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Abstract

Biomarkers are useful exposure surrogates givemr Hislity to integrate exposures
through all routes and to reflect interindividuaffetences in toxicokinetic processes. Also,
biomarker concentrations tend to vary less thamesponding environmental measurements,
making them less-biasing surrogates for exposure.this article, urinary PAH biomarkers
(namely, urinary naphthalene [U-Nap]; urinary pheheene [U-Phe]; 1-hydroxypyrene [1-OH-
Pyr]; and 1-, (2+3)-, 4-, and 9-hydroxyphenenthr¢he (2+3)-, 4-, and 9-OH-Phe]) were
evaluated as surrogates for exposure to hot aspha#isions using data from 20 road-paving
workers. Linear mixed-effects models were use@dtmate the within- and between-person
components of variance for each urinary biomark&he ratio of within- to between-person
variance was then used to estimate the biasingteffef each biomarker on a theoretical
exposure-response relationship. Mixed models vadse used to estimate the amounts of
variation in Phe metabolism to individual OH-Phenrers that could be attributed to Phe
exposure (as represented by U-Phe concentratiosg@variates representing time, hydration
level, smoking status, age, and body mass indesul® showed that 1-OH-Phe, (2+3)-OH-Phe,
and 1-OH-Pyr were the least-biasing surrogategexposure to hot asphalt emissions, and that
effects of hydration level and sample collectiondisubstantially inflated bias estimates for the
urinary biomarkers. Mixed-model results for thediimdual OH-Phe isomers showed that
between 63% and 82% of the observed biomarker nvaiavas collectively explained by Phe
exposure, the time and day of sample collectiod, the hydration level, smoking status, body
mass index, and age of each worker. By differerloe, model results also showed that,
depending on the OH-Phe isomer, a maximum of 628% of the total biomarker variance was
attributable to differences in unobserved toxicekim processes between the workers.
Therefore, toxicokinetic processes are probablg lefluential on urinary biomarker variance
than are exposures and observable covariate efféebt® methods described in this analysis
should be considered for the selection and intéaipom of biomarkers as exposure surrogates in

future exposure investigations.
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1.0 Introduction

Biomonitoring has emerged as an important toolrésearch in the field of exposure
science. Indeed, biological measurements offeers¢\theoretical advantages over traditional
environmental measurements of toxicants in airewain the skin, and in food (Lin et al., 2005)
First, biomarkers integrate exposures from all sesirand routes thereby reducing the need to
monitor all environmental sources separately. Becbiomarker concentrations tend to vary
less than the corresponding environmental levelasored from day to day. This reduction in
intra-subject variability of biomarker levels, ril@ to environmental levels, reduces the number
of measurements required to precisely assess engsosuAnd third, biomarkers reflect
interindividual variations in toxicokinetic process(i.e., uptake, metabolism, and elimination)
that may be important to the health impact of expes.

We previously explored the utility of urinary biorkars for characterizing multi-route
exposures to polycyclic aromatic hydrocarbons (PAHs large class of compounds which
includes numerous carcinogens, in a longitudinalestigation of 20 road-paving workers
exposed to emissions from hot-mix asphalt (Sobusalet 2009a; Sobus et al., 2009b).
Specifically, we examined urinary levels of threerregate PAHs and their hydroxylated
metabolites, namely those of naphthalene (Nap;riag2PAH), phenanthrene (Phe; a 3-ring
PAH), and pyrene (Pyr; a 4-ring PAH), as functiamistotal PAH concentrations in airborne
particulate matter and on dermal patches. Sinamas/ as nine urine samples were collected
per subject, these data were also used to estimdtan-subject and between-subject
components of variance for each PAH biomarker is plopulation. Results from linear mixed-
effects models showed significant effects on usginbiomarker levels of both airborne and
dermal patch measurements of total PAHs. As sudhary naphthalene (U-Nap), urinary
phenanthrene (U-Phe), 1-hydroxypyrene (1-OH-Pynd #he sum of 5 monohydroxylated
metabolites of phenanthrene (OH-Phe) were idedtdie useful biomarkers of combined air and
dermal exposures to PAHs (Sobus et al., 2009a).

Environmental and biological measurements of exogersubstances vary greatly over
time within a given subject. This within-subjecarnability leads to uncertainty in ‘true’
exposure levels (long-term means) which leads,umm,tto biased predictions of exposure-
response relationships in epidemiologic studiesn@rong and Oakes, 1982; Lin et al., 2005).

Since a goal of environmental epidemiology is touaately link environmental exposures with



observed health outcomes, it is desirable to seteEsures of exposure that are less variable
over time and, therefore, less biasing surrogaiesrfie exposure levels. Using data from our
study of road-paving workers, we compare repeabsgrwvations of U-Nap, U-Phe, 1-OH-Pyr,
and 1-, 2-, 3-, 4-, and 9-OH-Phe to select thetde@sing surrogate(s) for exposures to hot
asphalt emissions.

Because biomarkers reflect interpersonal differenoeoxicokinetic processes, they can
also be useful for characterizing variability irntes of metabolism of toxic substances across
populations. To explore this idea, we use datanfraur road-pavers study to investigate
relationships between unmetabolized Phe (U-Phe}ladonohydroxylated metabolites of Phe
(OH-Phe isomers) in the same urine samples. Sgatyf we use linear mixed-effects models
to regress the level of a given isomer of OH-Phetlen corresponding level of U-Phe while
adjusting for covariates. Since U-Phe takes ictmant the absorption and distribution of Phe,
the unexplained between-subject variability in lnels of the OH-Phe isomers can be used to
infer the variation caused by metabolism and elation. Also, regression coefficients for
covariates in the models can be used to quant#etfects of potential modifiers (e.g., smoking
status, BMI, and age) on human metabolism of Phe.

Although we examine urinary PAH biomarkers amongr@up of road-paving workers,
the methods are sufficiently general to be appieedther volatile organic compounds that are
excreted in urine as both parent compounds andboidis. As such, these methods can inform

the selection and interpretation of biomarkersnhany toxic substances.

2.0 Methods
2.1 Study design and measurements of urinary PAHnalytes

Subjects included 20 male road-paving workers negith the Greater Boston area of the
United States who were recruited with informed emisunder protocols approved by
committees for human-subjects research at partingpanstitutions. Workers’ exposures to
PAHs were evaluated over three consecutive works,datarting at the beginning of the
workweek following a work-free weekend, using bhéag-zone air and dermal patch
measurements of PAHs as described in detail elsewMcClean et al., 2004a; McClean et al.,
2004b). Urine samples were collected immediatélyr @ach workshift, at bedtime, and in the



morning following each workday, using sterilizedypwopylene containers. Up to nine repeated
urine samples were collected from each worker tistawith the postshift void on the first
workday. Urine samples were stored at -20°C fpragmately seven years prior to analysis for
urinary PAH analytes; a previous examination oéhdata showed that appreciable effects of
prolonged storage time on the urinary analyte Ewsere unlikely (Sobus et al., 2009b).
Concentrations of U-Nap and U-Phe were determinesingu headspace-solid phase
microextraction coupled with gas chromatographysrgsectrometry (Sobus et al., 2009c¢), and
concentrations of 1-OH-Pyr, 1-OH-Phe, (2+3)-OH-PHeQH-Phe, and 9-OH-Phe were
determined using solid-phase extraction coupledch viquid chromatography-tandem mass
spectrometry (Onyemauwa et al., 2009). The estichimit of detection was 0.40 ng/L for U-
Nap and U-Phe (Sobus et al., 2009c), and the estihienits of quantitation were 2.0 ng/L for
(2+3)-OH-Phe, and 5.0 ng/L for 1-OH-Pyr, 1-OH-PAe€)H-Phe, and 9-OH-Phe (Onyemauwa
et al., 2009). The estimated coefficients of waoiafor all urinary PAH analytes were within a
range of 0.053 to 0.27 (Onyemauwa et al., 2009uSal al., 2009c). Creatinine measurements
were determined using a colorimetric assay, ant eabject’s height, weight, age, and smoking
status were obtained by questionnaire (Sobus,&2@09a). Summary statistics for each of these

covariates are given in (Sobus et al., 2009a).

2.2 Selecting the least-biasing biomarker of expose

Exposures are measured with error using either remwiental or biomarker
concentrations as surrogates for the true expdswds. The simplest way to quantify this
biasing effect of exposure measurement error isotsider an individual-based study where a
given exposure surrogate is measured repeatedlgafdt person in a sample, and a continuous
health outcome (e.g. respiratory function or DNAduacts) is also known for each person
(Rappaport and Kupper, 2008). Assuming a simp&gtt-line relationship between the logged
health outcome and logged exposure surrogate ipdpalation, the true slope of the exposure-

response relationship is defined As,. However, because the exposure surrogate is masasu
with error, the straight-line slope of testimated exposure-response relationship is @bt but
rather is B,,. The ratio of 5, to 5,,. determines the amount of attenuation bias forvargi

exposure surrogate under this simple model, andwethe following relationship (Rappaport
and Kupper, 2008):
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where the amount of bias = (1b} (e.g. ifb = 0.8 then bias = 0.2, indicating 20% attenuation

2
bias); the variance ratid =J—V2V, for o2 and g? representing the respective within-person and
gy,

between-person variance components (of logged expaslues); and; represents the number
of repeated measurements for each person. Fromi¢lgeen that, with measurement error, the
estimated exposure-response relationship is attedlecauses,, < 5,,. and that thab varies

2
between 0 and 1. Furthermore, for a given valug,dhe amount of bias increases mea—vzv
Oy

indicating that the variance ratio dictates the amaf attenuation bias in a given study. Since
each exposure surrogate has its own valug ,ofariance ratios can be compared to determine
the least-biasing measure of exposure, i.e. thegate with the smallest.

In our study of different urinary biomarkers of RAexposure, values of the variance

~2
. . -~ g

ratios are estimated ab=—%,
Op

where g2 and 62 are the estimates af’> and g7 obtained by

linear mixed models of the logged biomarker measerds (as discussed in the next section).

Also, we defineb as the estimate &f derived from (1) after substituting for A. Finally, we
use (1) to estimate the number of repeated measatsmeeded to limit attenuation bias at a

given value (Rappaport and Kupper, 2008) for ai@aer biomarker of exposure, that is

6 .
= — (. 2
" [(HJ ()

For example, ifb = 0.8 andd? = 42, then A = 1 andn; = 4. This indicates that 4 repeated

measurements of a biomarker of exposure with amattd variance ratio of 1 would be

required to limit attenuation bias to 20%.

2.3 Mixed effects models

Restricted maximum likelihood (REML) estimates @f and g were determined for

each urinary PAH analyte using linear mixed effentedels (Proc MIXED of SAS version 9.1).



Null models (containing only random effects andlabgl mean) were first created for each
analyte, followed by reduced models that includexed effects for urinary creatinine

concentration (an inversely proportional surrog#taydration level), time of sample collection,
and day of sample collection, as shown in equg®yn

Y, =In(X;) = B, +B,CREATININE; + Z,TIME, + B,DAY, +h +¢, ©)

1, 2, ...,n measurements of th# individual; and
1, 2, ..., 20 individuals.

for |
fori

Here,X; represents the concentration of a urinary PAHyedhg/L) for thejth measurement
of the ith person andy;is the natural logarithm of the individual measueatnX;. The

coefficient S, is the model intercept, ang,, 5,, and 3, represent the coefficients for the fixed

effects of CREATININE (creatinine concentration (fifl)]), TIME (categorical variable for
postshift, bedtime, or morning), and DAY (categaliwariable for day 1, day 2, or day 3),

respectively. In equation (3l is the random effect for thi¢h person andct; is the random
error for thejth measurement of thi¢h person. It is assumed thigtand ¢; are independent

random variables and that~ N (0, o7) and &, ~ N(0, oy,). Fixed effects in the final reduced

models were selected using backwards stepwisergtion at a significance level pf< 0.1. A
compound symmetry covariance structure was usexhah of the null and reduced models as
this structure generally yielded the lowest Akakigiformation criterion (AIC) and Bayesian
information criterion (BIC) values compared to othested structures (i.e., autoregressive
[AR(1)] and heterogeneous autoregressive [ARH(1)]).

Additional linear mixed-effects models were deyed for the individual isomers of OH-
Phe to investigate the effects of exposure to RBer(dicated by levels of U-Phe) on analyte
levels after adjusting for covariate effects. Bopra(4) shows the full mixed model for the

individual isomers of OH-Phe.

Y, =In(X;) = B, + B,CREATININE, + B, TIME, + B,DAY, +
B,UPHE, +(B,UPHE; xTIME, ) + (G,UPHE, x DAY, ) + (4)
B,SMOKER, + B,BMI, + B,AGE, +h +¢,



for |
fori

1, 2, ...,n measurements of theh individual; and
1, 2, ..., 20 individuals.

Here, as in equation (3p and ¢; are independent random variabl@s,is the model intercept,
andg,, B, and S, represent the coefficients for the fixed effedt<CREATININE, TIME and
DAY, respectively. The coefficient§,, 5, G, B,, Bs, and S,correspond to the fixed effects
of UPHE; (the [logged] concentration of U-Phe fcj)‘P measurement of thé" person),
UPHE; xTIME; (the interaction between UPHE and TIME)PHE; x DAY, (the interaction
between UPHE and DAY)SMOKER (the smoking status of tiféworker, where nonsmoker =
0), BMI, (the body mass index [kgAhof thei™ worker), andAGE, (the age in years of tHE

worker), respectively. A compound symmetry couvac@matrix was used in each full model as
this structure generally yielded the lowest valugsAIC and BIC. All covariates were
maintained in the final full models for ease ofemmretation, but were determined to be
significant atp < 0.10.

Estimates of within- and between-subject fold-rangé.e., Wlio_% and bﬁogs,

respectively) were determined for each OH-Phe isommader equation (4) according to

_ 3925, — 3925,

Rappaport (Rappaport, 1991) wherngAQ095 =e and blio% =e”™. The valuewli095
represents the estimated fold-range containing 8b#%e biomarker measurements for a typical
person in the population investigated, and theeygléa95 represents the fold-range containing

95% of the mean biomarker levels across all petsdngaclass correlation coefficients (ICC)

were also estimated for each OH-Phe isomer undeatieaq (4), wherelCC,,, = a7

Wiy by

estimates ofiCC,,, represent the ratio of between-subject bionravieeiance to total observed

variance under each full model. Finally, the petseof total variance (where total estimated
variance 67 =2 +6;) from the null models explained by fixed effeatsthe reduced and full

2 A2

gy — 0
models were determined as follows:%explaineded:{M}QOO and

YnuII
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%explained,, :{( ) )}XIOO, respectively (Burstyn et al., 2000; Egeghy et 2005;

YnuII

Sobus et al., 2009a).

3.0 Results

3.1 Estimates of variance components and attenuati bias for urinary PAH
biomarkers

Table 1 shows geometric mean (GM) urinary analgieels measured in samples of
postshift, bedtime, and morning urine, along wisti@nce component and %Bias estimates from
the null models and from the reduced models aftfuséing for CREATININE, TIME, and
DAY. Overall, the GM levels of the monohydroxyldtanalytes were approximately one to two
orders of magnitude greater than those of the uamioéized analytes (i.e., U-Nap and U-Phe).
Furthermore, the GM levels of each analyte folloveedank order of postshift > bedtime >

morning, indicating a rapid uptake and eliminatidriNap, Phe, and Pyr during each workday.
Estimates of the variance ratib from the null models (i.ejnu,,) were generally greater
than one, indicating that the estimated within-persariance components were larger than the

estimated between-person variance componentscylarty for U-Nap Qi =3), 4-OH-Phe

null
(A, =4), and U-Phe {
bias of 18% or less would be expected when usiegdhels of 9-OH-Phe, (2+3)-OH-Phe, 1-

OH-Phe, or 1-OH-Pyr as surrogates for ‘true’ expedavels; attenuation biases of 24%, 33%,

=8) (see Table 1). Based on estimated values, pf an attenuation

null null

and 47% would be expected using levels of U-NapH+Phe, and U-Phe, respectively.
Significant effects of CREATININEp < 0.0001) and TIME{ < 0.002) were observed
in the reduced models for each urinary analyte, asthnificant effect of DAY (§ < 0.1) was
observed for all analytes except U-Phe and 9-OH-PPResitive regression coefficients for
CREATININE (ranging from 0.765 to 1.38) indicategher concentrations of urinary analytes
with decreased hydration levels, and the regressiefficients for TIME support the observed
rank order of postshift levels > bedtime levels srning levels in all cases. In instances of a
significant DAY effect, analyte levels were alwdgsvest on the first sampling day, suggesting

slight accumulation of individual biomarkers at tieginning of the workweek.



Figure 1 shows residual values over time of U-PRgure 1A) and (2+3)-OH-Phe
(Figure 1B) from the null models, and Figure 2 shawesidual values of the same analytes after
adjusting for significant fixed effects. In Figsr&A and 1B, the group mean levels deviate from
zero over time (e.g., mean postshift residual aee greater than zero and morning levels are
below zero); this variability highlights significatime trends for which adjustments were not
made in the null models. Figures 2A and 2B shavdoan variation of the residual values about
zero at all time points, reflecting the appropriateorporation of fixed time effects into the
reduced models. While significant time effects avebserved for each analyte, residuals of U-
Phe and (2+3)-OH-Phe are shown in Figures 1 and 2xamples of the extent to which
measurement error (or within-worker variance) dgfbetween selected biomarkers. Indeed, the
residuals of repeated observations for individuarkers in Figures 1A and 2A (U-Phe) are
considerably more varied than those in Figures 2A2B (2+3-OH-Phe).

After adjusting for significant fixed effects, tlestimate ofA from the reduced model

(i.e., ﬁred) was observed to be lower than thatiqf, for each analyte (see Table 1), highlighting
a greater than proportional decreasejfh. to &;, thaning; to 4; . A median decrease

of 60% (with a range of 51% to 69%) was observe]dnfr&fvmII to 52&1 indicating that

W

CREATININE, TIME and DAY contributed, in large parto the variation in spot urine

measurements within individual workers. In corramly about a+10% difference was
observed betweed? andd;  for U-Nap, U-Phe, 1-OH-Phe, (2+3)-OH-Phe, and 44,

indicating that the average levels of these anslyietween individual workers were not
appreciably affected by CREATININE, TIME or DAY.

The lowest levels of/fred were observed for 1-OH-Phe, (2+3)-OH-Phe, and 1FRyH

with estimated values ranging from approximately 0.0.7 (Table 1). Assuming nine repeated
observations for each worker, the %Biador these respective analytes was determined to be
5%, 6%, and 7%. The calculated values of %Rjder the remaining analytes (i.e., U-Nap, 4-
OH-Phe, 9-OH-Phe, and U-Phe) werel 3%.

3.2 Mixed model results for individual isomers ofOH-Phe

10



Results of the full mixed models for the individuabmers of OH-Phe are shown in
Table 2. Highly significantg < 0.0001) positive effects of UPHE and CREATININEere
observed in each model indicating elevated leveél®ld-Phe isomers with increased levels of
UPHE and CREATININE. Significant interaction eftecof both UPHEXTIME and
UPHEx DAY were observed for 1-OH-Phe, (2+3)-OH-Phe, and 9Rbd p < 0.10),
indicating a change in the (logged) linear relagldp between UPHE and these OH-Phe isomers
over time. These significant interaction effeaad the main effects of DAY and TIME for
individual analytes, are probably artifacts of thierent elimination rates of U-Phe and the OH-
Phe isomers (Sobus et al., 2009b). After adjudtinghe main effects of CREATININEJPHE,
TIME, and DAY, and the interaction effects &fPHEx  TIMBJAUPHEX DAY, a significant
smoking effect was observed for 1-OH-Phe and 9-@H-P Interestingly, smokers produced
higher levels of 9-OH-Phe compared to non-smokers, wisesaekers producddwer levels of
1-OH-Phe compared to nonsmokers. O8KDH-Phe and (2+3)-OH-Phe were significantly
affected by BMI p < 0.10), with lower analyte levels observed in higWl workers. The
covariate ‘AGE’ was not significantly associatedhwihe levels of OH-Phe isomers in any of the
full models.

Figure 3 shows the percents of total estimated arker variance in the null models

explained by fixed effects in the reduced and fiatidels (obtained using estimates@mII and

6. . 0. and &; , and 6 and G; , from Tables 1 and 2). The fixed effects of

CREATININE, TIME and DAY from the reduced modelsllectively explained 39-58% of the
biomarker variance in the null models, whereasivadld effects from the full models collectively
explained 63-82% of the biomarker variance in thk models. These results indicate that the
majority of the observed OH-Phe isomer variance &gsained by the road workers’ estimated
exposure levels and by observed covariate effects.

By difference (i.e., subtracting the explained &ade from 100%), the estimates of
unexplained variance in the full models for 1-OHeP{2+3)-OH-Phe, 4-OH-Phe, and 9-OH-Phe
were 37%, 32%, 37%, and 18%, respectively. The é&inates from the full models (shown in
Table 2) suggest that about 60% of the unexplaratnce in 1-OH-Phe and (2+3)-OH-Phe
levels, and about 30% of the unexplained variamcé-OH-Phe and 9-OH-Phe levels, was

observed between subjects. Considering these astsnof unexplained variance and of ICCs,
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the between-subject components of variance were, 2Z&%0, 12%, and 6% of the total
unexplained variance in the respective levels @H-Phe, (2+3)-OH-Phe, 4-OH-Phe, and 9-
OH-Phe. These results suggest that, dependinped®H-Phe isomer, a maximum of 6% to
23% of the total biomarker variance was attribugaiol differences in unobserved toxicokinetic

processes between the workers.

4.0 Discussion

This analysis explored the theoretical advantadgelsiamonitoring using existing data
from an observational study of 20 road-paving woskeNull, reduced and full linear mixed
effects models were constructed to highlight theratation bias associated with individual
biomarkers of PAHs emitted from hot asphalt, anduantify the amount of biomarker variance
attributable to Phe exposure, covariate influeaod, unknown toxicokinetic processes.

The biasing potential of selected air and biomarkeasurements as exposure surrogates
have been evaluated in other studies (Egeghy,e2@05; Fustinoni et al., 2010; Liljelind et al.,
2003; Lin et al., 2005; Rappaport et al., 1995ptdbly, Lin and colleagues estimated variance
components of individual analytes using approxityate2,000 repeated air and biomarker
measurements compiled from over 100 different @&dsad in et al., 2005). Results from their
analysis suggested that a given biomarker measutermdikely a less-biasing surrogate for
exposure than is a typical air measurement. Aaithtily, the results of Lin et al. suggested an
inverse relationship between the biasing-potewtia given biomarker and its residence time in
the body (Lin et al., 2005). We have previouslimeated the biological half-lives of U-Phe and
OH-Phe to be approximately 8 and 14 h, respectiy8hbus et al., 2009b). Therefore, our

results support this earlier observed inverseioeglahip, as estimates of,, and A, were both

larger for U-Phe than for the individual OH-Phensars (see Table 1). Furthermore, our results
show that the effects of physiological damping.(i.diminished measurement error with
increased residence time (Rappaport and Kuppe8)2@h biomarker variance are observable
even when comparing short-term biomarkers (resiel¢ince on the order of hours or days), and
not just short- and intermediate-term, or shortt Eomg-term biomarkers.

To help interpret the results of the mixed modelsduin this analysis, we present three
hypothetical exposure assessment scenarios f&Qhead-paving workers; we assume that the
results of these three hypothetical assessmentiklvbeuanalogous to those of our null, reduced

12



and full mixed models. Under the null models wesent hypothetical scenario #1, in which
approximately nine biomarker measurements were madach of the 20 workers, with each
measurement made at a randomly selected time postshift, bedtime, or morning), on a
randomly selected workday (i.e., day 1, day 2, ay 8), in a randomly selected workweek.
Under the reduced models we present hypotheti@ilas® #2, in which approximately nine
biomarker measurements were made of each of tleo#ers (one measurement per worker per
week), with all measurements made at approximatetysame time of day (either postshift,
bedtime, or morning), on the same day of the wodkn@ither day 1, day 2, or day 3), over nine
randomly selected workweeks. Additionally, all @@rkers under scenario #2 were equally
hydrated at the time of sample collection. Undee full models we present hypothetical
scenario #3, in which approximately nine biomankerasurements were made of each of these
20 workers (one measurement per worker per wedlf), measurements made at approximately
the same time of day, on the same day of the wagkwever nine randomly selected
workweeks. Additionally, all 20 workers under saga #3 were equally hydrated at the time of
sample collection, had approximately the same axgoprofile over time, had the same BMI,

were non-smokers, and were the same age.

For each of the three hypothetical scenari@$, represents the differences in average

biomarker levels across workers, adq represents the differences in individual biomasker
measurements for any given worker over time. Umsdenario #1 (null models), the magnitude
of &7 likely reflects differences between workers in rage exposure levels, personal
characteristics (e.g., smoking status, BMI and ,agajl toxicokinetic processes, whereas the
magnitude ofd? likely reflects changes in exposure levels foiveey worker, the time and day

of sample collection, and the hydration levels ltd tvorkers at the time of sample collection.

Results from the null models (shown in Table 1)gasged that the ratio af’

null

to 4y (e,

)Tnu,, ) was lowest for 1-OH-Pyr, 1-OH-Phe, and (2+3)-OkPindicating that these metabolites

were likely the least-biasing surrogates for exp@sa hot asphalt emissions. Attenuation bias
estimates for these three analytes were betweelb%®?whereas those for the other analytes
ranged from 18-47%. If it were necessary to restitenuation bias to 10% in a prospective
exposure study (under scenario #1), about 11-14unements per worker would be needed of
either 1-OH-Pyr, 1-OH-Phe, or (2+3)-OH-Phe vs. dbtflimeasurements per worker of U-Phe,
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the biomarker with the largest estimated leveldqf,. This disparity in sample size highlights
the importance of estimating variance componené&xposure studies.

Under scenario #2 (reduced models), the magnitofled? again likely reflects
differences between workers in average exposumdepersonal characteristics (e.g., smoking

status, BMI, age), and toxicokinetic processes, ted magnitude ofg? reflects changes in
exposure levels for a given worker. HowewE] is not influenced by the time or day of sample

collection nor the hydration levels of the workerGstimates ofg? from the reduced models

were considerably lower than those observed imtliemodels, indicating that the majority of

the biomarker variance for any given worker could éxplained by TIME, DAY, and
CREATININE. As expected, estimates af from these models were very similar (in all but

two cases) to those observed in the null modetlicating that the variability in thaverage
biomarker levels across all workers was not appldgi affected by TIME, DAY, and

CREATININE. Taken together, the results dAI] and )Alred (shown in table 1) suggest a

ull
considerable reduction in the biomarker attenuabias under scenario #2. For example, only 5-
6 measurements of 1-OH-Phe, (2+3)-OH-Phe, or 1-@HaAPuld be required to achieve a 10%
attenuation bias under scenario #2 vs. 11-14 meamnts of these biomarkers under scenario
#1. The results of this comparison indicate tlgaten increased observations of influential
covariates, fewer measurements are needed to @btaeliable estimate of exposure.

The earlier work of Lin et al. evaluated fixed tireffects (seasonal effects, weekday,

effects, and linear trends) on biomarker levelsgisnixed models (Lin et al., 2005). Results of

that analysis indicated a larger impact of time @) compared tog;, and suggested that

omission of an important time effect increases ealof A. Since our results for the urinary
PAH biomarkers are consistent with the earlier wafrkin et al., we hereby confirm the need to
adjust for time effects when comparing exposureogates to a continuous health outcome.
Furthermore, we establish a clear need to adjustifanges in the hydration level of individuals
when considering urinary biomarker measuremenéxpssure surrogates.

Under scenario #3 (full models), it is assumed littée or no biomarker variance stems

from differences in exposure levels, the time aag df sample collection, hydration levels,

smoking status, BMI, or age. Thus, the magnitudedj likely reflects variations in
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unidentified toxicokinetic processes between wakand the magnitude af> likely reflects

minor sources of measurement error (including latooy assay error) and unresolved covariate
effects.  Obviously the assumptions under scen#®o are impossible to replicate in
observational exposure studies. However, humammbba experiments provide a unique
platform with which to evaluate biomarker measuretaén a controlled environment. As such,
a retrospective analysis was recently performethefvariability in blood and breath biomarker
measurements of trichloroethylene (TCE), methytidey butyl ether (MTBE), and tertiary butyl
alcohol (TBA; a phase | metabolites of MTBE), usid@ta from two human chamber
experiments (Pleil, 2009). In the original chamberdies, nominally healthy and non-smoking
subjects were exposed to equal concentrationstloérel CE or MTBE through the inhalation,
ingestion, or dermal routes (Pleil et al., 199&Het al., 2004), and blood and breath biomarkers
of TCE, MTBE, and TBA were measured at specificetippints. Because the exposures were
well controlled in each of these experiments, thagnitude of biomarker variance between
subjects at each time point was thought be a fonaif internal biological processes. Following
from this assumption, the effects of biological ggsses on between-subject biomarker variance
was quantified at each time point using fold-raaggmates (i.e., the ratio of the upper and lower
bounds of the 95% confidence intervals, which weteminined using the GM and GSD of the
log-normal biomarker distributions (Pleil, 2009esults showed that the between-subject fold-
range estimates were very similar across all aeslghd biological media, and ranged from 2.3
to 6.2 (averaged across all time points) (PleiD®0 That is, 95% of the observed biomarker
levels for the study subjects were within an appnate 2- to 7-fold-range, given identical
exposure conditions.

In the full mixed models used for this investigatitJPHE was selected as an exposure
surrogate to control for variations in Phe exposuretween- and within-workers. Therefore, the
residual between-subject variance estimates franfitth models here are directly comparable to
the variance estimates from the human chamberestudResults from our full models (Table 2)
showed that the between-subject fold-range estsnfatethe individual OH-Phe isomers were
between 3.09 and 6.71. That is, 95% of the meamdrker levels for the 20 workers were
within an approximate 3 to 7-fold-range, after cohing for differences in Phe exposures,
hydration level, and observed covariates. Thigltes essentially the same as observed from the
chamber study analysis of Pleil (Pleil, 2009) faffestent volatile organic compounds (TCE,
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MTBE, and TBA) and suggests that intersubject \mlitg in unobserved toxicokinetic

processes may be relatively consistent across ioledmpounds. It is important to note,
however, that the within-subject fold-range estiena(i.e.,wfeo%) from our full models (Table 2)
were very similar to the respective estimates, Bf,., indicating that 95% of the individual

biomarker measurements for any given worker weithimwian approximate 4 to 8 fold-range
(after controlling for fixed effects). These resuikely point to some laboratory measurement
error, some unaddressed covariate influence, dfetehices in toxicokinetic parameters between
U-Phe and the OH-Phe isomers for which adjustmeate not made in the full models.

The final objective of this analysis was to estiengte amount of observed OH-Phe
biomarker variance attributable to Phe exposuresjariate influence, and unidentified
toxicokinetic processes. Fixed effects in the oedumodels collectively explained about 40-
60% of the observed biomarker variance, whereasetlimm the full models explained about
60-80% of the observed biomarker variance. Theeeflor each OH-Phe isomer, a majority of
the observed variance was attributable to changexposure levels and covariate conditions.
However, given the substantial differences in ufered variancebetween isomers in the
reduced and full models, additional analyses ofeffiects of toxicokinetic processes on human
PAH metabolism are warranted. Furthermore, thiegihtial effects of SMOKER and BMI on
individual OH-Phe isomers (see Table 2) point tmecaspects of PAH metabolism that are
affected by personal characteristics; these effestmetabolism should be examined further in

future observational studies of PAH-exposed subject

5.0 Conclusions

We have identified 1-OH-Phe, (2+3)-OH-Phe, and 1M as the least-biasing
surrogates for exposure to hot-asphalt emissiarshave shown that changes in hydration level
and the timing of sample collection can substagtiadflate bias estimates for urinary PAH
biomarkers. Furthermore, we have shown that tdonedic processes are probably less
influential on urinary biomarker variance than asgosure and covariate effects. Finally, we
used individual isomers of OH-Phe to demonstraé ¢éixposure and covariate effects can vary
substantially depending on the isomeric form ofbimmarker. Therefore, we conclude that the
estimation of biomarker variance components in exyp® studies is necessary for selecting the

least-biasing exposure surrogate(s), for quantfyiine effects of toxicokinetic processes on
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biomarker variance, and for resolving the differ@nteffects of covariates on exposure-
biomarker or biomarker-response relationships. methods used for this analysis should be
considered for the selection and interpretatiorbioimarkers as exposure surrogates in future

investigations.
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Table 1.Estimated geometric means (ng/L), variance compisnand attenuation bias for urinary biomarkemnsagghthalene,
phenanthrene, and pyrene (wherg 9).

1-OH-Pyr 1-OH-Phe (2+3)-OH-Phe  9-OH-Phz  U-Nap 4-OH-Phe U-Phé
Postshift GM (GSD) | 2050 (2.63) 1190 (2.32) 3530 (2.25) 2070 (2.47)  989.14) 483 (2.24) 69.1 (2.62)
Bedtime GM (GSD) | 1080 (3.93) 822 (2.92) 2300 (2.74) 948 (3.58) 48.08) 203 (2.58) 31.5 (3.44)
Morning GM (GSD) | 689 (3.71) 434 (2.52) 1080 (2.13) 514 (3.16) 38.2Q) 141 (2.59) 13.2 (3.52)
n 154 154 154 154 161 154 161
G.  (SE) 0.903 (0.110)  0.598 (0.073)  0.594 (0.072)  1.0529)1 0.574 (0.068) 0.883 (0.107)  1.59 (0.189)
g;  (SE) 0.767 (0.286)  0.463 (0.175)  0.388(0.150)  0.52Z16) 0.198 (0.089)  0.198 (0.101)  0.203 (0.132)
A 1.18 1.29 1.53 1.99 2.90 4.46 7.83
%Biasyu 12 13 15 18 24 33 47
g (SE) 0.381 (0.047) 0.220 (0.027) 0.187(0.023)  0.40250) 0.279 (0.034)  0.358 (0.045)  0.772 (0.093)
O (SE) 0.583 (0.205)  0.430 (0.149)  0.355(0.124)  0.256QD) 0.211(0.082)  0.219 (0.087)  0.225 (0.106)
A 0.654 0.512 0.527 1.57 1.32 1.64 3.43
%Bias;e 7 5 6 15 13 15 28

reduced model included a fixed effect for CREATINENNd TIME, but not DAY.
GM, geometric mean; GSD, geometric standardation; SE, standard error.
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Table 2. Results from full linear mixed-effects models (et (4)) for individual isomers of
OH-Phe ( = 154).

1-OH-Phe (2+3)-OH-Phe 4-OH-Phe 9-OH-Phe
Parameters Estimate (SE) p-value | Estimate (SE) p-value | Estimate (SE) p-value | Estimate (SE) p-value
Fixed effects
Intercept [In(ng/L)] 5.83 (0.800) <0.0001] 7.11 (0.734) <0.00013.40 (0.694)  0.0002 6.42 (0.573) <0.0001
CREATININE [In(g/L)] | 0.637 (0.101) <0.0001 0.522 (0.086) <0.0001 59®.(0.127) <0.0001] 0.662 (0.109) <0.0001
TIME 0.4 0.1 0.3 0.05
postshift -0.169 (0.322) -0.346 (0.274) .04® (0.412) -0.021 (0.356)
bedtime -0.340 (0.240) -0.424 (0.204) 90.40.308) -0.627 (0.267)
morning 0 (ref) 0 ref] 0 (ref) 0 (ref)
DAY 0.006 0.001 0.2 0.04
day 3 -0.131 (0.240) 0.384 (0.204) -0.301311) -0.517 (0.270)
day 2 0.565 (0.223) 0.720 (0.190) 0.20889) 0.155 (0.251)
day 1 0 (ref) 0 flre 0 (ref) 0 (ref)
U-PHE [In(ng/L)] 0.200 (0.062) <0.0001 0.191 (0.052)<0.0001 | 0.261 (0.079) <0.000{L  0.408 (0.069) 0€01
U-PHEXTIME 0.02 <0.0001 04 0.06
U-Phepostshift 0.139 (0.083) 0.258 (0.070) 0.1(D4106) 0.073 (0.092)
U-Phebedtime 0.202 (0.073) 0.272 (0.062) 0.10994) 0.192 (0.081)
U-Phemorning 0 (ref) 0 (ref) 0 (ref) 0 (ref)
U-PHEXDAY 0.01 0.01 0.1 0.06
U-Pheday 3 0.073 (0.066) -0.052 (0.056) 0.14586) 0.139 (0.074)
U-Pheday 2 -0.110 (0.061) -0.152 (0.052) -0.0090178) -0.017 (0.068)
U-Pheday 1 0 (ref) 0 (ref) 0 (ref) 0 (ref)
SMOKER 0.009 0.2 0.2 0.06
yes -0.719 (0.270) -0.361 (0.250) -0.703218) 0.338 (0.177)
no 0 (ref) 0 (ref) 0 (ref) 0 (ref)
BMI (kg/n) -0.024 (0.026) 0.3 -0.036 (0.024) 0.1 6.qD.021) 05 -0.047 (0.017)  0.007
AGE (years) 0.009 (0.010) 0.4 0.005 (0.009) 0.6 0.q0308) 0.3 28  (0.006) 1.0
Random effects
\f/m” 0.156 (0.020) <0.000] 0.112 (0.014) <0.0001 264.(0.034) <0.0001] 0.200 (0.025) <0.0001
o 0.236 (0.092)  0.005 0.205 (0.080)  0.005 130.(0.061)  0.02 0.083 (0.041)  0.02
wRoos 4.70 3.71 7.49 5.77
bRogs 6.71 5.90 4.11 3.09
ICChu 0.602 0.647 0.330 0.293
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Figure 1.Residuals for U-Ph@\) and (2+3)-OH-PhéB) over time under the null models.
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Figure 2.Residuals for U-Ph@\) and (2+3)-OH-Ph€B) over time under the reduced models [equation (3)].
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Figure 3. Percent of total OH-Phe isomer variance from nublegls explained by fixed
effects in reduced [equation (3)] and fatjuation (4)] mixed models.
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