exposure and as 
an indicator of systemic perturbation of normal large 
molecule chemistry (Rubino et al. 2009, Swenberg et al. 

Figure 2:  Simplified diagram of the exposure event network plane with two forward mapping examples. 1) blue pathway: diesel exhaust inhalation 
exposure resulting in production of reactive oxygen species (ROS) that stimulate a cytokine response which can be measured and quantitatively 
linked to an inflammatory response; and 2) red pathway: dermal exposure to pesticides resulting in electrophilic compounds that generate protein 
adducts which can be measured and quantitatively linked to DNA damage.
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2001, Funk et al. 2010). In general, protein adducts are 
relatively innocuous and stable, whereas DNA adducts 
can lead to DNA damage, or can be corrected with vari-
ous repair mechanisms. As such, a protein adduct has 
the advantage of serving as a stable surrogate for DNA 
damage from electrophiles (Meyer and Bechtold 1996). 
An additional advantage is that proteins are much more 
abundant than DNA; for example, hemoglobin and 
albumin are the two main proteins in human blood rep-
resenting about 150 mg/ml and 40 mg/ml, respectively; 
in contrast, DNA represents about 0.006 mg/ml (Jansen 
et al. 2009, Tornqvist et al. 2002).

As a specific example, we use potential hemoglobin 
and albumin adducts as biologically relevant parameters 
of pesticides exposure (Angerer et  al. 2007; Noort et  al. 
2008). The hemoglobin proteins are confined to the red 
blood cells which have an average life-time of 120 days in 
humans (Krishnan and Dixit 2009). As such, exogenous 
adducts serve as markers for the mean exposure from the 
previous three months. This is of particular interest for pre-
natal development as a newborn baby’s adducts represent 
third trimester in-utero exposures. For adults, the combi-
nation of adducts, phase-1 metabolites, and native com-
pounds measurements can provide both an integration 
of exposure for the previous months and for more recent 
events on the scale of days and hours (Neri et  al. 2006; 
Coghlin et  al. 1991). Similarly, albumin adducts experi-
ence exponential decay with a half-life of about 21-25 days 
and so they serve as a slightly shorter term retrospective 
exposure marker (Rappaport et al. 2002). As mentioned 
above, both forms of adducts are considered scalable 
indicators of DNA adducts and lesions that are initiators 
of adverse events on the cellular level. The red pathway in 
Figure 2 shows the route for this scenario. We stress that 
DNA adducts could serve just as well as biological param-
eters if appropriate measurements could be made, but that 
protein adducts were chosen as the example here due to 
their relative abundance advantage in blood.

Pulmonary cytokines

Inflammation is a systemic response that protects the 
human body from foreign substances, bacteria, and 
viruses. Upon a perceived external attack, certain signal-
ing proteins (cytokines), such as interleukins IL-1 and IL-6, 
and tumor necrosis factor (TNF-α) are released by affected 
cells. The cytokines serve to recruit neutrophils (a type of 
white blood cell) to the affected tissues to initiate the pro-
tective response (Monton and Torres 1998). This response 
may also have a negative effect when neutrophils release 
reactive oxygen species (ROS) and hydrolytic enzymes to 
perform antibiotic functions as these molecules also attack 
normal cells (Tao et al. 2003). Chronic exposure leads to 
chronic inflammation which can aggravate a variety of 
diseases including cancer, chronic obstructive pulmonary 

disease (COPD), atherosclerosis, rheumatoid arthritis, car-
dio pulmonary disease, and inflammatory bowel disease 
(Coussens and Werb 2002; Hippe et  al. 2010; Kim et  al. 
2008; Sirera et al. 2003; Stenvinkle and Alvestrand 2002; 
Feldmann and Maini 2001; Nishimura et al. 2009). As such, 
quantitative measurement of cytokines in biological media 
are directly linked to inflammatory response and thus to 
adverse health initiating events.

A variety of airborne contaminants have been linked 
with pro-inflammatory response in the lungs via cytokine 
production by airway epithelial cells. As a specific exam-
ple of environmentally triggered inflammation, we con-
sider inhalation exposure to diesel exhaust (DE) which is 
composed of fine and ultra-fine particles, inorganic and 
organic gases, and semi- and non-volatile organic spe-
cies such as polycyclic aromatic hydrocarbons (PAHs) 
(Stenfors et al. 2004). The resulting cytokine response to 
DE is usually measured in bronchial lavage fluid (BLV), 
but sputum and exhaled breath condensate (EBC) may 
serve as non-invasive sampling options (Tsiligianni et al. 
2005). Cytokines tend to be transient with a time frame on 
the order of 6 to 24 hrs after exposure events, but random 
intermittent exposures, as expected from environmental 
sources, generally present as biologically damped con-
centration profiles. Therefore, mean levels of cytokines 
in pulmonary fluids can serve as markers for chronic 
inflammation levels, which in turn can be quantitatively 
linked to risk of adverse health effects (Robroeks et  al. 
2010; Duramad et al. 2007). The blue pathway in Figure 
2 shows this example.

Computational applications for exposure 
science

Mixed model approach

Once the exposure event network is established, objec-
tive measurements of the environment and the meta-
data from the human subjects can be interpreted with 
multivariate models that use the biological parameters as 
dependent variables. A standard method for interpreting 
complex data is based on the linear mixed effects regres-
sion model (Rappaport 2008, Singer 1998). The model has 
the basic format:

	
 where:
•	 Y

hij
 is the value of the biological parameter for the jth 

observation of the ith subject in the hth group;
•	  are the values of the fixed effect varia-

bles such as environmental chemical concentrations 
(in air, water, food, dust, etc.), and host factors such 
as age, health state, gender, genetic polymorphisms, 
ethnicity, etc.;
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•	 p is the total number of fixed effects (note: the host 
factors may be fixed for all j within a given i);

•	 β
1
, β

2
,… β

p
, are the corresponding modeled coeffi-

cients for the fixed effects and host factors;
•	 α

h
 is the random effect for the hth group;

•	 b
hi

 is the random effect for the ith subject from the 
hth group;

•	 ε
hij

 is the residual (unexplained) error for the jth obser-
vation of the ith subject from the hth group; and

•	 q is the total number of random effects.

 Software applications for this style approach are com-
mercially available (e.g. proc MIXED, SAS Cary, NC). 
Upon calculation, the coefficients and their p-values and 
can be interpreted to determine the effect of including 
the particular fixed effect or random effect variable in 
the final model for explaining the variance in the bio-
logical parameters’ values. This can be done with iterative 
steps of forward addition or reverse elimination with the 
eventual objective being a parsimonious model without 
appreciable loss of modeling power. Once the final model 
is established, we can observe which exposure param-
eters and fixed effects are more likely to cause perturba-
tions to the systems biology.

Variable over-modeling and co-linearity

The proper use of the mixed model in the previous section 
is often not straightforward. A primary consideration is the 
relative value of subject observations (n) with respect to 
the number of independent variables represented by the 
host factors, environmental variables, and random effects 
(m = p+q). This is a reasonable concern because the mod-
el’s shape loses predictive power if too many parameters 
can be varied to “hit” the data points. Consider that any 
two points will determine a straight line with two degrees 
of freedom, although the true shape may be a curve; any 
three points will determine a parabola with three degrees 
of freedom although the true shape may be an exponential 
curve or a straight line, etc. When n and m are too close, 
we have a situation of “over-modeling” where different 
shapes can equally well approximate the same data set; a 
common rule of thumb is that n/m ≥ 10 (Pleil and Lorber 
2007; Harrell 2002). A second concern regarding the mixed 
model approach is that of predictor variable co-linearity. 
As a common example, consider that both subject height 
and subject weight could be independent variables in the 
model. In normal human populations, height and weight 
are collinear to some extent, that is, taller people tend to 
weigh more than shorter people. Using both parameters 
in the model, therefore, could lead to unstable parameter 
estimates.

Both of these issues have been addressed in the litera-
ture. A particular approach found to be useful for environ-
mental data employs the concept of “variable clustering” 

(proc VARCLUS, SAS, Cary, NC) which can be thought of 
as a variant (or inverse) of principal components analysis 
(PCA) (Domany 2003; Kettenring 2006). Note that PCA is 
very different from the VARCLUS approach; PCA groups 
samples together whereas VARCLUS groups independent 
variables together. The VARCLUS procedure analyzes the 
covariance structure of the independent variables and 
assigns groups with common traits. The results can be 
visualized in a dendrite style diagram, or dendrogram, as 
in Figure 3. Here we present hypothetical data wherein 
increased grouping results in decreased explained vari-
ance; for example, forming 8 groups out of 13 variables 
only reduces the explained variance from 100% to about 
93% which may be considered a good trade-off. This 
approach addresses both the “parsimonious model” 
objective (minimizing the necessary parameters) in that 
the n/m ratio increases, and also the co-linearity issue by 
collapsing co-varying parameters into groups. This has 
been implemented successfully for assessing compound 
correlation and source apportionment for sparse envi-
ronmental dioxin measurements (Pleil and Lorber 2007). 
There are many different ways of combining independent 
variables into groups depending on their physical mean-
ing or their relative importance to the anticipated use of 
the data. For example, one could use previously defined 
groupings such as body mass index (BMI) as a surrogate 
for both height and weight, or relative contributions to 
a total measurement, or simple sums of concentrations, 
or choosing one parameter of a group to represent the 
remaining members.

8 Groups 2 Groups
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Figure 3.  Example dendrogram of variable cluster analysis. Starting 
with a total of m = 13 independent variables (p = 6 host factors and q = 7 
environmental variables), forming 8 clusters (HF1, HF2, HF3+HF4, 
HF5+HF6, RV1, RV2, RV3+RV4+RV5+RV6, and RV7) results in 
explained variance of ∼93%.

B
io

m
ar

ke
rs

 D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

U
S 

E
PA

 E
nv

ir
on

m
en

ta
l P

ro
te

ct
io

n 
A

ge
nc

y 
on

 0
2/

17
/1

1
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



104    Joachim D. Pleil and Linda S. Sheldon

Concluding remarks

The implementation of biological parameters (especially 
continuous variables) that can be objectively linked to a 
systems biology perturbation should become a primary 
design criterion for the development of future environ-
mental exposure studies. The subsequent regression 
interpretation using such biological parameters as the 
dependent variable is a powerful tool for assessing the 
importance of other parameters, especially those reflect-
ing the timing and pathway of the environmental expo-
sures. At the present, many studies rely on environmental 
measures or simple excreted biomarkers as the depend-
ent variables. Although these approaches are valuable 
for exposure assessment and for demonstrating that 
certain sub-populations were indeed exposed, they do 
not provide a direct link for a perturbation of the normal 
metabolism or systems biology. Only if there is a meas-
ured metabolic systems change that could potentially 
lead to an adverse effect can we assess the public health 
risk in a quantitative and empirical manner. Measuring 
biologically relevant exposure parameters in biological 
media and establishing a quantitative systems exposure 
event network are the features that will philosophically 
transform environmental exposure assessment into a 
broader environmental systems exposure science. In 
short, we propose that exposure science measurements 
should provide some scalable parameter that is relevant 
to a toxicological starting point.
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