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Abstract  
 

Biomarkers are useful exposure surrogates given their ability to integrate exposures 

through all routes and to reflect interindividual differences in toxicokinetic processes.  Also, 

biomarker concentrations tend to vary less than corresponding environmental measurements, 

making them less-biasing surrogates for exposure.  In this article, urinary PAH biomarkers 

(namely, urinary naphthalene [U-Nap]; urinary phenenthrene [U-Phe]; 1-hydroxypyrene [1-OH-

Pyr]; and 1-, (2+3)-, 4-, and 9-hydroxyphenenthrene [1-, (2+3)-, 4-, and 9-OH-Phe]) were 

evaluated as surrogates for exposure to hot asphalt emissions using data from 20 road-paving 

workers.  Linear mixed-effects models were used to estimate the within- and between-person 

components of variance for each urinary biomarker.  The ratio of within- to between-person 

variance was then used to estimate the biasing effects of each biomarker on a theoretical 

exposure-response relationship.  Mixed models were also used to estimate the amounts of 

variation in Phe metabolism to individual OH-Phe isomers that could be attributed to Phe 

exposure (as represented by U-Phe concentrations) and covariates representing time, hydration 

level, smoking status, age, and body mass index.  Results showed that 1-OH-Phe, (2+3)-OH-Phe, 

and 1-OH-Pyr were the least-biasing surrogates for exposure to hot asphalt emissions, and that 

effects of hydration level and sample collection time substantially inflated bias estimates for the 

urinary biomarkers.  Mixed-model results for the individual OH-Phe isomers showed that 

between 63% and 82% of the observed biomarker variance was collectively explained by Phe 

exposure, the time and day of sample collection, and the hydration level, smoking status, body 

mass index, and age of each worker.  By difference, the model results also showed that, 

depending on the OH-Phe isomer, a maximum of 6% to 23% of the total biomarker variance was 

attributable to differences in unobserved toxicokinetic processes between the workers.  

Therefore, toxicokinetic processes are probably less influential on urinary biomarker variance 

than are exposures and observable covariate effects.  The methods described in this analysis 

should be considered for the selection and interpretation of biomarkers as exposure surrogates in 

future exposure investigations. 
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1.0  Introduction  
 

Biomonitoring has emerged as an important tool for research in the field of exposure 

science.  Indeed, biological measurements offer several theoretical advantages over traditional 

environmental measurements of toxicants in air, water, on the skin, and in food (Lin et al., 2005)  

First, biomarkers integrate exposures from all sources and routes thereby reducing the need to 

monitor all environmental sources separately.  Second, biomarker concentrations tend to vary 

less than the corresponding environmental levels measured from day to day.  This reduction in 

intra-subject variability of biomarker levels, relative to environmental levels, reduces the number 

of measurements required to precisely assess exposures.  And third, biomarkers reflect 

interindividual variations in toxicokinetic processes (i.e., uptake, metabolism, and elimination) 

that may be important to the health impact of exposures. 

We previously explored the utility of urinary biomarkers for characterizing multi-route 

exposures to polycyclic aromatic hydrocarbons (PAHs), a large class of compounds which 

includes numerous carcinogens, in a longitudinal investigation of 20 road-paving workers 

exposed to emissions from hot-mix asphalt (Sobus et al., 2009a; Sobus et al., 2009b).  

Specifically, we examined urinary levels of three surrogate PAHs and their hydroxylated 

metabolites, namely those of naphthalene (Nap; a 2-ring PAH), phenanthrene (Phe; a 3-ring 

PAH), and pyrene (Pyr; a 4-ring PAH), as functions of total PAH concentrations in airborne 

particulate matter and on dermal patches.  Since as many as nine urine samples were collected 

per subject, these data were also used to estimate within-subject and between-subject 

components of variance for each PAH biomarker in this population.  Results from linear mixed-

effects models showed significant effects on urinary biomarker levels of both airborne and 

dermal patch measurements of total PAHs.  As such, urinary naphthalene (U-Nap), urinary 

phenanthrene (U-Phe), 1-hydroxypyrene (1-OH-Pyr), and the sum of 5 monohydroxylated 

metabolites of phenanthrene (OH-Phe) were identified as useful biomarkers of combined air and 

dermal exposures to PAHs (Sobus et al., 2009a).   

Environmental and biological measurements of exogenous substances vary greatly over 

time within a given subject.  This within-subject variability leads to uncertainty in ‘true’ 

exposure levels (long-term means) which leads, in turn, to biased predictions of exposure-

response relationships in epidemiologic studies (Armstrong and Oakes, 1982; Lin et al., 2005). 

Since a goal of environmental epidemiology is to accurately link environmental exposures with 
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observed health outcomes, it is desirable to select measures of exposure that are less variable 

over time and, therefore, less biasing surrogates for true exposure levels.  Using data from our 

study of road-paving workers, we compare repeated observations of U-Nap, U-Phe, 1-OH-Pyr, 

and 1-, 2-, 3-, 4-, and 9-OH-Phe to select the least-biasing surrogate(s) for exposures to hot 

asphalt emissions.   

Because biomarkers reflect interpersonal differences in toxicokinetic processes, they can 

also be useful for characterizing variability in rates of metabolism of toxic substances across 

populations.  To explore this idea, we use data from our road-pavers study to investigate 

relationships between unmetabolized Phe (U-Phe) and the monohydroxylated metabolites of Phe 

(OH-Phe isomers) in the same urine samples.  Specifically, we use linear mixed-effects models 

to regress the level of a given isomer of OH-Phe on the corresponding level of U-Phe while 

adjusting for covariates.  Since U-Phe takes into account the absorption and distribution of Phe, 

the unexplained between-subject variability in the levels of the OH-Phe isomers can be used to 

infer the variation caused by metabolism and elimination.  Also, regression coefficients for 

covariates in the models can be used to quantify the effects of potential modifiers (e.g., smoking 

status, BMI, and age) on human metabolism of Phe.   

Although we examine urinary PAH biomarkers among a group of road-paving workers, 

the methods are sufficiently general to be applied to other volatile organic compounds that are 

excreted in urine as both parent compounds and metabolites.  As such, these methods can inform 

the selection and interpretation of biomarkers for many toxic substances. 

 

2.0  Methods 
 

2.1  Study design and measurements of urinary PAH analytes 
 

Subjects included 20 male road-paving workers residing in the Greater Boston area of the 

United States who were recruited with informed consent under protocols approved by 

committees for human-subjects research at participating institutions.  Workers’ exposures to 

PAHs were evaluated over three consecutive work days, starting at the beginning of the 

workweek following a work-free weekend, using breathing-zone air and dermal patch 

measurements of PAHs as described in detail elsewhere (McClean et al., 2004a; McClean et al., 

2004b).  Urine samples were collected immediately after each workshift, at bedtime, and in the 
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morning following each workday, using sterilized polypropylene containers.  Up to nine repeated 

urine samples were collected from each worker, starting with the postshift void on the first 

workday.  Urine samples were stored at -20ºC for approximately seven years prior to analysis for 

urinary PAH analytes; a previous examination of these data showed that appreciable effects of 

prolonged storage time on the urinary analyte levels were unlikely (Sobus et al., 2009b).  

Concentrations of U-Nap and U-Phe were determined using headspace-solid phase 

microextraction coupled with gas chromatography-mass spectrometry (Sobus et al., 2009c), and 

concentrations of 1-OH-Pyr, 1-OH-Phe, (2+3)-OH-Phe, 4-OH-Phe, and 9-OH-Phe were 

determined using solid-phase extraction coupled with liquid chromatography-tandem mass 

spectrometry (Onyemauwa et al., 2009).  The estimated limit of detection was 0.40 ng/L for U-

Nap and U-Phe (Sobus et al., 2009c), and the estimated limits of quantitation were 2.0 ng/L for 

(2+3)-OH-Phe, and 5.0 ng/L for 1-OH-Pyr, 1-OH-Phe, 4-OH-Phe, and 9-OH-Phe (Onyemauwa 

et al., 2009).  The estimated coefficients of variation for all urinary PAH analytes were within a 

range of 0.053 to 0.27 (Onyemauwa et al., 2009; Sobus et al., 2009c).  Creatinine measurements 

were determined using a colorimetric assay, and each subject’s height, weight, age, and smoking 

status were obtained by questionnaire (Sobus et al., 2009a).  Summary statistics for each of these 

covariates are given in (Sobus et al., 2009a). 

 
2.2  Selecting the least-biasing biomarker of exposure 

 
Exposures are measured with error using either environmental or biomarker 

concentrations as surrogates for the true exposure levels.  The simplest way to quantify this 

biasing effect of exposure measurement error is to consider an individual-based study where a 

given exposure surrogate is measured repeatedly for each person in a sample, and a continuous 

health outcome (e.g. respiratory function or DNA adducts) is also known for each person 

(Rappaport and Kupper, 2008).  Assuming a simple straight-line relationship between the logged 

health outcome and logged exposure surrogate in the population, the true slope of the exposure-

response relationship is defined as trueβ .  However, because the exposure surrogate is measured 

with error, the straight-line slope of the estimated exposure-response relationship is not trueβ  but 

rather is estβ .  The ratio of estβ  to trueβ  determines the amount of attenuation bias for a given 

exposure surrogate under this simple model, as given by the following relationship (Rappaport 

and Kupper, 2008):    
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indicating that the variance ratio dictates the amount of attenuation bias in a given study.  Since 

each exposure surrogate has its own value of λ , variance ratios can be compared to determine 

the least-biasing measure of exposure, i.e. the surrogate with the smallest λ .   

 In our study of different urinary biomarkers of PAH exposure, values of the variance 

ratios are estimated as 
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, where 2ˆ wσ  and σ 2ˆb  are the estimates of 2wσ  and 2
bσ  obtained by 

linear mixed models of the logged biomarker measurements (as discussed in the next section).  

Also, we define ̂b  as the estimate of b derived from (1) after substituting λ̂  for λ .  Finally, we 

use (1) to estimate the number of repeated measurements needed to limit attenuation bias at a 

given value (Rappaport and Kupper, 2008) for a particular biomarker of exposure, that is  
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For example, if ̂b  = 0.8 and 2ˆ wσ  = 2ˆ bσ , then λ̂  = 1 and ni = 4.  This indicates that 4 repeated 

measurements of a biomarker of exposure with an estimated variance ratio of 1 would be 

required to limit attenuation bias to 20%.   

 
2.3  Mixed effects models 

 
Restricted maximum likelihood (REML) estimates of 2wσ  and 2

bσ  were determined for 

each urinary PAH analyte using linear mixed effects models (Proc MIXED of SAS version 9.1).  



 

 7 

Null models (containing only random effects and a global mean) were first created for each 

analyte, followed by reduced models that included fixed effects for urinary creatinine 

concentration (an inversely proportional surrogate of hydration level), time of sample collection, 

and day of sample collection, as shown in equation (3).     

 

ijiijijijijij bXY εββββ +++++== DAYTIMECREATININE)ln( 3210                        (3)    

 
for j = 1, 2, …, ni measurements of the ith individual; and  
for i = 1, 2, …, 20 individuals. 
 

Here, ijX  represents the concentration of a urinary PAH analyte (ng/L) for the jth measurement 

of the ith person and ijY is the natural logarithm of the individual measurement ijX .  The 

coefficient 0β  is the model intercept, and 1β , 2β , and 3β  represent the coefficients for the fixed 

effects of CREATININE (creatinine concentration [ln(g/l)]), TIME (categorical variable for 

postshift, bedtime, or morning), and DAY (categorical variable for day 1, day 2, or day 3), 

respectively.   In equation (3), ib  is the random effect for the ith person and ijε  is the random 

error for the jth measurement of the ith person.  It is assumed that ib and ijε  are independent 

random variables and that ib ~ N (0, 2
bσ ) and ijε  ~ N(0, 2

wσ ).  Fixed effects in the final reduced 

models were selected using backwards stepwise elimination at a significance level of p ≤ 0.1.  A 

compound symmetry covariance structure was used in each of the null and reduced models as 

this structure generally yielded the lowest Akaike's information criterion (AIC) and Bayesian 

information criterion (BIC) values compared to other tested structures (i.e., autoregressive 

[AR(1)] and heterogeneous autoregressive [ARH(1)]).   

 Additional linear mixed-effects models were developed for the individual isomers of OH-

Phe to investigate the effects of exposure to Phe (as indicated by levels of U-Phe) on analyte 

levels after adjusting for covariate effects.  Equation (4) shows the full mixed model for the 

individual isomers of OH-Phe. 
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for j = 1, 2, …, ni measurements of the ith individual; and 
for i = 1, 2, …, 20 individuals. 
 
Here, as in equation (3), ib and ijε are independent random variables,0β  is the model intercept, 

and 1β , 2β  and 3β  represent the coefficients for the fixed effects of CREATININE, TIME and 

DAY, respectively.  The coefficients 4β , 5β , 6β , 7β , 8β , and 9β correspond to the fixed effects 

of UPHEij (the [logged] concentration of U-Phe for jth measurement of the ith person), 

ijij TIMEUPHE ×  (the interaction between UPHE and TIME), ijij DAYUPHE ×  (the interaction 

between UPHE and DAY), iSMOKER (the smoking status of the ith worker, where nonsmoker = 

0), iBMI  (the body mass index [kg/m2] of the ith worker), and iAGE (the age in years of the ith 

worker), respectively.  A compound symmetry covariance matrix was used in each full model as 

this structure generally yielded the lowest values of AIC and BIC.  All covariates were 

maintained in the final full models for ease of interpretation, but were determined to be 

significant at p ≤ 0.10. 

Estimates of within- and between-subject fold-ranges (i.e., 95.0R̂w  and 95.0R̂b , 

respectively) were determined for each OH-Phe isomer under equation (4) according to 

Rappaport (Rappaport, 1991) where: weRw
σ̂92.3

95.0
ˆ =  and beRb

σ̂92.3
95.0

ˆ = .  The value 95.0R̂w  

represents the estimated fold-range containing 95% of the biomarker measurements for a typical 

person in the population investigated, and the value 95.0R̂b  represents the fold-range containing 

95% of the mean biomarker levels across all persons.  Intraclass correlation coefficients (ICC) 

were also estimated for each OH-Phe isomer under equation (4), where 
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estimates of fullICC  represent the ratio of between-subject biomarker variance to total observed 

variance under each full model.  Finally, the percents of total variance (where total estimated 

variance 2 2 2ˆ ˆ ˆY w bσ σ σ= + ) from the null models explained by fixed effects in the reduced and full 

models were determined as follows: 
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, respectively (Burstyn et al., 2000; Egeghy et al., 2005; 

Sobus et al., 2009a). 

 
 
3.0  Results  
 

3.1  Estimates of variance components and attenuation bias for urinary PAH   
       biomarkers 

 
Table 1 shows geometric mean (GM) urinary analyte levels measured in samples of 

postshift, bedtime, and morning urine, along with variance component and %Bias estimates from 

the null models and from the reduced models after adjusting for CREATININE, TIME, and 

DAY.  Overall, the GM levels of the monohydroxylated analytes were approximately one to two 

orders of magnitude greater than those of the unmetabolized analytes (i.e., U-Nap and U-Phe).  

Furthermore, the GM levels of each analyte followed a rank order of postshift > bedtime > 

morning, indicating a rapid uptake and elimination of Nap, Phe, and Pyr during each workday.   

Estimates of the variance ratio λ  from the null models (i.e., nullλ̂ ) were generally greater 

than one, indicating that the estimated within-person variance components were larger than the 

estimated between-person variance components, particularly for U-Nap ( nullλ̂ =3), 4-OH-Phe 

( nullλ̂ =4), and U-Phe (nullλ̂ =8) (see Table 1).  Based on estimated values of nullλ , an attenuation 

bias of 18% or less would be expected when using the levels of 9-OH-Phe, (2+3)-OH-Phe, 1-

OH-Phe, or 1-OH-Pyr as surrogates for ‘true’ exposure levels; attenuation biases of 24%, 33%, 

and 47% would be expected using levels of U-Nap, 4-OH-Phe, and U-Phe, respectively. 

 Significant effects of CREATININE (p < 0.0001) and TIME (p < 0.002) were observed 

in the reduced models for each urinary analyte, and a significant effect of DAY (p < 0.1) was 

observed for all analytes except U-Phe and 9-OH-Phe.  Positive regression coefficients for 

CREATININE (ranging from 0.765 to 1.38) indicate higher concentrations of urinary analytes 

with decreased hydration levels, and the regression coefficients for TIME support the observed 

rank order of postshift levels > bedtime levels > morning levels in all cases.  In instances of a 

significant DAY effect, analyte levels were always lowest on the first sampling day, suggesting 

slight accumulation of individual biomarkers at the beginning of the workweek.     
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Figure 1 shows residual values over time of U-Phe (Figure 1A) and (2+3)-OH-Phe 

(Figure 1B) from the null models, and Figure 2 shows residual values of the same analytes after 

adjusting for significant fixed effects.  In Figures 1A and 1B, the group mean levels deviate from 

zero over time (e.g., mean postshift residual levels are greater than zero and morning levels are 

below zero); this variability highlights significant time trends for which adjustments were not 

made in the null models.  Figures 2A and 2B show random variation of the residual values about 

zero at all time points, reflecting the appropriate incorporation of fixed time effects into the 

reduced models.  While significant time effects were observed for each analyte, residuals of U-

Phe and (2+3)-OH-Phe are shown in Figures 1 and 2 as examples of the extent to which 

measurement error (or within-worker variance) differs between selected biomarkers.  Indeed, the 

residuals of repeated observations for individual workers in Figures 1A and 2A (U-Phe) are 

considerably more varied than those in Figures 2A and 2B (2+3-OH-Phe).  

After adjusting for significant fixed effects, the estimate of λ  from the reduced model 

(i.e., redλ̂ ) was observed to be lower than that of nullλ  for each analyte (see Table 1), highlighting 

a greater than proportional decrease in 2ˆ
nullwσ  to 2ˆ

redwσ  than in 2ˆ
nullbσ  to 2ˆ

redbσ .  A median decrease 

of 60% (with a range of 51% to 69%) was observed from 2ˆ
nullwσ  to 2ˆ

redwσ  indicating that 

CREATININE, TIME and DAY contributed, in large part, to the variation in spot urine 

measurements within individual workers.  In contrast, only about a ± 10% difference was 

observed between 2ˆ
nullbσ  and 2ˆ

redbσ  for U-Nap, U-Phe, 1-OH-Phe, (2+3)-OH-Phe, and 4-OH-Phe, 

indicating that the average levels of these analytes between individual workers were not 

appreciably affected by CREATININE, TIME or DAY.   

The lowest levels of redλ̂  were observed for 1-OH-Phe, (2+3)-OH-Phe, and 1-OH-Pyr, 

with estimated values ranging from approximately 0.5 – 0.7 (Table 1).  Assuming nine repeated 

observations for each worker, the %Biasred  for these respective analytes was determined to be 

5%, 6%, and 7%.  The calculated values of %Biasred  for the remaining analytes (i.e., U-Nap, 4-

OH-Phe, 9-OH-Phe, and U-Phe) were ≥  13%.  

 
3.2  Mixed model results for individual isomers of OH-Phe 
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Results of the full mixed models for the individual isomers of OH-Phe are shown in 

Table 2.  Highly significant (p < 0.0001) positive effects of UPHE and CREATININE were 

observed in each model indicating elevated levels of OH-Phe isomers with increased levels of 

UPHE and CREATININE.  Significant interaction effects of both TIMEUPHE×  and 

DAYUPHE×  were observed for 1-OH-Phe, (2+3)-OH-Phe, and 9-OH-Phe (p < 0.10), 

indicating a change in the (logged) linear relationship between UPHE and these OH-Phe isomers 

over time.  These significant interaction effects, and the main effects of DAY and TIME for 

individual analytes, are probably artifacts of the different elimination rates of U-Phe and the OH-

Phe isomers (Sobus et al., 2009b).  After adjusting for the main effects of CREATININE, UPHE, 

TIME, and DAY, and the interaction effects of TIMEUPHE× and DAYUPHE× , a significant 

smoking effect was observed for 1-OH-Phe and 9-OH-Phe.  Interestingly, smokers produced 

higher levels of 9-OH-Phe compared to non-smokers, whereas smokers produced lower levels of 

1-OH-Phe compared to nonsmokers.  Only 9-OH-Phe and (2+3)-OH-Phe were significantly 

affected by BMI (p ≤ 0.10), with lower analyte levels observed in high BMI workers.  The 

covariate ‘AGE’ was not significantly associated with the levels of OH-Phe isomers in any of the 

full models.      

Figure 3 shows the percents of total estimated biomarker variance in the null models 

explained by fixed effects in the reduced and full models (obtained using estimates of 2ˆ
nullwσ  and 

2ˆ
nullbσ , 2ˆ

redwσ  and 2ˆ
redbσ , and 2ˆ

fullwσ  and 2ˆ
fullbσ , from Tables 1 and 2).  The fixed effects of 

CREATININE, TIME and DAY from the reduced models collectively explained 39-58% of the 

biomarker variance in the null models, whereas all fixed effects from the full models collectively 

explained 63-82% of the biomarker variance in the null models.  These results indicate that the 

majority of the observed OH-Phe isomer variance was explained by the road workers’ estimated 

exposure levels and by observed covariate effects.   

By difference (i.e., subtracting the explained variance from 100%), the estimates of 

unexplained variance in the full models for 1-OH-Phe, (2+3)-OH-Phe, 4-OH-Phe, and 9-OH-Phe 

were 37%, 32%, 37%, and 18%, respectively.  The ICC estimates from the full models (shown in 

Table 2) suggest that about 60% of the unexplained variance in 1-OH-Phe and (2+3)-OH-Phe 

levels, and about 30% of the unexplained variance in 4-OH-Phe and 9-OH-Phe levels, was 

observed between subjects.  Considering these estimates of unexplained variance and of ICCs, 



 

 12 

the between-subject components of variance were 23%, 21%, 12%, and 6% of the total 

unexplained variance in the respective levels of 1-OH-Phe, (2+3)-OH-Phe, 4-OH-Phe, and 9-

OH-Phe.  These results suggest that, depending on the OH-Phe isomer, a maximum of 6% to 

23% of the total biomarker variance was attributable to differences in unobserved toxicokinetic 

processes between the workers.   

 

4.0  Discussion 
 

This analysis explored the theoretical advantages of biomonitoring using existing data 

from an observational study of 20 road-paving workers.  Null, reduced and full linear mixed 

effects models were constructed to highlight the attenuation bias associated with individual 

biomarkers of PAHs emitted from hot asphalt, and to quantify the amount of biomarker variance 

attributable to Phe exposure, covariate influence, and unknown toxicokinetic processes.   

The biasing potential of selected air and biomarker measurements as exposure surrogates 

have been evaluated in other studies (Egeghy et al., 2005; Fustinoni et al., 2010; Liljelind et al., 

2003; Lin et al., 2005; Rappaport et al., 1995).  Notably, Lin and colleagues estimated variance 

components of individual analytes using approximately 12,000 repeated air and biomarker 

measurements compiled from over 100 different datasets (Lin et al., 2005).  Results from their 

analysis suggested that a given biomarker measurement is likely a less-biasing surrogate for 

exposure than is a typical air measurement.  Additionally, the results of Lin et al. suggested an 

inverse relationship between the biasing-potential of a given biomarker and its residence time in 

the body (Lin et al., 2005).  We have previously estimated the biological half-lives of U-Phe and 

OH-Phe to be approximately 8 and 14 h, respectively (Sobus et al., 2009b).  Therefore, our 

results support this earlier observed inverse relationship, as estimates of nullλ  and redλ were both 

larger for U-Phe than for the individual OH-Phe isomers (see Table 1).  Furthermore, our results 

show that the effects of physiological damping (i.e., diminished measurement error with 

increased residence time (Rappaport and Kupper, 2008)) on biomarker variance are observable 

even when comparing short-term biomarkers (residence time on the order of hours or days), and 

not just short- and intermediate-term, or short- and long-term biomarkers. 

To help interpret the results of the mixed models used in this analysis, we present three 

hypothetical exposure assessment scenarios for the 20 road-paving workers; we assume that the 

results of these three hypothetical assessments would be analogous to those of our null, reduced 
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and full mixed models.  Under the null models we present hypothetical scenario #1, in which 

approximately nine biomarker measurements were made of each of the 20 workers, with each 

measurement made at a randomly selected time (i.e., postshift, bedtime, or morning), on a 

randomly selected workday (i.e., day 1, day 2, or day 3), in a randomly selected workweek.  

Under the reduced models we present hypothetical scenario #2, in which approximately nine 

biomarker measurements were made of each of the 20 workers (one measurement per worker per 

week), with all measurements made at approximately the same time of day (either postshift, 

bedtime, or morning), on the same day of the workweek (either day 1, day 2, or day 3), over nine 

randomly selected workweeks.  Additionally, all 20 workers under scenario #2 were equally 

hydrated at the time of sample collection.  Under the full models we present hypothetical 

scenario #3, in which approximately nine biomarker measurements were made of each of these 

20 workers (one measurement per worker per week), with measurements made at approximately 

the same time of day, on the same day of the workweek, over nine randomly selected 

workweeks.  Additionally, all 20 workers under scenario #3 were equally hydrated at the time of 

sample collection, had approximately the same exposure profile over time, had the same BMI, 

were non-smokers, and were the same age. 

For each of the three hypothetical scenarios, 2ˆ bσ  represents the differences in average 

biomarker levels across workers, and 2ˆ wσ  represents the differences in individual biomarkers 

measurements for any given worker over time.  Under scenario #1 (null models), the magnitude 

of 2ˆ bσ  likely reflects differences between workers in average exposure levels, personal 

characteristics (e.g., smoking status, BMI and age), and toxicokinetic processes, whereas the 

magnitude of 2ˆ wσ  likely reflects changes in exposure levels for a given worker, the time and day 

of sample collection, and the hydration levels of the workers at the time of sample collection.  

Results from the null models (shown in Table 1) suggested that the ratio of 2ˆ
nullwσ  to 2ˆ

nullbσ  (i.e., 

nullλ̂ ) was lowest for 1-OH-Pyr, 1-OH-Phe, and (2+3)-OH-Phe, indicating that these metabolites 

were likely the least-biasing surrogates for exposure to hot asphalt emissions.  Attenuation bias 

estimates for these three analytes were between 12-15% whereas those for the other analytes 

ranged from 18-47%.  If it were necessary to restrict attenuation bias to 10% in a prospective 

exposure study (under scenario #1), about 11-14 measurements per worker would be needed of 

either 1-OH-Pyr, 1-OH-Phe, or (2+3)-OH-Phe vs. about 70 measurements per worker of U-Phe, 
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the biomarker with the largest estimated level of nullλ .  This disparity in sample size highlights 

the importance of estimating variance components in exposure studies. 

 Under scenario #2 (reduced models), the magnitude of 2ˆ bσ  again likely reflects 

differences between workers in average exposure levels, personal characteristics (e.g., smoking 

status, BMI, age), and toxicokinetic processes, and the magnitude of 2ˆ wσ  reflects changes in 

exposure levels for a given worker.  However 2ˆ wσ  is not influenced by the time or day of sample 

collection nor the hydration levels of the workers.  Estimates of 2
wσ  from the reduced models 

were considerably lower than those observed in the null models, indicating that the majority of 

the biomarker variance for any given worker could be explained by TIME, DAY, and 

CREATININE.  As expected, estimates of 2bσ  from these models were very similar (in all but 

two cases) to those observed in the null models, indicating that the variability in the average 

biomarker levels across all workers was not appreciably affected by TIME, DAY, and 

CREATININE.  Taken together, the results of nullλ̂  and redλ̂  (shown in table 1) suggest a 

considerable reduction in the biomarker attenuation bias under scenario #2.  For example, only 5-

6 measurements of 1-OH-Phe, (2+3)-OH-Phe, or 1-OH-Pyr would be required to achieve a 10% 

attenuation bias under scenario #2 vs. 11-14 measurements of these biomarkers under scenario 

#1.  The results of this comparison indicate that, given increased observations of influential 

covariates, fewer measurements are needed to obtain a reliable estimate of exposure. 

The earlier work of Lin et al. evaluated fixed time effects (seasonal effects, weekday, 

effects, and linear trends) on biomarker levels using mixed models (Lin et al., 2005).  Results of 

that analysis indicated a larger impact of time on 2ˆ wσ  compared to 2ˆ bσ , and suggested that 

omission of an important time effect increases values of λ̂ .  Since our results for the urinary 

PAH biomarkers are consistent with the earlier work of Lin et al., we hereby confirm the need to 

adjust for time effects when comparing exposure surrogates to a continuous health outcome.  

Furthermore, we establish a clear need to adjust for changes in the hydration level of individuals 

when considering urinary biomarker measurements as exposure surrogates.  

 Under scenario #3 (full models), it is assumed that little or no biomarker variance stems 

from differences in exposure levels, the time and day of sample collection, hydration levels, 

smoking status, BMI, or age.  Thus, the magnitude of 2ˆ bσ  likely reflects variations in 
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unidentified toxicokinetic processes between workers and the magnitude of 2ˆ wσ  likely reflects 

minor sources of measurement error (including laboratory assay error) and unresolved covariate 

effects.  Obviously the assumptions under scenario #3 are impossible to replicate in 

observational exposure studies.  However, human chamber experiments provide a unique 

platform with which to evaluate biomarker measurements in a controlled environment.  As such, 

a retrospective analysis was recently performed of the variability in blood and breath biomarker 

measurements of trichloroethylene (TCE), methyl tertiary butyl ether (MTBE), and tertiary butyl 

alcohol (TBA; a phase I metabolites of MTBE), using data from two human chamber 

experiments (Pleil, 2009).  In the original chamber studies, nominally healthy and non-smoking 

subjects were exposed to equal concentrations of either TCE or MTBE through the inhalation, 

ingestion, or dermal routes (Pleil et al., 1998; Prah et al., 2004), and blood and breath biomarkers 

of TCE, MTBE, and TBA were measured at specific time points.  Because the exposures were 

well controlled in each of these experiments, the magnitude of biomarker variance between 

subjects at each time point was thought be a function of internal biological processes.  Following 

from this assumption, the effects of biological processes on between-subject biomarker variance 

was quantified at each time point using fold-range estimates (i.e., the ratio of the upper and lower 

bounds of the 95% confidence intervals, which was determined using the GM and GSD of the 

log-normal biomarker distributions (Pleil, 2009)).  Results showed that the between-subject fold-

range estimates were very similar across all analytes and biological media, and ranged from 2.3 

to 6.2 (averaged across all time points) (Pleil, 2009).  That is, 95% of the observed biomarker 

levels for the study subjects were within an approximate 2- to 7-fold-range, given identical 

exposure conditions.   

In the full mixed models used for this investigation, UPHE was selected as an exposure 

surrogate to control for variations in Phe exposures between- and within-workers.  Therefore, the 

residual between-subject variance estimates from the full models here are directly comparable to 

the variance estimates from the human chamber studies.  Results from our full models (Table 2) 

showed that the between-subject fold-range estimates for the individual OH-Phe isomers were 

between 3.09 and 6.71.   That is, 95% of the mean biomarker levels for the 20 workers were 

within an approximate 3 to 7-fold-range, after controlling for differences in Phe exposures, 

hydration level, and observed covariates.  This result is essentially the same as observed from the 

chamber study analysis of Pleil (Pleil, 2009) for different volatile organic compounds (TCE, 
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MTBE, and TBA) and suggests that intersubject variability in unobserved toxicokinetic 

processes may be relatively consistent across volatile compounds.  It is important to note, 

however, that the within-subject fold-range estimates (i.e., 95.0R̂w ) from our full models (Table 2) 

were very similar to the respective estimates of 95.0Rb , indicating that 95% of the individual 

biomarker measurements for any given worker were within an approximate 4 to 8 fold-range 

(after controlling for fixed effects).  These results likely point to some laboratory measurement 

error, some unaddressed covariate influence, and differences in toxicokinetic parameters between 

U-Phe and the OH-Phe isomers for which adjustments were not made in the full models.  

The final objective of this analysis was to estimate the amount of observed OH-Phe 

biomarker variance attributable to Phe exposures, covariate influence, and unidentified 

toxicokinetic processes.  Fixed effects in the reduced models collectively explained about 40-

60% of the observed biomarker variance, whereas those from the full models explained about 

60-80% of the observed biomarker variance.  Therefore, for each OH-Phe isomer, a majority of 

the observed variance was attributable to changes in exposure levels and covariate conditions.  

However, given the substantial differences in unexplained variance between isomers in the 

reduced and full models, additional analyses of the effects of toxicokinetic processes on human 

PAH metabolism are warranted.  Furthermore, the differential effects of SMOKER and BMI on 

individual OH-Phe isomers (see Table 2) point to some aspects of PAH metabolism that are 

affected by personal characteristics; these effects on metabolism should be examined further in 

future observational studies of PAH-exposed subjects. 

 

5.0  Conclusions 

We have identified 1-OH-Phe, (2+3)-OH-Phe, and 1-OH-Pyr as the least-biasing 

surrogates for exposure to hot-asphalt emissions, and have shown that changes in hydration level  

and the timing of sample collection can substantially inflate bias estimates for urinary PAH 

biomarkers.  Furthermore, we have shown that toxicokinetic processes are probably less 

influential on urinary biomarker variance than are exposure and covariate effects.  Finally, we 

used individual isomers of OH-Phe to demonstrate that exposure and covariate effects can vary 

substantially depending on the isomeric form of the biomarker.  Therefore, we conclude that the 

estimation of biomarker variance components in exposure studies is necessary for selecting the 

least-biasing exposure surrogate(s), for quantifying the effects of toxicokinetic processes on 
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biomarker variance, and for resolving the differential effects of covariates on exposure-

biomarker or biomarker-response relationships.  The methods used for this analysis should be 

considered for the selection and interpretation of biomarkers as exposure surrogates in future 

investigations. 
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   Table 1. Estimated geometric means (ng/L), variance components, and attenuation bias for urinary biomarkers of naphthalene,  
   phenanthrene, and pyrene (where ni ≤  9). 
 

 1-OH-Pyr 1-OH-Phe (2+3)-OH-Phe 9-OH-Phea U-Nap 4-OH-Phe U-Phea 

Postshift GM (GSD) 2050 (2.63) 1190 (2.32) 3530 (2.25) 2070 (2.47) 89.9 (2.14) 483 (2.24) 69.1 (2.62) 

Bedtime GM (GSD) 1080 (3.93) 822 (2.92) 2300 (2.74) 948 (3.58) 48.0 (2.28) 203 (2.58) 31.5 (3.44) 

Morning GM (GSD) 689 (3.71) 434 (2.52) 1080 (2.13) 514 (3.16) 36.7 (2.20) 141 (2.59) 13.2 (3.52) 

n 154 154 154 154 161 154 161 

2ˆ
nullwσ (SE) 0.903 (0.110) 0.598 (0.073) 0.594 (0.072) 1.05 (0.129) 0.574 (0.068) 0.883 (0.107) 1.59 (0.189) 

2ˆ
nullbσ (SE) 0.767 (0.286) 0.463 (0.175) 0.388 (0.150) 0.527 (0.216) 0.198 (0.089) 0.198 (0.101) 0.203 (0.132) 

nullλ̂  1.18 1.29 1.53 1.99 2.90 4.46 7.83 

%Biasnull 12 13 15 18 24 33 47 

2ˆ
redwσ (SE) 0.381 (0.047) 0.220 (0.027) 0.187 (0.023) 0.402 (0.050) 0.279 (0.034) 0.358 (0.045) 0.772 (0.093) 

2ˆ
redbσ (SE) 0.583 (0.205) 0.430 (0.149) 0.355 (0.124) 0.256 (0.101) 0.211 (0.082) 0.219 (0.087) 0.225 (0.106) 

redλ̂  0.654 0.512 0.527 1.57 1.32 1.64 3.43 

%Biasred  7 5 6 15 13 15 28 

 
      a reduced model included a fixed effect for CREATININE and TIME, but not DAY. 
        GM, geometric mean; GSD, geometric standard deviation; SE, standard error. 
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Table 2.  Results from full linear mixed-effects models (equation (4)) for individual isomers of 
OH-Phe (n = 154). 
 

 1-OH-Phe (2+3)-OH-Phe 4-OH-Phe 9-OH-Phe 

Parameters Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value 

Fixed effects         

Intercept [ln(ng/L)]  5.83    (0.800) <0.0001  7.11    (0.734) <0.0001  3.40    (0.694)   0.0002  6.42    (0.573) <0.0001 

CREATININE [ln(g/L)]   0.637  (0.101) <0.0001  0.522  (0.086) <0.0001  0.597  (0.127) <0.0001  0.662  (0.109) <0.0001 

TIME     0.4     0.1     0.3     0.05 

     postshift -0.169  (0.322)  -0.346  (0.274)  -0.049  (0.412)  -0.021  (0.356)  

     bedtime -0.340  (0.240)  -0.424  (0.204)  -0.490  (0.308)  -0.627  (0.267)  

     morning  0             (ref)   0             (ref)   0             (ref)   0             (ref)  

DAY      0.006     0.001     0.2     0.04 

     day 3 -0.131  (0.240)   0.384  (0.204)  -0.371  (0.311)   -0.517  (0.270)   

     day 2  0.565  (0.223)   0.720  (0.190)   0.218  (0.289)   0.155  (0.251)  

     day 1  0             (ref)   0             (ref)   0             (ref)   0             (ref)  

U-PHE [ln(ng/L)]  0.200  (0.062) <0.0001  0.191  (0.052) <0.0001  0.261  (0.079) <0.0001  0.408  (0.069) <0.0001 

U-PHE×TIME     0.02   <0.0001     0.4     0.06 

     U-Phe×postshift  0.139  (0.083)   0.258  (0.070)   0.114  (0.106)   0.073  (0.092)  

     U-Phe×bedtime  0.202  (0.073)   0.272  (0.062)   0.129  (0.094)   0.192  (0.081)  

     U-Phe×morning  0             (ref)   0             (ref)   0             (ref)   0             (ref)  

U-PHE×DAY     0.01     0.01     0.1     0.06 

     U-Phe×day 3  0.073  (0.066)  -0.052  (0.056)   0.145  (0.085)   0.139  (0.074)  

     U-Phe×day 2 -0.110  (0.061)  -0.152  (0.052)  -0.005  (0.078)   -0.017  (0.068)   

     U-Phe×day 1  0             (ref)   0             (ref)   0             (ref)   0             (ref)  

SMOKER     0.009     0.2     0.2     0.06 

      yes  -0.719  (0.270)  -0.361  (0.250)  -0.273  (0.218)    0.338  (0.177)  

      no  0             (ref)   0             (ref)   0             (ref)   0             (ref)  

BMI (kg/m2) -0.024  (0.026)    0.3 -0.036  (0.024)    0.1  0.016  (0.021)   0.5 -0.047  (0.017)   0.007 

AGE (years)  0.009  (0.010)   0.4  0.005  (0.009)   0.6  0.008  (0.008)   0.3 -2E-4    (0.006)    1.0 

         

Random effects             

2
fullwσ   0.156  (0.020) <0.0001  0.112  (0.014) <0.0001  0.264  (0.034) <0.0001  0.200  (0.025) <0.0001 

2
fullbσ   0.236  (0.092)   0.005  0.205  (0.080)   0.005  0.130  (0.061)   0.02  0.083  (0.041)   0.02 

95.0Rw   4.70   3.71   7.49   5.77  

95.0Rb   6.71   5.90   4.11   3.09  

ICCfull  0.602   0.647   0.330   0.293  
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        Figure 1. Residuals for U-Phe (A) and (2+3)-OH-Phe (B) over time under the null models. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
         Figure 2. Residuals for U-Phe (A) and (2+3)-OH-Phe (B) over time under the reduced models [equation (3)]. 
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        Figure 3. Percent of total OH-Phe isomer variance from null models explained by fixed   
        effects in reduced [equation (3)] and full [equation (4)] mixed models. 
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