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Abstract— This research examined sub-pixel land-cover 
classification performance for tree canopy, impervious 
surface, and cropland in the Laurentian Great Lakes 
Basin (GLB) using both time-series MODIS (Moderate 
Resolution Imaging Spectroradiometer) NDVI 
(Normalized Difference Vegetation Index) and surface 
reflectance data. Classification training strategies included 
both an entire-region approach and an ecoregion-stratified 
approach, using multi-layer perceptron neural network 
classifiers.  Although large variations in classification 
performances were observed for different ecoregions, the 
ecoregion-stratified approach did not significantly improve 
classification accuracies. Sub-pixel classification 
performances were largely dependent on different types of 
MODIS input datasets. Overall, the combination of 
MODIS surface reflectance bands 1–7 generated the best 
sub-pixel estimations of tree canopy (R2 = 0.57), 
impervious surface (R2 = 0.63) and cropland (R2 = 0.30), 
which are considerable higher than those derived using 
only MODIS-NDVI data (tree canopy R2 = 0.50, 
impervious surface R2 = 0.51, and cropland R2 = 0.24). 
Also, sub-pixel classification accuracies were much 
improved when the results were aggregated from 250 m to 
500 m spatial resolution. The use of individual date 
MODIS images were also examined with the best results 
being achieved for Julian days 185 (early-July), 217 (early-
August), and 113 (late-April) for tree canopy, impervious 
surface, and cropland, respectively.  The results suggested 
the relative importance of the image data input selection, 
spatial resolution, and acquisition dates for the sub-pixel 
mapping of major cover types in the GLB. 
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I. INTRODUCTION 

and-cover (LC) types, their distributions, and their 
dynamics are important landscape characteristics needed 

for the study of terrestrial ecosystem processes, climate change 
impacts, and human-environmental interactions [1-3].  
Recently, the Moderate Resolution Imaging Spectroradiometer 
(MODIS) data has been increasingly used for regional and 
global LC mapping [4-6].  The moderate spatial resolution and 
high temporal resolution attributes are particularly important 
for many large-area mapping applications [7].  Currently, 
global and regional LC map products can be routinely 
generated at a range of 250 m to 1,000 m spatial resolution and 
researchers are developing  maps and change detection 
products at 250 m resolution [5], [8-10]. 

Landscape patterns can often be heterogeneous and contain 
a complex mixture of cover types.  A similar cover type (e.g., 
forest) may have variable spatial characteristics (i.e., sizes and 
shapes) across different geographic locations [11].  
Consequently, LC mapping at regional scales is inherently 
difficult using remote sensing data with arbitrarily defined 
spectral, spatial, and temporal resolutions.  The accuracy of 
global-regional LC products may vary substantially across 
different subregions due to the heterogeneity of cover type 
patterns.  For example, accuracy levels for individual 
continents in the International Geosphere-Biosphere 
Programme (IGBP) global LC map product differed by as 
much as 20% [11].  Generally, classification accuracy 
decreases with increased heterogeneity and decreased patch 
size [12].  The LC mixture in moderate–coarse spatial 
resolution data presents a significant challenge for image 
classification, as well as accuracy assessment [13], [14]. 

One common solution for the mixture problem is to conduct 
spectral unmixing that estimates proportional cover types 
within each pixel. Intensive research has been conducted for 
sub-pixel composition estimates using Advanced Very High 
Resolution Radiometer (AVHRR) and MODIS data [15-17].  
More recently research has focused on the development of a 
global percent tree canopy cover product using 500 m MODIS 
time-series data [5].  

Similar to per-pixel mapping, the performance of sub-pixel 
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LC estimation may also vary across different areas or 
subregions, depending on cover type heterogeneity, imagery 
resolution, and analytical methods applied.  A review of recent 
remote sensing literature suggests that sub-pixel classification 
accuracies are often reported for the entire area of interest 
[13]. As a result, spatial variations of classification quality at 
the subregional level are often poorly understood.  This can 
lead to inconsistent map quality, which may lead to erroneous 
results in subsequent change analysis, environmental 
assessment, and other applications that incorporate LC 
products as primary inputs.  Previous studies suggested that 
ecoregion-based image stratification may be used to reduce the 
complexity of the large-area mapping problem. Performing 
independent image categorizations within individual 
ecoregions may improve performance [18].  The ecoregion-
based approaches, however, have not been fully examined for 
sub-pixel performance, especially for MODIS-derived 
products.  

The performances of sub-pixel classification may also 
depend on the MODIS data type(s). MODIS NDVI 
(Normalized Difference Vegetation Index) and surface 
reflectance values are two commonly used inputs to the sub-
pixel classifier [5], [19].  Some researchers may choose 
MODIS products from a single acquisition date for sub-pixel 
classification, while most have used time-series MODIS 
products such as the 8-day or 16-day composite data.  In 
practice, few studies have quantified the differences of sub-
pixel categorization performances using different MODIS 
products (e.g., NDVI and/or reflectance bands).  Additionally, 
it is widely accepted that the use of time-series data may 
improve the classification performance compared to the use of 
an individual image; however, the magnitude of improvement 
has not been reported. Researchers have also derived 
phenometrics (i.e., start and end of season) from time-series 
data; however, the use of phenometrics for image classification 
can be questionable and lower classification accuracy might be 
obtained compared to the direct use of time-series data [20]. 
The primary concern of using time-series data is the increase 
in data dimensionality.  The so-called “curse of 
dimensionality” problem may lead to slower training and even 
a deterioration in categorization performance [21].  The spatial 
registration problem in time-series datasets may also cause 
difficulties for sub-pixel classification with time-series data, 
including medium resolution MODIS data at 250 m [22].  

A. Research Objectives 

The goal of this study was to examine the potential of 
MODIS data for the sub-pixel LC classifications. The 
experimental design was developed to provide a better 
understanding of the interactions between spectral, spatial, and 
temporal resolutions for the purpose of the sub-pixel mapping. 
Three general cover types were considered included tree 
canopy, impervious surface, and cropland.  Sub-pixel 
classification experiments were conducted for Laurentian 
Great Lakes Basin (GLB); which includes all or part of eight 
states within the US and a portion of the Province of Ontario, 

Canada. The specific research objectives addressed in this 
study included the following (TABLE I). 

(1) Examine the spatial variations of classification 
performances across different sub-regions of the GLB.  
Develop an ecoregion-based sub-pixel classification approach 
to quantify the differences in classification performances 
between an entire-region versus an ecoregion-stratified 
approach.   

(2) Determine how the sub-pixel classification performance 
may vary when different MODIS input datasets are used.  Two 
standard MODIS data products were examined: MODIS-
NDVI and MODIS surface reflectance values.  For MODIS 
surface reflectance data, a number of MODIS band 
combinations were tested for the sub-pixel classification.   

(3) Compare the sub-pixel classification performances 
between MODIS time-series data and individual images.   

B. Study Area 

The GLB region includes all or part of eight states of the 
United States and a portion of the province of Ontario, 
Canada.  The region spans more than 1,200 km from west to 
east, and it contains the largest surface freshwater system on 
the Earth. The southern portion of GLB is heavily 
industrialized.  More than ten major metropolitan areas are 
located in the southern portion of the GLB.  The highest 
density of croplands is located in the southern half of the GLB, 
especially in the states of Michigan, Ohio, and Wisconsin in 
the United States and the southern portion of Ontario.  The 
northern portion of the GLB is relatively undeveloped. Climate 
and soil quality limit large-scale agriculture. It is dominated by 
diverse forest types, freshwater aquatic systems, and wetlands.  

The major LC change in the GLB is believed to be 
urbanization from the last four decades [23].  Urban 
expansions occurred around edges of metropolitan areas and 
other smaller cities in both the United States and Canadian 
portions of the GLB, typically at the cost of agricultural lands 
[24].  Urban expansion and agricultural intensification in the 
GLB has caused increased concerns about water quality, 
natural habitats, and ecosystem health related issues [25], [26]. 
Currently, many remote sensing mapping efforts are being 
conducted by both the US and Canadian governmental 
agencies, but most have been focused on decadal data products 
(e.g., NLCD-2001). The lack of a consistent mapping 
approach and product schedule could negatively impact future 
GLB-wide environmental assessment efforts. 

II.  DATA AND PRE-PROCESSING 

The 2001 National Land Cover Database (NLCD-2001) was 
obtained from the United States Geological Survey (USGS), 
Earth Resources Observation and Science (EROS) Data 
Center.  In addition to the most commonly used 2001 LC 
thematic data, the impervious surface data and the tree canopy 
data were also acquired from EROS.  All three datasets have 
30 m spatial resolution.  The fractional impervious surface and 
tree canopy were estimated for each 30 m pixel using 
regression tree techniques.  The accuracies were estimated to 
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be about 83–91% and 78–93% for the impervious surface and 
tree canopy, respectively [27].  The finer spatial resolution (30 
m) of the NLCD allowed us to develop proportional cover type 
maps at coarser spatial scale (e.g., 250 m), which can be used 
as reference dataset to examine the potential of MODIS sub-
pixel classification.  

MODIS time-series products from year 2001 were acquired 
from the USGS EROS Data Center.  These included the 250 m 
16-day NDVI composite data (MOD13Q1), 250 m 8-day 
surface reflectance composite data (MOD09Q1), and 500 m 8-
day surface reflectance composite data (MOD09A1).  The 250 
m 8-day surface reflectance data include two spectral bands, 
centered at 648 nm (red) and 858 nm (NIR), respectively.  The 
500 m 8-day surface reflectance data provides seven spectral 
bands at 500 m resolution.  In addition to red and NIR bands, 
the 500 m data also contains spectral bands centered at 470 
nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm.  

The NLCD-2001 and MODIS data products were re-
projected to an Alber’s Equal Area Conic projection.  For 
MODIS data products, a Savitzky–Golay filter was applied to 
estimate new values for pixels with poor quality control (QC) 
flags [28].  The spatial extents of snow cover were substantial 
for winter and early spring in the GLB, thus the MODIS time-
series data products in those time-periods were discarded.  
MODIS datasets from Julian day-of-year (DOY) 97 (early-
April) to 273 (late-September) were used as primary inputs to 
characterize sub-pixel LC information. There were also 
noticeable error observed for some water pixels in lakes and 
large streams.  These pixels have extremely high NDVI values 
(e.g., >0.7). All water pixels in MODIS data thus were masked 
out using NLCD-2001 as references.   

A geographic linkage between the NLCD-2001 and the 
MODIS products was developed.   For each 250m MODIS 
pixel, cover type proportions were calculated for tree canopy, 
impervious surface, and cropland. For tree canopy and 
impervious surface, the NLCD-2001 continuous LC data were 
simply aggregated to 250 m scale.  For cropland, the thematic 
cover type (class 82) was used as input for spatial aggregation.  
It was assumed that each 30 m NLCD cropland pixel was 
homogeneous.  

III.  METHODS 

A. GLB versus Ecoregion Approach    

Sub-pixel classifications were examined for two training 
strategies using time-series MODIS-NDVI data. The first 
strategy was the entire-region classification approach using 
training data points randomly selected from the entire US 
portion of the GLB. The second training strategy was to 
stratify the entire GLB into 12 ecoregions [29] to support an 
independent sub-pixel classification for each ecoregion (Fig. 
1).  New training sample set was randomly selected within 
each ecoregion boundary for the ecoregion-stratified 
classification. The motivation for the image stratification was 
to reduce the complexity associated with the large-area 
mapping problem, and potentially improve classification 

performance.   
A three layer multi-perceptron (MLP) neural network (NN) 

was employed for the sub-pixel classification. Although the 
regression tree is probably the most commonly used algorithm 
for large-area sub-pixel mapping problems, a number of recent 
studies suggested that MLP-NN regression may also achieve 
similar or higher sub-pixel classification accuracies, especially 
when appropriate training protocols are used [30], [31]. The 
UNIX-based Stuttgart Neural Network Simulator software 
package was used for the three layer MLP-NN training and 
classification. The three layer MLP-NN consisted of one input 
layer, one hidden layer, and one output layer.  The number of 
nodes at the input layer depends on the number of input 
features. A total of 12 input features were used to represent 
MODIS-NDVI 16-day composite data obtained from Julian 
day 97 to 273. The number of hidden nodes typically needs to 
be examined through a trial-and-error approach in practice.  
There was only one output node at the output layer, 
representing sub-pixel LC estimation for each specific cover 
type (e.g., tree canopy).  It should be noted that because three 
cover types were considered for sub-pixel classification, three 
independent NNs for the sub-pixel estimations of tree canopy, 
impervious surface, and cropland were required.  

To train the NN regression, sub-pixel proportional data 
were required for the training pixels to provide output targets.  
The NN simply approximated the regression function between 
the input features (e.g., MODIS-NDVI) and the target values.  
For each NN classifier, only a small percentage (0.2%) of 
MODIS-NDVI pixels was selected for network training.  The 
training data points were further divided into training and 
validation groups. It was important to have a validation dataset 
to reduce the risk of over-fitting and increased generalization 
[17], [21].  

For the entire-region classification approach, the training 
sample size was 10,292 pixels. For the ecoregion-stratified 
approach, the training sample size ranged from 636 to 2,644 
for different ecoregions. Several network training protocols 
such as learning rate, momentum, and the number of hidden 
layer nodes were examined to achieve optimal sub-pixel 
classification performance.  

Generally, a higher learning rate (i.e., 0.2) leads to faster 
network training; however, the network learning may tend to 
oscillate, thus causing unstable classification results [21]. On 
the other hand, a small learning rate (i.e., 0.01) may result in 
long training time. For this study, three different learning rates 
(0.01, 0.05, and 0.1) were examined. The momentum was 
specified as 0.9 to reduce the risk of local minima. The 
numbers of nodes in the hidden layer were examined at 6, 12, 
and 24. For all NN classifiers, the training was stopped when 
the minimum error was achieved according to the validation 
dataset. It should be noted that the network training can be 
easily trapped in local minima, depending on the initial 
weights and learning protocol employed, therefore, network 
training were repeated 10 times for all parameter settings to 
obtain the best solution. The trained networks were then 
employed for the sub-pixel classification of the GLB.   
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B. NDVI and Reflectance Data 

The MODIS-NDVI data products contain important 
information for vegetation-related applications; however, the 
NDVI may suffer data nonlinearity, scaling and signal 
saturation problems that could reduce its usefulness for sub-
pixel LC mapping applications [6], [14].  Both the MODIS 
surface reflectance bands at 250 m and 500 m were also 
examined for the sub-pixel classification.  The 500 m pixels 
from MODIS bands 3–7 (MOD09A1) were rescaled to 250 m 
to match the spatial resolutions in MODIS bands 1 and 2 
(MOD09Q1).  As with the MODIS-NDVI classification, the 
surface reflectance bands from DOY 97 to 273 were used as 
inputs for the sub-pixel classification.  

One of the main concerns for using multiple MODIS surface 
reflectance data was the growing number of input data 
features.  The 8-day composite surface reflectance data (e.g., 
DOY 97 to 273) have 26 composite images for each spectral 
band.  The total number of input features could increase to 182 
(26 × 7) if all seven MODIS spectral bands were used for the 
sub-pixel classification.  The “curse of dimensionality” 
problem could increase computational requirements and 
possibly deteriorate classification performance [21].  Here we 
examined three simple band selection approaches.  The first 
approach used MODIS bands 1 and 2 (red and NIR) as inputs, 
yielding a total of 52 (26 × 2) input features.  In the second 
approach, the MODIS bands 1 and 2 were combined with one 
additional band from MODIS bands 3–7.  The results for the 
five possible three-band combinations were compared, and the 
best band combinations were identified.  The third approach 
used an “all-band” combination including MODIS bands 1–7, 
to make full use of the MODIS spectral signals. The same 
training data points were used for all the MODIS-NDVI and 
MODIS surface reflectance classifications, so the results could 
be directly compared for different inputs or MODIS band 
combinations. 

C. Single Date versus Time-Series Data 

The performance of individual MODIS images (e.g., DOY 
105) within the composite time period was further examined 
for the estimation of sub-pixel unmixing.  For example, there 
were 12 individual NDVI images for the MODIS-NDVI 16-
day composite data from DOY 97 to 273. A total of 12 
independent NN classifiers were developed for tree canopy 
estimations; each classifier used only one NDVI image as 
input for the sub-pixel classification. The same training data 
points were used as those for the entire time-series MODIS 
data classification.  This allowed us to examine whether it is 
necessary to use the entire time-series data, or simply use the 
best individual image at a certain acquisition time for the sub-
pixel classification.  Additionally, comparing individual 
images may reveal their relative importance with respect to the 
sub-pixel cover type mapping.  

D. Validation 

Accuracy assessments were conducted for the entire United 
States portion of the GLB.  The pixels used in the training and 
validation procedures were removed and all the remaining 
pixels were used to generate random data points (i.e., 2% of 

total points) to support the accuracy assessments.  There were 
no similar reference datasets available for the Canadian 
portion of the GLB, thus no assessments were conducted for 
Canada.  Two statistical measures were used for the accuracy 
assessments: root-mean-square-error (RMSE) and the Pearson 
coefficient of determination (R2). It should be noted that the 
RMSE and R2 values may be disrupted if a large number of 
pixels with 0% and 100% fraction cover (i.e., pure pixels) are 
used in accuracy assessment [32]. In this study, we focused on 
the pixels with faction cover (i.e., tree canopy) in the range of 
5% to 95%, because these pixels can be considered as actual 
mixed pixels.  

The results were reported for all three cover types (tree 
canopy, impervious surface, and cropland).  Accuracy 
assessments were also conducted at 500 m resolution by 
simply scaling up the 250 m sub-pixel cover type fractions to 
reduce the impacts of mis-registration between MODIS and 
NLCD-2001 reference data.  

IV.  RESULTS AND DISCUSSION 

A. GLB versus Ecoregion Approach    

For the entire-region approach using MODIS-NDVI inputs, 
the RMSE values were 0.20, 0.18, and 0.29 for tree canopy, 
impervious surface, and cropland, respectively. Corresponding 
R2 values were 0.50, 0.51 and 0.24, respectively.  Because 
GLB is a relatively large and complex study region, large 
variations of sub-pixel classification performances were 
expected.  TABLE II shows RMSE and R2 values across the 
ten different ecoregions.  For tree canopy, the R2 values ranged 
from 0.19 to 0.50.  The lowest R2 were obtained for ecoregion 
4, mainly located in the State of Ohio. Based on the NLCD-
2001, this ecoregion was dominated (>63%) by cropland. Tree 
canopy only consisted of less than 8% of total land area. The 
NLCD-2001 also shows that forest fragmentation was higher 
in ecoregion 4 compared to other ecoregions [33].  Visual 
interpretation of the sub-pixel tree canopy estimates suggested 
that there were overestimations of tree canopy for a significant 
number of cropland pixels. A similar problem was reported by 
[27], although their research was based on a sub-pixel 
classification of Landsat data.   

The R2 values for impervious cover ranged from 0.19 to 
0.61.  The best estimation was obtained for ecoregion 10, 
where two major cities (Milwaukee and Chicago) are located.  
Relatively low R2 values were obtained for ecoregions 2, 7, 8 
and 9. Statistics from NLCD-2001 also suggested that there 
were relatively less urban area (i.e., <1%) in these ecoregions 
compared to other ecoregions (i.e., >2.5% urban area), and it 
was difficult to estimate small and scattered impervious 
patches using MODIS-NDVI data. Visual interpretation of 
sub-pixel impervious surface estimate indicated that there was 
obvious classification error for Michigan's Upper Peninsula or 
ecoregion 9, and a significant number of bare soil and 
cropland pixels were falsely estimated with over 30% 
impervious surface proportions.  The spectral confusion 
between impervious surface, bare soil and cropland may cause 
the low sub-pixel classification accuracy [34]. The R2 values 
for cropland ranged from 0.05 to 0.23, with the poorest result 
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being obtained for ecoregion 9, where the few cropland areas 
(2% estimated by the NLCD-2001) were sparsely distributed.  

The large variation of sub-pixel classification accuracies 
across the GLB is a cause of concern for potential map users.  
Ecoregion-stratified sub-pixel classifications were conducted 
and the results were compared to those of the entire-region 
classification approach. Fig. 2 a-c compare R2 values for the 
two approaches.  For tree canopy, ecoregion-stratification 
improved sub-pixel classification results for ecoregions 4, 6, 7 
and 10. In contrast, the entire-region classification approach 
generated similar or slightly higher sub-pixel classification 
performance for tree canopy in the remaining seven 
ecoregions.  For impervious surface and cropland, there was 
also no clear advantage using the ecoregion-stratified 
approach. This result was unexpected, because the initial 
purpose of image stratification was to reduce the complexity of 
sub-pixel classification and thereby improve classification 
performance.  

One possible reason for the lack of performance 
improvement using ecoregion-stratification approach was the 
limited number of training pixels used.  In training the neural 
network, only a small number of training pixels (e.g., 0.2 %) 
were randomly selected.  To determine if the training data 
provided insufficient information associated with sub-pixel 
variations for specific cover types (e.g., impervious surface), 
the percentage of training pixels was increased from 0.2% to 
10% of the MODIS-NDVI pixels. The network training and 
classification were repeated for each individual ecoregion. The 
sub-pixel classification accuracies were assessed at both 
ecoregion and entire GLB scales. At individual ecoregion 
level, R2 values for tree canopy increased approximately 1–4% 
for several ecoregions. The slight improvement was mainly 
observed for ecoregions with relatively lower tree canopy 
cover. Similar rates of improvement were also obtained for 
impervious surface and cropland. At the entire GLB scale, the 
R2 values were 0.53, 0.52 and 0.25 for tree canopy, impervious 
surface and cropland, respectively.  These values were only 
slightly better than those obtained from the entire-region sub-
pixel classification approach.  

B. NDVI and Surface Reflectance Analysis 

TABLE III shows the RMSE and R2 values calculated by 
using different MODIS input datasets for the sub-pixel 
classification.  The results are reported for the entire-region 
classification approach only, because the ecoregion-stratified 
approach did not achieve higher classification accuracies.  For 
tree canopy, the RMSE values (i.e., 0.19–0.20) were fairly 
close for different band selection scenarios. The use of 
MODIS surface reflectance bands 1 and 2 increased R2 to 0.56 
compared to MODIS-NDVI data (R2 = 0.50). The addition of 
MODIS spectral bands from 3–7 and the MODIS all-band 
combination only achieved a slight increase of R2 value. A 
possible reason is that because 8-day MODIS surface 
reflectance bands 1 and 2 already captured a majority of 
vegetation-related information, thus it provided the most 
efficient approach for sub-pixel tree canopy mapping.   

The R2 values for sub-pixel impervious surface were 0.51 
and 0.57 by using MODIS-NDVI and MODIS surface 

reflectance bands 1 and 2, respectively.  The combination of 
MODIS bands 1, 2, and 6 further increased the R2 to 0.59. It 
should be noted that all possible three-band combinations were 
examined.  The combination of MODIS bands 1, 2, and 6 
appeared to provide the best overall performance among all 
possible three band combinations. The MODIS all-band 
combination achieved the highest R2 value (0.63), which was 
about 12 percent higher than using MODIS-NDVI as inputs. 
The RMSE value (0.15) obtained for the MODIS all-band 
combination was also much lower than the number derived for 
the MODIS-NDVI input (RMSE = 0.18). Visual comparison 
of sub-pixel classification maps suggested that the major factor 
contributing to the performance improvement was a reduction 
of confusion between impervious surface, cropland, and bare 
soil. For sub-pixel cropland estimation, the MODIS all-band 
combination also achieved the best overall performance 
(RMSE = 0.26, R2= 0.30).  This represented a 6% (R2) 
increase compared to the results for the 16-day MODIS-NDVI 
data.  

Overall, MODIS-NDVI data performed poorest among the 
four scenarios tested for all three cover types (TABLE I and 
III). The computation of NDVI can be considered as a feature 
transformation procedure that reduces the spectral information 
contained in the original surface reflectance bands.  This 
reduction in information may decrease the sub-pixel 
classification performances. In addition, the MODIS-NDVI 
data used in this study were 16-day composite products, which 
have a coarser temporal resolution than those of 8-day MODIS 
surface reflectance bands.  The choice of a coarse composite 
time-period (i.e., 16 versus 8) might be beneficial for noise 
reduction purpose, but it may also lose crucial spectral 
information for cover type mapping. Generally, the sub-pixel 
classification performance improves when the number of 
MODIS surface reflectance bands increases. The impact of 
MODIS MIR bands for sub-pixel impervious cover mapping 
was particularly strong. The results were supported by studies 
using other remote sensing data for the urban and impervious 
mapping [35], [36].  Although there were concerns with the 
handling of multiple spatial resolutions (i.e., 500 m versus 250 
m), the results suggested that it is still beneficial to examine 
data fusion or data stacking from multiple spatial scales.  The 
comparison of different MODIS band combinations also 
indicated that “the curse of dimensionality” was not an issue 
for this sub-pixel mapping application, because the all-band 
combination performed best for both impervious cover and 
cropland mapping. 

TABLE IV shows the accuracy statistics at 500 m spatial 
scale.  The RMSE values reduced approximately 1–9% for 
different land cover types compared to those from the 250 m 
data.  Consistent with that result, the R2 values for the 500 m 
data were approximately 3–29% higher than for the 250 m 
data.  Fig. 3 illustrates reduced scattering at 500 m for the 
three cover types compared to 250 m. The results from the 
MODIS all-band combination were used for the cross-plots 
and comparison. The sub-pixel classification accuracy 
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increased if pixels were scaled up to coarse spatial resolutions.  
These results were consistent with those previously reported 
[5].  The mis-registration between the NLCD-2001 and 
MODIS data might be reduced as coarser spatial scales were 
used as mapping units.  The classification uncertainties or 
errors tend to smooth out as results were aggregated. In 
addition, MODIS’s point spread function is along-scan 
tridiagonal and extends half pixel in the neighboring pixels 
[37], [38]. This may explain that the integration of sub-pixel 
estimation over a larger area yields better results. We further 
developed simple regression lines between the actual sub-pixel 
cover type proportions (i.e., NLCD-2001) and the estimated 
proportions from the MODIS data. At 250 m spatial scale, the 
slope values were 0.83, 0.86, and 0.73 for tree canopy, 
impervious surface, and cropland, respectively. The MODIS-
based sub-pixel classification appeared to underestimate land 
cover proportions at the high extremes. The slope values 
increased to 0.95, 0.94, and 0.82 at the 500 m spatial scale. 
This further suggested the improved sub-pixel classification 
performance at coarse spatial resolutions. Fig. 4 shows the 
sub-pixel proportional maps for tree canopy, impervious 
surface, and cropland.  Results were estimated by using 
MODIS all-band combination.  Only a subset of the GLB 
study region was presented for better visual interpretability.  
The sub-pixel cover proportions were aggregated to five 
categories using 20% equal intervals, which clearly illustrate 
the different intensity levels of cover types.  

C. Single Date versus Time-series Analysis 

TABLE V(a) shows the highest R2 values derived from 
individual images (or individual DOY) using MODIS-NDVI, 
MODIS bands 1 and 2, MODIS three-band combination, and 
MODIS all-band as inputs. For MODIS-NDVI data, the best 
results were obtained for images from DOY 193, DOY 209, 
and DOY 145 for tree canopy, impervious surface, and 
cropland, respectively. For all other band selection scenarios, 
the best results were obtained for images from DOY 185, 
DOY 217, and DOY 113 for three cover types, respectively.  
For tree canopy, the R2 values were in the range of 0.38 to 
0.46 using different MODIS input datasets. For impervious 
surface, the range of R2 values was 0.45 to 0.60.  For crop 
land, the range of R2 values was 0.21 to 0.26. TABLE V(b) 
shows the R2 values derived using entire time-series composite 
data from DOY 97 to 273 as inputs.  The use of entire time-
series of MODIS data largely increased R2 values for tree 
canopy and impervious surface, and to a lesser degree also 
increased R2 values for cropland. These results show the 
importance of using the MODIS time-series data for the sub-
pixel LC mapping.  

Fig. 5a-c shows the R2 values derived for each individual 
image using MODIS-NDVI, MODIS bands 1 and 2, MODIS 
bands 1, 2, and 6, and MODIS all-band combination as inputs.  
The performance of sub-pixel tree canopy estimation varied 
substantially when individual MODIS images (i.e., DOY) were 
used. The time-period between DOY 185 (early- July) to 241 
(late-August) appeared to be most useful; because leaves on 

the plants and deciduous trees have fully grown and tree 
canopy density has reached the highest during this time period. 
For impervious surfaces, images obtained between DOY 201 
(mid July) to 249 (early-September) generated the best 
performance. This may also be explained by vegetation-related 
dynamics, because impervious surface can be best detected 
when other natural land surfaces are fully or partially covered 
by vegetation. For sub-pixel mapping of cropland, there were 
two peaks of R2 occurred around DOY 113 (late-April) and 
161 (early-June).  The timing of the first peak corresponded 
well with the growing season of winter wheat. The high R2 
value thus may suggest high potential of wheat identification 
using MODIS images obtained around DOY 113. The second 
peak can be linked to the phonological development of the 
major summer crops such as corn and soybean. These summer 
crop types just started their green up around early-June, thus 
they can be successfully detected using MODIS surface 
reflectance data. The performance of MODIS images between 
DOY 175 to DOY 250 dropped substantially, but increased 
again after DOY 250 (late-September), which is related to the 
start of mature-harvest stages for some summer crops.  

We further examined the temporal composition of three 
MODIS images from DOY 185, 217, and 113 for the sub-pixel 
classification, because these three individual images performed 
best for tree canopy, impervious surface, and cropland, 
respectively. The MODIS surface reflectance bands 1–7 were 
used in the temporal composition. This approach generated R2 
values of 0.55, 0.66, and 0.30 for three cover types, 
respectively. These values were very similar to those obtained 
from the entire time-series data. This suggested that it is 
possible to reduce the input data dimension and increase the 
computation efficiency, if appropriate individual images are 
selected from the MODIS data.  

V. CONCLUSIONS 

This research examined sub-pixel classification of tree 
canopy, impervious surface, and cropland in the Laurentian 
GLB.  The accuracy assessments were conducted using 
NLCD-2001 as reference data.  Both entire-region and 
ecoregion-stratified training approaches were examined.  
Ecoregion stratification did not improve the sub-pixel 
classification performance. There were large variations of 
classification accuracies across different ecoregions, mainly 
due to high variations in LC patterns.  Different MODIS data 
products were examined for the sub-pixel classification.  
Overall, the MODIS all-band combination achieved the best 
sub-pixel performance for impervious surface and cropland 
mapping. The combination of MODIS bands 1 and 2 yielded 
relatively high accuracy for tree canopy with a lower number 
of input features, thus it has the advantage in computational 
efficiency. The accuracies of sub-pixel classification were 
much improved when the results were aggregated from 250 m 
to a coarse spatial resolution of 500 m. The sub-pixel 
classification performances were also examined using 
individual images corresponding to different DOY. The best 
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results were achieved at Julian days 185 (early-July), 217 
(early-August), and 113 (late-April) for tree canopy, 
impervious surface, and cropland, respectively. The 
importance of these DOY images can be attributed to 
dynamics of vegetation and major crop types.  
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Tables

TABLE I. All tested sub-pixel classification scenarios for tree canopy, impervious surface, and cropland across the GLB. 
 
TABLE II. MODIS-NDVI sub-pixel classification results for individual ecoregions. Sub-pixel estimations derived from 250 m 
MODIS-NDVI (2001) were compared with proportions derived from NLCD-2001.  
 
TABLE III. Comparison of sub-pixel classification results using MODIS-NDVI and MODIS  
surface reflectance bands. Sub-pixel estimations derived from MODIS-NDVI and surface  
reflectance bands (2001) were compared with the land cover proportions derived from the  
NLCD-2001. 
 
TABLE IV. Comparison of sub-pixel classification results using MODIS-NDVI and MODIS surface  
reflectance bands. Sub-pixel estimations derived from MODIS-NDVI and surface reflectance  
bands (2001) were compared with the land cover proportions derived from the NLCD-2001.  
Sub-pixel cover type proportions were aggregated to 500 m for comparison.  
 
TABLE V.  GLB accuracy assessment statistics (250 m) using the different MODIS data  
products as inputs.  Reported are the highest R2 values derived using individual images (a) and the entire MODIS time-series data 
(b).  The corresponding DOY (97–273) for each R2 value are also reported.  
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Figures 
 
Fig. 1. Ecological regions across the United States portion of the Great Lakes Basin based on a modified Omernik (1987) 
classification system.  The ecoregion boundaries were used to stratify the MODIS-NDVI sub-pixel classifications. 
 
Fig. 2.  Comparison of entire-region and ecoregion-stratified image classification approaches for tree canopy (a), impervious 
surfaces (b), and cropland (c).  
 
Fig. 3.  Scatter plots for three sub-pixel cover types at 250 m and 500 m resolutions. MODIS all-band (1–7) combination was 
used as the input for the sub-pixel estimation.   
 
Fig. 4. The sub-pixel proportional maps for tree canopy (b), impervious surfaces (c), and cropland (d). MODIS all-band (1–7) 
combination was used to support the analysis.  
 
Fig. 5 (a-c). The Pearson R2 values derived for each individual image composite using MODIS-NDVI, MODIS bands 1 and 2, 
MODIS bands 1, 2, and 6, and MODIS bands 1–7 for tree canopy (a), impervious surfaces (b), and cropland (c).  
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TABLE I. All tested sub-pixel classification scenarios for tree canopy, impervious surface, and cropland across the GLB. 
 
 
Sub-pixel classification  Input dataset 
 
Entire GLB approach versus ecoregion stratified  
approach 

MODIS-NDVI (16-day composite)  

MODIS-NDVI (16-day composite) 
MODIS surface reflectance bands 1,2 (8-day composite) 
MODIS surface reflectance three-band combination (8-day composite) 

Comparison of different input feature/band 
combinations (entire GLB approach) 

MODIS surface reflectance seven-band combination (8-day composite) 
MODIS-NDVI (16-day composite) 
MODIS surface reflectance bands 1,2 (8-day composite) 
MODIS surface reflectance three-band combination (8-day composite) 

Comparison of individual image (DOY) and time-
series data (entire GLB approach) 

MODIS surface reflectance seven-band combination (8-day composite)  
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TABLE II. MODIS-NDVI sub-pixel classification results for individual ecoregions.  
Sub-pixel estimations derived from 250 m MODIS-NDVI (2001) were compared  
with proportions derived from NLCD-2001.  
 
 

 Tree Canopy Impervious Surfaces Cropland 

  RMSE R2 RMSE R2 RMSE R2 

Ecoregion 1 0.26 0.21 0.19 0.39 0.32 0.07* 

Ecoregion 2 0.25 0.23 0.15 0.19 0.33 0.05* 

Ecoregion 3 0.23 0.33 0.16 0.51 0.34 0.10 

Ecoregion 4 0.21 0.19 0.17 0.41 0.28 0.21 

Ecoregion 5 0.20 0.42 0.18 0.55 0.28 0.21 

Ecoregion 6 0.20 0.43 0.19 0.51 0.28 0.23 

Ecoregion 7 0.20 0.37 0.11 0.25 0.25 0.10 

Ecoregion 8 0.21 0.50 0.12 0.28 0.30 0.14 

Ecoregion 9 0.18 0.38 0.15 0.37 0.31 0.05* 

Ecoregion 10 0.19 0.37 0.22 0.61 0.30 0.10 

All 0.20 0.50 0.18 0.51 0.29 0.24 

   * Statistically insignificant (p = 0.01)    
     RMSE (root-mean-square-error) 
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TABLE III. Comparison of sub-pixel classification results using MODIS-NDVI and MODIS  
surface reflectance bands. Sub-pixel estimations derived from MODIS-NDVI and surface  
reflectance bands (2001) were compared with the land cover proportions derived from the  
NLCD-2001. 
 
 

Resolution (250 m) Tree Canopy Impervious Surfaces Cropland 
 RMSE R2 RMSE R2 RMSE R2 

NDVI 0.20 0.50 0.18 0.51 0.29 0.24 
2 MODIS Bands (1,2) 0.19 0.56 0.17 0.57 0.27 0.28 
3 MODIS Bands (1,2,6) 0.19 0.57 0.16 0.59 0.26 0.30 
7 MODIS Bands (1-7) 0.19 0.57 0.15 0.63 0.26 0.30 
All R2 values are statistically significant (p = 0.01) 
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TABLE IV. Comparison of sub-pixel classification results using MODIS-NDVI and MODIS surface  
reflectance bands. Sub-pixel estimations derived from MODIS-NDVI and surface reflectance  
bands (2001) were compared with the land cover proportions derived from the NLCD-2001.  
Sub-pixel land cover proportions were aggregated to 500 m for comparison.  
 
 

Resolution (500 m) Tree Canopy Impervious Surfaces Cropland 
 RMSE R2 RMSE R2 RMSE R2 

NDVI 0.16 0.68 0.17 0.58 0.22 0.49 
2 MODIS Bands (1,2) 0.15 0.75 0.16 0.60 0.18 0.56 
3 MODIS Bands (1,2,6) 0.14 0.76 0.14 0.65 0.18 0.59 
7 MODIS Bands (1-7) 0.14 0.76 0.13 0.68 0.18 0.59 
All R2 values are statistically significant (p = 0.01) 
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TABLE V. GLB accuracy assessment statistics (250 m) using the different MODIS data  
products as inputs.  Reported are the highest R2 values derived using individual images (a)  
and the entire MODIS time-series data (b).  The corresponding DOY (97–273) for each R2  
value are also reported.  
 
(a) Individual Images MODIS Products/Band Combinations 

 
 

NDVI bands 1,2 bands 1,2,6 bands 1–7 
Tree Canopy 0.40 (193) 0.38 (185) 0.44 (185) 0.46 (185) 

Impervious Surfaces 0.45 (209) 0.47 (217) 0.48 (217) 0.60 (217) 
Cropland 0.21 (145) 0.21 (113) 0.22 (113) 0.26 (113) 

All R2 values are statistically significant (p = 0.01) 
 
(b) All Images MODIS Products/Band Combinations 

 
 

NDVI bands 1,2 bands 1,2,6 bands 1–7 
Tree Canopy 0.50 0.56 0.57 0.56 

Impervious Surfaces 0.51 0.57 0.59 0.63 
Cropland 0.24 0.28 0.30 0.30 

All R2 values are statistically significant (p = 0.01) 
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Fig. 1. Ecological regions across the United States portion of the Great Lakes Basin 
based on a modified Omernik (1987) classification system.  The ecoregion boundaries  
were used to stratify the MODIS-NDVI sub-pixel classifications. 
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Fig. 2.  Comparison of entire-region and ecoregion-stratified image classification approaches for tree canopy (a), impervious 
surfaces (b), and cropland (c).  
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Fig. 3.  The scatter plots for three sub-pixel cover types at 250 m and 500 m resolutions. MODIS all-band (1–7) combination was 
used as the input for the sub-pixel estimation.   
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Fig. 4. The sub-pixel proportional maps for tree canopy (b), impervious surfaces (c),  
and cropland (d).  MODIS all-band (1–7) combination was used to support the analysis.  
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Fig. 5 (a-c). The Pearson R2 values derived for each individual image composite using MODIS-NDVI, MODIS bands 1and 2, 
MODIS bands 1, 2, 6, and MODIS bands 1–7 for tree canopy (a), impervious surfaces (b), and cropland (c). 


