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In order to assess the environmental impact of air pollution on human health it is necessary to 

establish the concentrations to which the population is exposed. The obvious way to determine 

this is to measure these quantities. However, given the limited number of monitoring stations 

available, how is it possible to provide spatially distributed pollution concentrations far from 

monitoring sites in order to assess the exposure of an entire population? 

 

Traditionally ground based monitoring has been used to provide air quality information since it 

is expected to give the best estimate. This may be suitable when a very limited area is to be 

assessed, e.g. in occupational health studies, or when monitoring data is representative of a 

large area, e.g. in rural regions, but generally such monitoring has a limited spatial 



representativeness. This can be problematic in urban areas since there can be significant 

variation in air quality due to the heterogeneity of the emissions sources and the complex flow 

patterns caused by urban morphology.  

 

Several studies have demonstrated that an accurate assessment of temporal and spatial 

variations in ambient concentrations is critical for the interpretation of time-series 

epidemiology studies. Health studies have shown (e.g. Sarnat et al. 2006 and Jerrett et al. 2005) 

that a more narrow definition of the geographic domain of the study populations leads to 

stronger associations between exposure and health outcomes (e.g., hospital admissions, 

mortality counts). In order to improve epidemiology and health impact studies enhanced spatial 

and temporal coverage and resolution is thus required.  

 

The immediate solution is to apply spatial interpolation techniques to the available monitoring 

data to provide air quality information between monitoring stations. Such interpolation 

methods may be geometric in nature, e.g. linear interpolation or inverse distance weighting, or 

they may be statistically based, such as kriging interpolation methods. No matter the 

interpolation method applied, the amount and density of the available monitoring data is 

usually limited and interpolation alone cannot provide information concerning the spatial 

variability of the concentrations between the measurement sites.  

 

To improve the spatial representativeness of the monitoring data it is necessary to make use of 

other related supplementary data sources that have a better spatial coverage than the 

monitoring data itself. Such supplementary information may include distances from major 

roads, traffic volumes, population density, land use characteristics, satellite data, etc.. Though 

it is possible to use these data directly through a range of spatial statistical methods, it is the air 

quality model that best describes the relevant physical and chemical processes and provides 

high spatial and temporal resolution data that can be used for improving the coverage of the 

monitoring information. The major drawback of modeling is it’s level of uncertainty, which is 

usually significantly higher than that for monitoring. It is therefore advantageous to combine 

the monitoring and modeling data sources in an optimal way to produce spatio-temporal maps 

of the pollutants. 

 

What is interpolation, data fusion, data integration and data assimilation? 



There are a number of terms used to describe the combination of different data sources. 

‘Interpolation’ refers to methods that use monitoring as the primary dataset and, based on these 

data and possibly other supplementary data, predict concentrations at any arbitrary point in 

space (e.g. Beelen, 2009). Methods that combine various data sources, without directly 

considering one or the other to necessarily be primary, are often referred to as ‘data fusion’ or 

‘data integration’ methods. They take any number of datasets and combine these in a range of 

ways, either through geometric means or based on statistical optimization methods. For 

example, it is possible to fuse interpolated monitoring data, satellite data and air quality 

modeling data into a single integrated map (e.g. Sarigiannis et al., 2004). The fusing will most 

likely take the form of a weighted linear combination of the different data sources, with the 

weighting being dependent on the estimated uncertainty of each of the data sources. Data 

fusion and interpolation methods are generally not concerned with any physical or chemical 

constraints but are mainly subject to statistical constraints. 

 

‘Data assimilation’ refers to a modeling technique that incorporates monitoring data directly 

into air quality model calculations during the modeling process itself. It is the measured data 

that helps guide the model towards an optimal solution, and one that is consistent with the 

physical description provided by the air quality model. The most common type of data 

assimilation applied are the variational methods (Elbern et al., 1999), which are also 

extensively used in meteorological forecast, but other methods such as Ensemble Kalman 

filters (van Loon et al., 2000) may also been applied. Data assimilation is now used 

operationally in air quality forecasting (e.g. Sahu et al., 2009) and it is also applied for air 

quality assessment purposes (Denby et al, 2008). Data assimilation is most often applied on the 

regional scale and is rarely applied on the urban scale, due to the complexities of the urban 

environment. As a result it is less applicable for health applications in urban regions. 

 

Examples of mapping methods using monitoring and air quality modeling 

There are thus a number of methods available that can be applied to combine monitoring and 

modeling data. These range from simple statistical methods to complex data assimilation 

models. One of the most straightforward methods is multiple linear regression, where model 

concentrations, and other supplementary data, are fitted to the available observations using 

least squares optimization (e.g. Horálek et al., 2007; Denby and Pochmann, 2007), see figure 1. 

Though this will provide an unbiased model field there may still be significant deviations from 

the observations. This deviation may be accounted for by using residual interpolation of the 



deviations. In this way the model field provides the basis for the concentration map and the 

residual deviations are accounted for by using interpolation methods (e.g. Horálek et al., 2007; 

Kassteele et al., 2007; Hogrefe et al., 2009). An example of this method applied to all of 

Europe at a resolution of 10 km is presented in figure 2. 

 

There are also a number of more complex statistically based methods for achieving data fusion. 

Such methods include those described by Fuentes and Raftery (2005), Gelfand and Sahu 

(2009) and McMillan et al. (2009), figure 3.  These methods combine Bayesian approaches 

with a range of statistical methods.  A good example of the potential of data fusion methods is 

that described by van de Kassteelle et al. (2006) where satellite remote sensed data, ground 

based monitoring data and meso-scale air quality modeling data have been combined to 

provide annual mean concentrations of PM10 for all of Europe. 

 

Future directions 

There is an increased activity in research aimed at data fusion and data assimilation, 

particularly in regard to air quality forecasting, but also for improved exposure assessment. 

Future epidemiological and exposure studies will be making more and more use of the air 

quality model and its enhanced spatial resolution. Even now many studies use concentrations at 

home addresses based on modeling, rather than monitoring.  

 

Other researchers are also now beginning to use air quality dispersion models combined with 

micro-environmental personal exposure modeling tools to support air pollution exposure and 

health studies. The advantage of combining air quality and exposure models is that they can 

take account of exposure to indoor and outdoor sources, in the same manner that the personal 

monitoring data can (e.g., Georgopoulos, 2005; Isakov, 2009). Such methods require as 

accurate as possible description of the spatial and temporal resolved concentration fields, 

something that the data fusion methods aim to provide. 

 

There are still a large number of challenges in optimally combining the various datasets and 

applying these to health studies. These include matching the spatial representativeness of the 

different data sources in a suitable way, designing monitoring networks for data fusion 

purposes, improving estimates of the uncertainties for the optimal combination of the datasets, 

improving spatial resolution and improving the links to exposure modeling. These tasks will 

involve the coming together of a multiple of disciplines, requiring that air quality modelers and 



monitors, statisticians and exposure and health modelers share a common goal and speak a 

common language. 

 

Disclaimer 

The U.S. Environmental Protection Agency’s Office of Research and Development partially 

collaborated in the research described here. Although it has been reviewed by EPA and 

approved for publication, it does not necessarily reflect the Agency’s policies or views.  
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Figure 1. Application of different statistical interpolation methods for Prague, annual mean 

NO2, using modelling data with a resolution of 250 m and 11 monitoring sites.  a) Modelled 

concentrations and observations (numbered circles). b) Ordinary kriging of the observations. c) 

Model fields after regression with observations. d) Weighted combination of the fields b) and 

c) using a Bayesian approach (Denby and Pochmann, 2007). 



 

   

 

 

 

Figure 2. Annual mean PM10 maps generated using multiple linear regression and residual 

kriging using topography, meteorology and air quality modelling data. Resolution of the map is 

10 km and the reference year is 2005 (Horálek et al. 2007). 

 



 

 

 

 

Figure 3. Example of data fusion using a hierarchical Bayesian technique (McMillan et al. 

2009) showing fine particulate matter concentrations (µgm-3) for February 9, 2001:  Top shows 

the model simulation (underlying surface) overlaid with observations (white circles) prior to 

the data fusion. Bottom is the combined surface map.  

 


