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Abstract

We develop regression models to describe the relationship between ambient PM, s mass
concentrations measured at a central-site monitor with those at residential outdoor
monitors. Understanding the determinants and magnitude of variability and uncertainty in
this relation ship is critical for understanding personal exposures in the evaluation of
epidemiological data. Our repeated measures regression models address both temporal and
spatial characteristics of data measured in the 2004-2007 Detroit Exposure and Aerosol
Research Study, and they take into account missing data and other data features. The
models incorporate turbulence kinetic energy and planetary boundary layer height,
meteorological data that are not routinely considered in models that relate central-site
concentrations to exposure to health effects. We found that turbulence kinetic energy was
highly statistically significant in explaining the relationship of PM, s measured at a
particular stationary outdoor air monitoring site with PM; s measured outside nearby

residences for the temporal coverage of the data.

IMPLICATIONS

This work combines sophisticated statistical methods with meteorological data not
previously considered in models relating central-site concentrations of PM; 5 to exposuré
to health effects, and it addresses uncertainty of the representativeness of central site
measurements for estimating personal exposure, key for the National Research Council’s
top priority for airborne particulate matter research. Turbulence kinetic energy is found to

be an important explanatory variable for temporal and spatial characteristics of ambient



PMj 5 concentrations from Detroit. This result will enable reducing or characterizing
sources of uncertainty in models that link health effects such as respiratory problems to

central-site measurements of PM; s.
INTRODUCTION

Quantitative source-to-exposure models hold great promise for air pollution source
apportionment, risk assessment, and linking risk management actions to outcomes.
Construction of these models requires an understanding of the determinants and magnitude
of variability and uncertainty at all steps in the pathway leading to exposure. The National
Research Council cites its top priority for airborne particulate matter research as
determining the quantitative relationship between concentrations of particulate matter and
gaseous copollutants measured at outdoor air monitoring sites and determining their
contributions to actual personal exposures, especially for subpopulations and individuals.’
In this paper, we develop regression models that describe the nature of relationships
between ambient PM, s mass concentrations measured at a central site monitor and at
residential outdoor monitors using data from the Detroit Exposure and Aerosol Research
Study (DEARS),? a critical step in understanding personal exposures for the evaluation of
epidemiological data.

The primary goal of DEARS was to characterize and assess the impact of local sources on
the relationship between concentrations measured at a central site monitor and
concentrations measured at nearby residences in the Detroit area. DEARS builds on results
from previous studies including the 1990 Particle Total Exposure Assessment
Methodology (PTEAM) study in Riverside, California,>” the 1995-1996 particulate matter
and manganese studies in Toronto, Canada and Indianapolis, Indiana,®® and the 1996-
2001 particulate matter panel studies in, for example, Atlanta, Baltimore, Boston, Fresno,
Research Triangle Park, and Seattle.” ' The study design and field implementation for
DEARS are described in Williams et al.>



Previous research assessed the relationship between 12-hour or 24-hour integrated ambient
PM; s mass, i.e., particulate matter with particle aerodynamic diameters of 2.5 pm and
smaller in ambient air, and residential outdoor PM; 5 mass either directly or as part of a
broader analysis effort. In the first large-scale probability-based study of personal
exposure to particles, PTEAM participants were monitored for two consecutive, roughly
12-hour time periods with concurrent PM; 5 samples collected indoors and outdoors at
their homes. Clayton et al.* found that daytime and nighttime outdoor residential levels
had similar medians but that the correlation between the fixed-site and the residential
outdoor concentrations was higher for the nighttime data (r=0.96) than for the daytime
data (r=0.83). For the particulate matter and manganese studies, Pellizzari et al.® reported
correlations of outdoor to fixed-site log-scale PM, 5 concentrations for Indianapolis
(r=0.969) and for Toronto (r=0.818). For the 28-day, 38-household RTP panel study,
Williams et al.'* used regression for each home to relate the 24-hour ambient values to the
corresponding outdoor values and estimated an average slope of 0.93 with an average
coefficient of correlation of 0.94. In a companion paper, Williams et al.'” fit a series of
regression models for these data, again regressing the outdoor PM, s data on the
corresponding ambient data and estimated the slopes to range between 0.90 and 0.92.

There are studies in the literature that go beyond the simple regression and correlation
analyses of the relationship between ambient fixed-site PM, 5 mass and ambient residential
outdoor PM; 5 mass, including studies that relate personal exposure to central-site ambient
concentrations. Noulett et al.%° assessed the relationship between PM, s and children’s
personal exposure in Prince George, British Columbia during the winter of 2001,
evaluating the effect of spatial variation and meteorology in a complex airshed. Their
study considered the meteorological influences of wind speed, wind direction, and
inversion strength and found that levels of PM, s during the 6-week study period were
strongly influenced by the surface-based inversion or stability, that is, that the presence of
a thermal inversion was significantly correlated with high ambient PM, 5 levels and with

personal exposures.



McBride et al.?! developed a hierarchical Bayesian model for personal PM, 5 exposure in
1998 in Baltimore as a function of outdoor PM, s, indoor PM; 5, personal PM, 5, wind
speed, rélative humidity, and time spent in microenvironments. Noting the absence of a
spatial model relating ambient PM, 5 to outdoor PM, s, their model included an assumption
that the outdoor and ambient concentrations came from the same distribution. The model
results showed evident bias in the posterior distribution for the white noise in the time
series for mean outdoor PM, 5 concentration, which the authors attributed to a likely

underspecified submodel relating outdoor concentrations to meteorological conditions.

Holloman et al.?? developed a hierarchical Bayesian model relating ambient PMj s
concentrations measured at Aerometric Information Retrieval System/Air Quality
Subsystem (AIRS/AQS) monitors to model-simulated human exposure and to
cardiovascular mortality in North Carolina in 1999-2000. They noted that the failure of
approximating true exposure using ambient levels is well documented. They linked
monitor readings to ambient levels over the study region using a spatial statistical model.
The spatial model incorporated maximum temperature, average wind speed, and two
sinusoidal terms to capture seasonal cycles. The authors noted uncertainty about the true
ambient surface due to errors in the monitor data and the necessity of spatial interpolation.
Calder et al.” constructed a hierarchical Bayesian model that related mortality in the same
North Carolina data to exposure to PM; s conditional on the ambient PM; s concentrations.
Their model incorporated an exposure simulator with a latent ambient PM; 5 spatial field
to account for the varying levels of uncertainty in ambient PM, s concentrations over space
and time. As in Holloman et al.,” this spatial component included maximum temperature,
average wind speed, and sinusoidal terms for residual yearly cycles not explained by the
other covariates. They found that replacing the spatial component of the model with an
assumption of a constant PM s surface dramatically increased the uncertainty of the model
results. Their work suggested that removing the spatial component resulted in poorer
model fit and subsequent inflation of parameter uncertainty. They noted their model is
simplistic in that it does not account for uncertainty in the variogram parameters,

nonstationarity in space and time, or anisotropy in the spatial process.



Using a latent variable approach for data for 2000 for Ohio, Calder’* derived information
about PM, 5 from PM,o monitor measurements and developed space-time interpolations
that were improved over the interpolations using PM, s monitor measurements alone. The
Bayesian model used in this study incorporated temperature and wind speed as covariates,
using wind speed and wind direction to specify the anisotropic properties of the latent
processes. Empirical variograms indicated that the spatial correlation length for PM 5

depended on both wind speed and wind direction.

In our paper, we develop regression models that describe the nature of relationships
between ambient PM, 5 mass concentrations measured at a central site monitor and at
residential outdoor monitors, taking into account repeated measurements over time. These
models address the uncertainty of the representativeness of central site measurements for
estimating personal exposure cited by National Research Council (NRC)', with the goal of
explaining the relationship between residential outdoor PM; 5 and PM, s measured at a
central site. Pope and Dcockery25 gave a thorough review of research since 1997 on the
effects of exposure to particulate air pollution on human health, and they discussed gaps in
scientific knowledge and reasons for skepticism concerning what is known about the
health effects. Reducing or characterizing the sources of uncertainty for the
representativeness of central site measurements is a necessary step in being able to link
health effects to central site measurements. Our work matches repeated measures
regression model assumptions and methods with data measured in DEARS, taking into
account missing data and other data features. Regression models are fitted, and the results
are interpreted in light of their uncertainties and relevance to explaining temporal and
spatial variability of ambient PM, s.

MATERIALS AND METHODS
Design

DEARS was designed to sample non-smoking households in residential neighborhoods

based on proximity to point or line sources of PM, s and PM;., 5, their components, and



selected air toxics (see www.epa.gov/dears/). Measurements were taken over three
summers and three winters in the Detroit area at a central-site monitor, indoors and
outdoors at residences, and on vests worn by participating individuals. Measurements were
collected from each participating household for five consecutive days, by design, always
Tuesday through Saturday, for a pair of sequential summer and winter seasons. A season
was made up of seven weeks with a different set of households being measured each
week. The goal was to take measurements from 40 households for five days per season for
each of two seasons, thus totaling 120 households over the three summers and three
winters represented by the study. PM; s data were collected as 24-hour integrated average
mass concentrations using the Personal Environmental Monitor as described in Williams
et al.? The households were selected from residential neighborhoods in six Exposure
Monitoring Areas (EMAs) representing various sources of PM; 5 and other pollutants. A
map of the Detroit area is provided as Figure 1 and shows locations of the EMAs and the
Michigan Department of Environmental Quality’s (MDEQ’s) Allen Park site, the central-
site monitor location used by DEARS. MDEQ’s Allen Park site was selected as the fixed
“central” site, in part, because it is a permanent, state facility in the PM; 5 Speciation
Trends Network®® not overly influenced by nearby sources. No measurements were taken
at EMA 2 during the DEARS study and none were taken at EMA 5 during summer 2004
and winter 2005 by design. EMA 7 was in Belleville, southwest of Detroit.

Exploratory Analysis

Data collection for DEARS began in the summer of 2004 and ended in the winter of 2007.
Figure 2 gives the 24-hour integrated average PM; 5 mass concentrations (pg/m3)
measured by the Personal Environmental Monitor outside residences for up to five days
and at the central-site monitor for each day of the first two seasons of the study. The data
analyzed in this paper are limited to the first summer and winter seasons of DEARS, July
13 through August 28, 2004 and February 1 through March 19, 2005, respectively. Both
seasons from DEARS are modeled in consideration of seasonality; subsequent years are
not modeled in this work. The figure shows that the temporal variability of PM; 5 appears

to follow large scale weather patterns. For example, around July 29, the Great Lakes



region had a high pressure system with light winds, and the PM> 5 mass concentrations
were higher during that time. Also, in the August 4 to 10 period, a very strong Canadian
high pressure system moved southeast into the eastern U.S., advecting clean air by way of
strong northerly winds. PM; 5 concentrations were low during that period. The variability,
in this manner, possibly reflects regional meteorologically driven components as well as
local emissions, chemistry, and transport, and it possibly reflects seasonality. The spatial
variability is less pronounced with no apparent simple relationship between residential
outdoor and central-site concentrations, although EMA 7 in Belleville was seen to have
consistently low concentrations. The concentration data considered in this work are blank
corrected; they are not censored in relation to a minimum detection limit. Details on the
study design, the Personal Environmental Monitor, and the measurement procedures,
including blank correction, are discussed in Williams et al.>

DEARS data are not balanced in the statistical sense—data collection start dates for
participating households were staggered over each season, and there are <10 data points
for many households. The counts of PM, s measurements taken by week within each EMA
and at the central site are shown in Table 1. Measurements were seldom taken from more
than one household in any particular EMA on any particular day, by design, thus
household is confounded with week. Given the large day-to-day variability, the effect of
week may dominate the relationship of the outdoor measurements to the central-site values
in a spatial sense. Measurements were taken outside 39 households in summer 2004 and
35 households in winter 2005. Several participating households in summer 2004 were
replaced by new households in winter 2005 in the same EMA.

A total of 25 households had data collected on all 10 days as designed, while 22
households had data collected on 5 or fewer days. In addition to days not scheduled for
sampling in accordance with the study design, there were also PM; s measurements that
were unavailable for particular days when the PM, s sample was lost due to, for example, a
torn filter or pump failure. Central-site concentration measurements were unavailable for 3
of the 35 days in summer 2004, and residential outdoor measurements were unavailable on

5 other days. In winter 2005, 16 residential outdoor measurements were unavailable. The



number, mean, and other descriptive statistics for the central-site and residential outdoor
measurements are given by season in Table 2. In comparing summer 2004 and winter
2005 results, note that roughly half of the outdoor measurements were taken at the same
houses across the seasons. Descriptive statistics are also given for the logarithm of the
residential outdoor concentration and for the ratio of residential outdoor to central site
concentrations. All these measured PM, 5 data were above the detection limit, but all were
field and laboratory blank corrected to adjust for background mass on the filter due to
handling. As a consequence, one residential outdoor value was negative with the
corresponding log-transformed value treated as a missing value; this observation was

omitted from our analysis.
Meteorological Data

Table 3 provides outdoor PM, 5 and its log-transformed value when residential outdoor
concentrations and central-site concentrations are considered together as simply “outdoor”
concentrations. This approach handles the central site as an additional EMA. Table 3 also
gives descriptive statistics for North American Regional Reanalysis (NARR)
meteorological data for the dates corresponding to those for DEARS. The NARR data do
not represent a daily average but rather are a snapshot at 2:00pm local daylight-savings
time. Mid-afternoon is an ideal time to capture turbulent mixing near the surface each
day.”’ Furthermore, the NARR data are considered representative of the meteorology
32km around the analysis grid point. These data were downloaded from the National
Oceanic and Atmospheric Administration, National Climatic Data Center, and the ncdf
package in R was used to open and read these meteorological data sets from netCDF
format.?** The NARR data described in Table 3 are turbulence kinetic energy (m%s?),
relative humidity at 2 meters (%), temperature at 2 meters, U and V wind components at
10 meters above the surface, and planetary boundary layer height (m). The U and V are
the east-west and north-south Cartesian wind components, respectively, and so wind speed

is given by (U*+V?)*. %



The NARR meteorological data include planetary boundary layer height and turbulence
kinetic energy. These two important, interrelated boundary layer measures of atmospheric
stability are not commonly considered in models that relate ambient concentration to
exposure and then relate exposure to health effects. The planetary boundary layer is the
layer of the atmosphere directly affected by contact with the earth’s surface. The planetary
boundary layer as a whole tends to be compressed or thinner in areas of high pressure than
in areas of low pressure as a result of the subsidence or the low-level horizontal
divergence associated with synoptic high pressure. The subsidence and divergence tend to
warm the air aloft, effectively capping the planetary boundary layer. The planetary
boundary layer tends to be deeper near areas of low pressure because of rising air, stronger
winds, and cooler temperatures aloft. Turbulence is the direct measure of the mixing rigor
of the planetary boundary layer. It follows a diurnal cycle typically peaking early to mid-
afternoon.

Regression Models

‘The goal of the regression models in this work is to characterize the relationship between
ambient PM; s mass concentrations measured at a central-site monitor and those measured
at residential outdoor monitors. We want to explain the differences between these pairs of
values on average, and a key component of this work is the use of appropriate statistical
methodology. Data features that are taken into account include measurement error in the
concentrations, non-normality of the concentration data, correlated errors resulting from
the repeated measures structure, and lack of balance in the data due to both the study

design and lost samples.

We developed regression models for PM, 5 concentration data where the regression
assumptions and specifications are matched closely to the data. These models adopted the
linear mixed model formulation to address the within-subject repeated measures
covariability. We chose the SAS MIXED procedure®® since it is relatively robust against
lack of balance. The SAS GLM procedure for general linear models, an alternate choice,

accounts for within-subject covariability; however, it ignores data from any subject with



any missing repeated measures.’> We used the SAS MIXED procedure to analyze the non-
missing repeated measures (variance component) data for participating household
identifier (PID) nested within week, see Figure 3. These variance components resulting
from multiple observations for participating households were modeled in the compound
symmetry (exchangeable) covariance structure of the repeated statement shown in Figure
3. Compound symmetry is a reasonable choice for unbalanced data and gave a better fit to

these data than an autoregressive covariance structure.

Residuals diagnostics from SAS MIXED favored the logarithmic scale for the dependent
variable, PM; s, for these data from DEARS. That is, the studentized residuals for the
overall mean appeared noticeably closer to normally distributed than their original-scale
counterparts. Measurement error was captured in the log-transformed PM; 5 concentration
dependent variable by treating the central site as another EMA. The regression models
used the log-transformed PM; 5 concentration data measured at the central site as the
reference cell, thus the expected value of the ratio of residential outdoor PM, s to central-
site PM, 5 is estimated by exponentiating the EMA-specific single fixed effect regression
coefficient. The form of the single fixed effect regression models is log(PM, 5) = o+ (B1 *
EMA)+(b x Time) + e, where b is the within-subject repeated-measures random effect of
time. This setup is consistent with the measurement error assumptions of commonly-used
regression software such as SAS MIXED and SAS GLM procedures.

RESULTS
Models with Spatial and Temporal Information

Our first model regressed log(PMs 5) onto a single explanatory categorical variable
representing EMA. In summer 2004 the overall EMA fixed effect was not significant (p-
value = 0.8525), and the winter 2005 finding was similar (p-value = 0.8712). We
concluded from this single fixed effect regression that EMA alone does not significantly
explain variability in the dependent variable. We next used multiple fixed effects
regression with fixed effects for categorical EMA and a date indicator variable. The

10



indicator variable for date was highly significant (p-value < 0.0001 for each season) and so
partially explained the variability of the dependent variable. In this multiple fixed effects
regression, EMA was also highly significant in each season (p-value = 0.0055 for summer
2004; p-value = 0.0001 for winter 2005), consistent with this form of the model being
more appropriate than the single fixed effect regression. The multiple fixed effects
regression model accounted for day-to-day temporal variability as well as spatial
variability expressed in EMA. From Figure 2, we see that the day-to-day variability of
PM; 5 appears noticeably more pronounced than day-specific variability for these EMAsS.

The Bayesian Information Criterion (BIC) is a penalized log-likelihood statistic favoring
parsimony, and we used it to compare these two models. The multiple fixed effects
regression model had smaller BIC values and is therefore preferred.’’ 3% The model with
categorical EMA and the date indicator had BICs of 114.7 and 65.8 for summer 2004 and
winter 2005, respectively. The single fixed effect regression model with categorical EMA
alone had BICs of 411.1 and 416.0, respectively. While the model including a date
indicator is preferred over the single fixed effect regression for these data from Detroit, the
date indicator is a surrogate for substantive explanatory variables. We wanted to identify
explanatory variables for the relationship between PM, s outside residences and at central-
site monitors, so our model development next considered meteorological variables even
though the model with the date indicator fit the data well.

Models with Meteorological Data

We next specified regression models with a suite of meteorological variables: turbulence
kinetic energy (mzfsz), relative humidity at 2 meters, temperature at 2 meters, U and V
wind components at 10 meters, and height of the planetary boundary layer (m). These
NARR data are available for a grid of latitudes and longitudes, which measures |
approximately 0.3 degrees (32km) resolution at the lowest latitude (see Spatial Coverage
at http://www.cdc.noaa.gov/ data/gridded/data.narr.html). For the first of the next two
models, we used meteorological data from the grid point closest to each residence and to

the central site. Distances were calculated as great circle distances, and EMA was grouped
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into 3 classes based on distance to the closest meteorological grid point, as shown in
Figure 4, where latitudes and longitudes are intentionally withheld. This approach
effectively paired PM, 5 concentrations measured in DEARS with meteorological data at
the closest grid point in the NARR data. Since the residences and central site in DEARS
were not closely associated with the meteorological grid latitudes and longitudes, the
PM, 5 data were also paired with meteorological data that average nearby NARR values.
These averaged meteorological values were calculated as the inverse-distance weighted,
composite meteorological values based on the four grid points surrounding the central site.
These four grid points are corners of a rectangle, three of which were singly closest to the
locations where PM, s was measured. While it is arguably naive to use these four grid
points to interpolate data on a meteorology surface, the focus of this work is model
development, not estimation. The meteorological variables listed above and EMA class
were considered jointly as main effects in a closest-grid-point (unweighted) multiple fixed
effects regression model that included the interaction of turbulence kinetic energy and
EMA class. The interaction term gives a test of equal slopes for turbulence kinetic energy
for the EMA classes, and a significant p-value would add support to the idea that
turbulence Kinetic energy is valuable in spatially relating outdoor residential PM 5
concentrations to those at a central site. Main effect model terms with coefficient p-
values< 0.1 were retained initially as explanatory in unweighted and distance weighted
models that also included EMA class and the interaction of turbulence kinetic energy and
EMA class. Backward elimination was used to remove additional main effect terms when
the corresponding BIC was improved (lower). The initial models included both turbulence
kinetic energy and height of the planetary boundary layer, but, for these PM; 5 data,

turbulence Kinetic energy explained more variability.

For the summer 2004 unweighted model, turbulence kinetic energy, temperature, and the
V (north-south Cartesian) wind component were highly statistically significant for
explaining the variability of log(PM, s5). The interaction of turbulence kinetic energy and
the EMA class was not significant (p-value = 0.1313), so turbulence kinetic energy was
not found to be differentially influential by EMA class. There was, however, a suggestion
that the slope of turbulence kinetic energy for EMA class 1 differed from that for the

12



central site (p-value = 0.0870) and that the slope for EMA class 2 did not differ from that
for the central site (p-value = 0.9879). The distance-weighted version of the summer 2004
model gave consistent results, but the interaction term was further from significant (p-
value = 0.2085). For the winter 2005 unweighted model, turbulence kinetic energy, and
both the U and V wind components were highly statistically significant for explaining the
variability of log(PM, ). The interaction of turbulence kinetic energy and EMA class was
not significant (p-value = 0.1116). As seen for summer 2004, there was a suggestion that
the slope of the turbulence kinetic energy was not exactly the same for each EMA class,
but here the slope of turbulence kinetic energy for EMA class 2 seemed to differ from that
of the central site (p-value = 0.0808) while the slope for EMA class 1 did not (p-value =
0.1743). The distance-weighted version of the winter 2005 model was consistent with its
unweighted counterpart. The BICs for these summer 2004 models were 318.6 and 318.9
for the unweighted and weighted versions and for the winter 2005 models were 192.5 and
188.5, respectively. These unweighted and weighted multiple fixed effects regression
models included the interaction term to test differences in turbulence kinetic energy
among the EMA classes. They took into account the repeated measurements at each
residence, nesting the household identifier (PID) within EMA class. The next models
expand on this idea by including a time effect in addition to the EMA class spatial effect.

Models with Alternate Repeated Measures Set-up

The DEARS design took repeated measurements at each particular household during a 5-
day period corresponding to a particular week. In this sense, the household identifier (PID)
is nested within week in addition to being nested within EMA class. Our next models
accounted for the repeated measurements at cach residence by nesting the household
identifier (PID) within week. These models included the categorical variable for week as a
main effect and also in interaction terms with turbulence kinetic energy and EMA class,
where the three-way interaction term was used to examine the slope for turbulence kinetic
energy at spatial-temporal combinations. The first model for each season jointly
considered all the meteorological variables, EMA class, and week as main effects, and it

included the three-way interaction and corresponding lower order interactions for
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turbulence kinetic energy, EMA class, and week. As before, main effect model terms with
coefficient p-values< 0.1 were retained initially as explanatory in unweighted and

distance-weighted models that also included the interaction terms.

The summer 2004 unweighted model with turbulence kinetic energy, temperature, and V
(north-south Cartesian) wind component, EMA class, and week as main effects plus all
interactions for turbulence kinetic energy, EMA class, and week gave the best fit with BIC
217.5. A reduced model that included these same main effects and the single interaction of
turbulence kinetic energy and week gave a slightly worse fit with BIC 218.5, suggesting
interactions with EMA class help explain the variability in log(PM; s) despite their lack of
significance reflected by p-values. This result is interesting in part because the BIC
imposes a penalty for additional model terms. The distance-weighted summer 2004
version of the best fitting unweighted model (with all three-way and two-way interactions
for turbulence kinetic energy, EMA class, and week) gave an improved BIC of 214.4. The
winter 2005 unweighted model with turbulence kinetic energy, U (east-west Cartesian)
wind component, and V (north-south Cartesian) wind component as main effects and with
main effects for EMA class and week and all interactions for turbulence kinetic energy,
EMA class, and week gave a good fit with BIC of 15.4. A reduced model that included
these same main effects and the single interaction of turbulence kinetic energy and week
gave the best fit with BIC of 3.1. The distance-weighted version of this reduced model
also gave BIC of 3.1. The p-values, variance components, and BICs for models with
household identifier (PID) nested within EMA class are given in Table 4; those for models
with PID nested within week are given in Table 5. The V (north-south Cartesian) wind
component was highly significant in all of the weighted and unweighted models that
included meteorology terms. Turbulence kinetic energy was highly significant in all those
models that did not include week, and the interaction of turbulence kinetic energy with
week was highly significant in all those models that included week. Temperature was
significant in all of the summer 2004 models. The U (east-west Cartesian) wind
component was significant in all of the winter 2005 models. Planetary boundary layer
height was significant in the weighted model without week for winter 2005, but perhaps

collinearity in the explanatory meteorological variables or spatial features of the
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residences relative to the central site suppresses the importance of the boundary layer
height in the other models. It is noteworthy that turbulence kinetic energy is highly
significant as a main effect or as an interaction term in both seasons for these data but has
not typically been considered in spatial and other models for PM, s. As indicated by the
BICs for the summer 2004 models, further research is needed to identify explanatory

variables that are jointly as effective as date indicator.

DISCUSSION AND CONCLUSIONS

This work establishes that turbulence kinetic energy is highly statistically significant in
explaining the relationship in DEARS data of PM, s measured at a particular stationary
outdoor air monitoring site with PM; s measured outside nearby residences for the
temporal coverage of the data. Meteorological data such as turbulence kinetic energy and
planetary boundary layer height are not routinely considered in models that relate central-
site concentrations to health effects, and our findings support their importance. The
statistical methodology of this analysis addresses the non-normality of the concentration
data and the correlated error structure resulting from repeated measures. The set-up avoids
introducing measurement error for PM; s into regression explanatory variables and uses
software well-suited to unbalanced data. Our models are straightforward to interpret in that
they did not combine data across seasons, and our findings support that the temporal
variability of PM, s indicated in Figure 2 is important. These Detroit-area PM; 5 data are
more sensitive to time than space for the meteorological data used in our work. The
variability likely reflects regional meteorology as well as local emissions, chemistry, and

transport, and possibly reflects seasonality.

We conclude that models for these DEARS data that use the household identifier (PID)
nested within week for the repeated measures covariance structure (Table 5) are preferred
over the models with PID nested within EMA (Table 4). From a model development
perspective, the reduced model with EMA class, turbulence kinetic energy, temperature, V
(north-south Cartesian) wind component, week, and the interaction of turbulence kinetic

energy with week is favored for summer 2004season. Similarly, the reduced model with
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EMA class, turbulence kinetic energy, U (east-west Cartesian) wind component, V (north-
south Cartesian) wind component, week, and the interaction of turbulence kinetic energy
with week is favored for winter 2005. Their BIC values are the lowest, or nearly so, for

models without an indicator variable for date, and these models are parsimonious.

There are many uncertainties remaining in this analysis, and these affect the measurement
data as well as the meteorology data. Diurnal patterns for the correlation between fixed-
site and residential outdoor concentration seen by Clayton et al.* in PTEAM suggest the
24-hour data collection in DEARS may contribute to the uncertainty of the findings from
this analysis. As indicated by Table 1, household is confounded with week and EMA
within a season for most of the PM, 5 data since, by design, data were collected at a
participating DEARS household for at most 5 days in one week of a season. Also, local
PM, 5 sources were not explicitly considered in this work. The proximity of participating
residences to known or suspected point or line sources was considered in the design of
DEARS: however, we chose to include source contributions, rather than their distances,
parsimoniously through the U and V wind components. There are uncertainties in the
NARR meteorological data, but it is not clear how to characterize these. The estimation
and other uncertainties of the NARR data may well be dwarfed by the other uncertainties
of this analysis. An added, and perhaps important, uncertainty of this analysis comes from
the facts that the meteorological grid is large relative to the range of DEARS residences
and that the grid cell centers are not located close to the DEARS residences.

While boundary layer meteorological data are not routinely considered in regression
models for particulate matter, Thornburg et al.3® included Monin-Obukhov length in
addition to wind direction, wind speed, distance between EMAs, and weekday/weekend in
spatial-temporal modeling for PM¢. 5. Their research was part of the evaluation of a
newly developed coarse particle exposure monitor used in DEARS; the PM¢., 5 data used
in their modeling were collected summer 2006 and winter 2007. Monin-Obukhov length,
like turbulence kinetic energy, is a measure of atmospheric stability. Monin-Obukhov
length was the only explanatory variable in their regression found to be statistically
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significant for both summer and winter PM; ., 5 concentrations. This Thornburg et al.3*

finding is consistent with our findings.

Further modeling using PM, 5 measurements from other localities is needed to evaluate the
importance of planetary boundary layer height, turbulence kinetic energy, and perhaps
other measures of atmospheric stability such as Monin-Obukhov length, in explaining
uncertainty of the representativeness of central site measurements for estimating personal
exposure. In this work turbulence kinetic energy was found to be significant, but its
interrelationship with planetary boundary layer height may promote the latter’s
significance elsewhere. When available, turbulence kinetic energy is one of the most
important measures used to characterize the turbulence in the planetary boundary layer. It
is a more straightforward measure of mixing or turbulence than Monin-Obukhov length, a
scaling parameter related to turbulence kinetic energy. Turbulence kinetic energy values
are nonnegative; they are directly proportional to the kinetic energy of the mixing eddies.
Monin-Obukhov length values are not restricted to being positive; they are proportional to
the height above the surface at which buoyant factors first dominate over mechanical
production of turbulence®’. Given these characteristics, in our judgment turbulence kinetic
energy is preferred over Monin-Obukhov length as a correlate to pollution concentrations
and health outcomes. Further model development for the PM, 5 data from DEARS could
investigate inclusion of time-lagged explanatory variables or sinusoidal terms for residual
synoptic cycles not explained by the other covariates. The latter are similar to the terms

included for residual yearly cycles in the works by Calder et al.” and Holloman et al. 2

DISCLAIMER

The United States Environmental Protection Agency through its Office of Research and
Development funded and managed the research described here under contract EP-D-05-
065 to Alion Science &Technology. It has been subjected to Agency review and approved

for publication.

ACKNOWLEDGEMENTS

17



We thank Linda Sheldon of EPA’s National Exposure Research Laboratory for her
question that sparked this work and Fred Dimmick of EPA’s Process Modeling Research
Branch, Human Exposure and Atmospheric Sciences Division for his comments about the
mixing layer of the atmosphere. His comments led us to meteorologists Brian Eder and
Robert Gilliam of EPA’s Atmospheric Modeling and Analysis Division, who
recommended turbulence kinetic energy and planetary boundary layer height as important
boundary layer measures. We also thank James Chromy of RTI International, Fred
Dimmick, Brian Eder, and the anonymous peer reviewers for helpful discussions and

constructive comments during the course of preparing the final manuscript.

ABOUT THE AUTHORS

Barbara Jane George is a mathematical statistician in the Exposure Modeling Research
Branch, Human Exposure and Atmospheric Sciences Division of NERL EPA. Donald A.
Whitaker is a research physical scientist in the Exposure Measurements and Analysis
Branch, Human Exposure and Atmospheric Sciences Division of NERL EPA. Robert C.
Gilliam is a physical scientist in the Atmospheric Model Development Branch,
Atmospheric Modeling and Analysis Division of NERL EPA. Jenise L. Swall is a
statistician in the Applied Modeling Branch, Atmospheric Modeling and Analysis
Division of NERL EPA. Ronald W. Williams is a research chemist for the Exposure
Measurements and Analysis Branch, Human Exposure and Atmospheric Sciences
Division of NERL EPA. Please address correspondence to: Dr. B. J. George, U.S.
Environmental Protection Agency, National Exjaosure Research Laboratory, Human
Exposure and Atmospheric Sciences Division, 109 T.W. Alexander Drive, Mail Drop
E205-02, Research Triangle Park, NC 27711, USA; phone: 919-541-4551; fax: 919-541-
4787, e-mail: george.bj@epa.gov.

18



REFERENCES

L.

National Research Council. Research Priorities for Airborne Particulate Matter:
IV. Continuing Research Progress; The National Academies Press: Washington,
DC, 2004.

Williams, R.; Rea, A.; Vette, A.; Croghan, C.; Whitaker, D.; Stevens, C.; McDow,
S.; Fortmann, R.; Sheldon, L.; Wilson, H.; Thornburg, J.; Phillips, M.; Lawless, P.;
Rodes, C.; Daughtrey, H. The Design and Field Implementation of the Detroit
Exposure and Aerosol Research Study (DEARS); J. Expos. Sci. Environ.
Epidemiol. 2009, 19, 643—-659.

Thomas, K. W.; Pellizzari, E. D.; Clayton, C. A.; Whitaker, D. A.; Shores, R. C.;
Spengler, J.; Ozkaynak, H.; Froehlich, S. E.; Wallace, L. A. Particle Total
Exposure Assessment Methodology (PTEAM) 1990 Study: Method Performance
and Data Quality for Personal, Indoor, and Outdoor Monitoring; J. Expos. Anal.
Environ. Epidemiol. 1993, 3, 203-226.

Clayton, C. A.; Perritt, R. L.; Pellizzari, E. D.; Thomas, K. W.; Whitmore, R. W_;
Wallace, L. A.; Ozkaynak, H.; Spengler, J. D. Particle Total Exposure Assessment
Methodology (PTEAM) Study: Distributions of Aerosol and Elemental
Concentrations in Personal, Indoor, and Outdoor Air Samples in a Southern
California Community; J. Expos. Anal. Environ. Epidemiol. 1993, 3, 227-250.

Ozkaynak, H.; Xue, J.; Spengler, J.;Wallace, L.; Pellizzari, E.; Jenkins, P. Personal
Exposure to Airborne Particles and Metals: Results from the Particle TEAM Study
in Riverside, California; J. Expos. Anal. Environ. Epidemiol. 1996, 6, 57-78.

Clayton, C.; Pellizzari, E.; Rodes, C.; Mason, R.; Piper, L. Estimating distributions

of longterm particulate matter and manganese exposures for residents of Toronto,
Canada; Atmos. Environ. 1999, 33, 2515-2526.

19



&

10.

11.

12.

13.

Crump, K. S. Manganese exposures in Toronto during use of the gasoline additive,
methylcyclopentadienyl manganese tricarbonyl; J. Expos. Anal. Environ.
Epidemiol. 2000, 10, 227-239.

Pellizzari, E.; Clayton, C.; Rodes, C.; Mason, R.; Piper, L.; Fort, B.; Pfeifer, G.;
Lynam, D. Particulate matter and manganese exposures in Indianapolis, Indiana; J.

Expos. Anal. Environ. Epidemiol. 2001, 11, 423—440.

Wheeler, A.; Zanobetti, A.; Gold, D. R.; Schwartz, J.; Stone, P.; Suh, H. H. The
Relationship between Ambient Air Pollution and Heart Rate Variability Differs for
Individuals with Heart and Pulmonary Disease; Environ. Health Perspect. 2006,
114, 560—-566.

Landis, M. S.; Norris, G. A.; Williams, R. W.; Weinstein, J. P. Personal exposures
to PM; 5 mass and trace elements in Baltimore, MD, USA; Atmos. Environ. 2001,
35,6511-6524.

Rea, A. W.; Zufall, M. J.; Williams, R. W.; Sheldon, L.; Howard-Reed, C. The
Influence of Human Activity Patterns on Personal PM Exposure: A Comparative
Analysis of Filter-based and Continuous Particle Measurements; J. Air & Waste
Manage. Assoc. 2001, 51, 1271-1279.

Rojas-Bracho, L.; Suh, H. H.; Koutrakis, P. Relationships among personal, indoor,
and outdoor fine and coarse particle concentrations for individuals with COPD; J.
Expos. Anal. Environ. Epidemiol. 2000, 10, 294-306.

Evans, G.; Highsmith, R.; Sheldon, L.; Suggs, J.; Williams, R.; Zweidinger, R.;
Creason, J.; Walsh, D.; Rodes, C.; Lawless, P. The 1999 Fresno particulate matter
Exposure studies: comparison of community, outdoor, and residential PM mass
measurements; J. Air & Waste Manage. Assoc. 2000, 50, 1887-1896.

20



14.

15.

16.

1.

18.

19.

20.

Williams, R.; Suggs, J.; Rea, A.; Leovic, K.; Vette, A.; Croghan, C.; Sheldon, L.;
Rodes, C.; Thornburg, J.; Ejire, A.; Herbst, M.; Jr, W. S. The Research Triangle
Park particulate matter panel study: PM mass concentration relationships; Atmos.
Environ. 2003, 37, 5349-5363.

Williams, R.; Suggs, J.; Rea, A.; Sheldon, L.; Rodes, C.; Thornburg, J. The
Research Triangle Park particulate matter panel study: modeling ambient source

contribution to personal and residential PM mass concentrations; Atmos. Environ.
2003, 37, 5365-5378.

Mar, T. F.; Koenig, J. Q.; Jansen, K.; Sullivan, J.; Kaufman, J.; Trenga, C. A.;
Siahpush, S. H.; Liu, L.-J. S.; Neas, L. Fine Particle Air Pollution and
Cardiorespiratory Effects in the Elderly; Epidemiol. 2005, 16, 681-687.

Sheppard, L.; Slaughter, J. C.; Schildcrout, J.; Liu, L.-J. S.; Lumley, T. Exposure
and measurement contributions to estimates of acute air pollution effects; J. Expos.
Anal. Environ. Epidemiol. 2005, 15, 366-376.

Liu, L.-J. S.; Box, M.; Kalman, D.; Kaufman, J.; Koenig, J.; Larson, T.; Lumley,
T.; Sheppard, L.; Wallace, L. Exposure Assessment of Particulate Matter for
Susceptible Populations in Seattle; Environ. Health Perspect. 2003, 111, 909-918.

Goswami, E.; Larson, T.; Lumley, T.; Liu, L.-J. S. Spatial Characteristics of Fine
Particulate Matter: Identifying Representative Monitoring Locations in Seattle,
Washington; J. 4ir & Waste Manage. Assoc. 2002, 52, 324-333. -

Noulett, M.; Jackson, P. L.; Brauer, M. Winter measurements of children’s

personal exposure and ambient fine particle mass, sulphate and light absorbing

components in a northern community; Atmos. Environ. 2006, 40, 1971-1990.

21



2l

22,

23,

24.

25,

26.

27,

28.

McBride, S. J.; Williams, R. W.; Creason, J. Bayesian hierarchical modeling of
personal exposure to particulate matter; Atmos. Environ. 2007, 41, 6143-6155.

Holloman, C. H.; Bortnick, S. M.; Morara, M.; Stauss, W. J.; Calder, C. A. A
Bayesian Hierarchical Approach for Relating PM; 5 Exposure to Cardiovascular
Mortality in North Carolina; Environ. Health Perspec. 2004, 112, 1282-1288.

Calder, C. A.; Holloman, C. H.; Bortnick, S. M.; Strauss, W.; Morara, M. Relating
ambient particulate matter concentration levels to mortality using an exposure
simulator; J. Am. Stat. Assoc. 2008, 103, 137-148.

Calder, C. A. A dynamic process convolution approach to modeling ambient

particulate matter concentrations; Environmetrics 2008, 19, 39-48.

Pope, C. A.; Dockery, D. W. 2006 Critical Review: Health Effects of Fine
Particulate Air Pollution: Lines that Connect; J. Air & Waste Manage. Assoc.
2006, 56, 709-742.

Flanagan, J. B.; Jayanty, R.; Rickman , Jr., E. E.; Peterson, M. R. PM; 5 Speciation

Trends Network: Evaluation of Whole-System Uncertainties Using Data from Sites
with Collocated Samplers; J. 4ir & Waste Manage. Assoc.J. Air & Waste Manage.

Assoc. 2006, 56, 492—499.

Stull, R. B. An Introduction to Boundary Layer Meteorology; Kluwer Academic
Publishers: Dordrecht, 1997.

Pierce, D.W. ncdf: Interface to Unidata netCDF Data Files; R Foundation for
Statistical Computing: Vienna, Austria, 2006; available at

http://cirrus.ucsd.edu/~pierce/ncdf (accessed May 2010).

#i



29.

30.

31.

32.

33

34.

35

36.

R Development Core Team, R: A Language and Environment for Statistical
Computing; R Foundation for Statistical Computing: Vienna, Austria, 2007.

Rew, R.; Davis, G.; Emmerson, S.; Davies, H.; Hartnett, E.; Heimbigner, D. The
NetCDF Users Guide; University Corporation for Atmospheric Research, Boulder
Colorado, 2010; available at http://www.unidata.ucar.edu/software/netcdf/docs/

(accessed May 2010).

SAS Institute Inc., SAS/STAT® 9.1 User’s Guide; SAS Institute Inc.: Cary, NC,
2004.

Wolfinger, R.; Chang, M. Comparing the SAS GLM and MIXED procedures for
Repeated Measures; Technical Report, 1995.

Schwarz, G. Estimating the Dimension of a Model; 4An. Stat. 1978, 6, 461—464.

Davidian, M.; Giltinan, D. M. Nonlinear Models for Repeated Measurement Data;
Chapman & Hall/CRC: Boca Raton, 1995.

Kadane, J. B.; Lazar, N. A. Methods and Criteria for Model Selection; J. Am. Stat.
Assoc. 2004, 99, 279-290.

Thornburg, J.; Rodes, C. E.; Lawless, P. A.; Williams, R. Spatial and Temporal
Variability of Outdoor Coarse Particulate Matter Mass Concentrations Measured
with a New Coarse Particle Sampler During the Detroit Exposure and Aerosol
Research Study; Atmos. Environ. 2009, 43, 4251-4258.

23



LIST OF FIGURES

1. DEARS Exposure Monitoring Areas 1 to 7. Allen Park was the fixed “central” site for
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2. 24-hour integrated average PM; s mass concentrations in ;,Lg/m3 by date and EMA
locations: (a) summer 2004 and (b) winter 2005. Note that one value in summer 2004 is

negative as a result of blank correction.

3. SAS regression model code example with repeated measures for household identifier
(PID) nested within week.

4. DEARS residences (both summer 2004 and winter 2005), central site monitor, and grid

points for meteorological data. Note that latitudes and longitudes are intentionally
suppressed.
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Table 1. Counts of PM, 5 measurements by EMA and week.
Underlined counts indicate measurements are from
more than one household.

Week
EMA 1 2 3 4 5 6 7
Summer 2004
1 5 85§ 5 5 5 4 10
3 5 B 5 10 5 5
4 5 5 8 5 5 0 4
6 5 4 4 9 5 9 ]
¥ @ & 3 5 4 5 5
Centralsite 4 5 4 5 5 5 4
Winter 2005
1 o 5 0 8 9 2 0
3 5 5 5 10 14 5 5
4 0 0 5 0 0 4 10
6 4 0 10 O 0 10 10
7 3 5 4 5 5 5 5
Centralsite 5 5 5 5 5 5 5
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Table 2. Descriptive statistics for outdoor PM; 5 in pg/m?® for Summer 2004 and

Winter 2005.

n mean std min med max

Summer 2004
Central Site PM; 5 32 17.8 119 33 132 427
Residential Outdoor PM; 5 181 16.0 10.3 -1.1 11.6 55.6
log(Residential Outdoor PM,5) 180 26 06 1.1 25 40
ResOutdoor/CentralSite PM,s 166 1.0 0.6 0.4 0.9 6.3

Winter 2005
Central Site PM; 5 35 188 159 3.7 13,5 664
Residential Qutdoor PM,s 158 17.1 146 3.1 135 85.6
log(Residential Outdoor PM,s) 158 26 07 1.1 2.6 44
ResOutdoor/CentralSite PMps 158 1.0 02 04 1.0 1.7
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Table 3. Descriptive statistics for outdoor PM; s and meteorology data for Summer 2004 and
Winter 2005 with combined residential outdoor and central-site data.

n mean std min med max

Summer20q4
Outdoor PM> 5 (ug/m”) 212 16.4 10.5 3.0 12.6 55.6

log(Outdoor PM; 5) (pg/m’) 212 2.6 0.6 1.1 25 4.0
Turbulence Kin. Energy (m?*/s) 212 1.4 0.7 0.2 1.2 34

Relative Humidity 2m (%) 212 61.6 10.4 39.1 61.0 90.3
Temperature 2m (K) 212 297.7 41 2894 2978 305.2

U Wind Component 10m 212 1.8 2.7 -4.3 2.0 8.3

V Wind Component 10m 212 0.7 39 -5.8 0.3 7.4
Planetary Bound. Layer Ht (m) 212 15083  355.0 498.8 1552.7 2155.6

Winter 2005
Outdoor PM 5 (ug/m®) 193 174 148 3.1 135 856
log(Outdoor PMy5) (ng/m’3) 193 26 0.7 1.1 2.6 4.4
Turbulence Kin. Energy (m?/s”) 193 1:d 0.7 0.2 1.0 2.8

Relative Humidity 2m (%) 193 74.5 14.1 31.9 77.0 93.6
Temperature 2m (K) 193 2717 28 2667 2720 2783

U Wind Component 10m 193 21 32 -5.7 2.4 7.6

V Wind Component 10m 193 -0.9 29 -6.5 -1.3 49
Planetary Bound. Layer Ht (m) 193 10293 5068 181.2 1107.7 20173
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Table 4. Regression model results for log(PM; 5) without week fixed effects.

Single Multiple

Fixed Fixed
Models Effects Effects Unweighted Weighted
for log(PM, 5) Regression Regression Meteorology Meteorology
Summer 2004
p-values
EMA 0.8525 0.0055
EMA class 0.7490 0.6901
Date indicator <0.0001
TKE? 0.0004 0.0005
Temperature <0.0001 <0.0001
V wind component <0.0001 <0.0001
TKE x EMA class 0.1313 0.2085
Variance components
PID(EMA) 0.1304 -0.0002 0.0849 0.0832
Residual 0.3145 0.0694 0.1833 0.1843
Model comparison
BIC 411.1 114.7 318.6 318.9
Winter 2005
p-values
EMA 0.8712 0.0001
EMA class 0.2487 0.2839
Date indicator <0.0001
TKE? <0.0001 <0.0001
Relative humidity 0.0179 0.0281
U wind component <0.0001 0.0002
V wind component < 0.0001 <0.0001
PBL® height 0.1035 0.0496
TKE x EMA class 0.1394 0.2198
Variance components
PID(EMA) 0.2951 0.0056 0.1020 0.1017
Residual 0.3660 0.0197 0.0944 0.0922

Model comparison
BIC 416.0 -65.8 213.6 209.9

Note: All p-values are shown; p-values < 0.05 are considered statistically
significant; omitted model terms are indicated by the absence of
corresponding p-values; “Turbulence kinetic energy, ®Planetary boundary
layer.



Table 5. Regression model results for log(PM, s5) including week.

Reduced Weighted

Week & Regression Regression
Models Interactions With With
for log(PMa.s) Regression Week Week
Summer 2004
p-values
EMA class 0.2802 0.0020 0.3268
TKE? 0.0236 0.0154 0.0101
Temperature 0.0011 0.0009 0.0014
V wind component <0.0001 <0.0001 <0.0001
Week 0.0735 0.0002 0.0506
TKE x EMA class 0.6861 0.7390
TKE x week 0.0009 <0.0001 0.0008
EMA class x week 0.6597 0.5757
TKE x EMA class x week 0.6712 0.5948
Variance components
PID(week) -0.0126 -0.0140 -0.0127
Residual 0.1452 0.1433 0.1435
Model comparison
BIC 217.5 218.5 214.4
Winter 2005
p-values
EMA class 0.9888 0.0006 0.0007
TKE? 0.6948 0.6329 0.3659
U wind component <0.0001 <0.0001 <0.0001
V wind component <0.0001 <0.0001 <0.0001
Week <0.0001 <0.0001 <0.0001
TKE x EMA class 0.3868
TKE x week <0.0001 <0.0001 <0.0001
EMA class x week 0.7938
TKE x EMA class x week 0.7168
Variance components
PID(week) 0.0073 0.0040 0.0038
Residual 0.0398 0.0391 0.0393
Model comparison
BIC 15.4 3.1 3.1

Note: All p-values are shown; p-values < 0.05 are considered statistically significant;

omitted model terms are indicated by the absence of corresponding p-values; *Turbulence

kinetic energy.
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Season 2 Reduced Model with Week

proc mixed;

class pid time emagrid week;

model logO_HMTW = emagrid week tke uu10m vv10m week*tke / solution;
repeated time / subject=pid(week) type=cs;

title 'Season 2 Reduced Model with week’;

run;

[* comments on model and repeated statements:
model log(PM2.5) = EMA_class week turbulence_kinetic_energy
U_wind_component V_wind_component

week_x_turbulence_kinetic_energy / solution;

repeated time / subject=PID_nested within_week
variance_type=compound_symmetry;

end of comments */
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