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Sub-pixel mapping of

tree canopy, impervious

surface, and cropland in the Laurentian Great
Lakes Basin using MODIS time-series data

Yang Shao and Ross S. Lunetta

Abstract— This research examined sub-pixel land-cover
classification performance for tree canopy, impenous
surface, and cropland in the Laurentian Great Lakes
Basin (GLB) using both time-series MODIS (Moderate
Resolution Imaging Spectroradiometer) NDVI
(Normalized Difference Vegetation Index) and surfae
reflectance data. Classification training strategis included
both an entire-region approach and an ecoregion-satified
approach, using multi-layer perceptron neural netwak
classifiers. Although large variations in classifiation
performances were observed for different ecoregionshe
ecoregion-stratified approach did not significantlyimprove
classification accuracies. Sub-pixel classification
performances were largely dependent on different fyes of
MODIS input datasets. Overall, the combination of
MODIS surface reflectance bands 1-7 generated thet
sub-pixel estimations of tree canopyR? = 0.57),
impervious surface R? = 0.63) and cropland R? = 0.30),
which are considerable higher than those derived gy
only MODIS-NDVI data (tree canopy R*= 0.50,
impervious surfaceR?= 0.51, and croplandR?= 0.24).
Also, sub-pixel classification accuracies were much
improved when the results were aggregated from 25@ to
500 m spatial resolution. The use of individual dat
MODIS images were also examined with the best regsl
being achieved for Julian days 185 (early-July), 21 (early-
August), and 113 (late-April) for tree canopy, impevious
surface, and cropland, respectively. The resultauggested
the relative importance of the image data input selction,
spatial resolution, and acquisition dates for theug-pixel
mapping of major cover types in the GLB.
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Index Terms— Land-Cover Mapping, Sub-Pixel Unmixing,
Accuracy Assessment.

I. INTRODUCTION

and-cover (LC) types, their distributions, and thei

dynamics are important landscape characteristieslet®
for the study of terrestrial ecosystem procesdesate change
impacts, and human-environmental interactions [1-3]
Recently, the Moderate Resolution Imaging Spectlioraeter
(MODIS) data has been increasingly used for redi@mal
global LC mapping [4-6]. The moderate spatial hetson and
high temporal resolution attributes are particylarhportant
for many large-area mapping applications [7]. Ently,
global and regional LC map products can be routinel
generated at a range of 250 m to 1,000 m spasialuton and
researchers are developing maps and change detecti
products at 250 m resolution [5], [8-10].

Landscape patterns can often be heterogeneousoatairc
a complex mixture of cover types. A similar cowge (e.g.,
forest) may have variable spatial characterisiies, (sizes and
shapes) across different geographic locations [11].
Consequently, LC mapping at regional scales is ratitéy
difficult using remote sensing data with arbitrarilefined
spectral, spatial, and temporal resolutions. Téeumacy of
global-regional LC products may vary substantiadigross
different subregions due to the heterogeneity ofecaype
patterns.  For example, accuracy levels for indigld
continents in the International Geosphere-Biosphere
Programme (IGBP) global LC map product differed dxy
much as 20% [11]. Generally, classification accyra
decreases with increased heterogeneity and dedrqmeh
size [12]. The LC mixture in moderate—coarse spati
resolution data presents a significant challenge ifoage
classification, as well as accuracy assessment [14].

One common solution for the mixture problem is ¢mduct
spectral unmixing that estimates proportional cotgres
within each pixel. Intensive research has been wcted for
sub-pixel composition estimates using Advanced Mdigh
Resolution Radiometer (AVHRR) and MODIS data [13-17
More recently research has focused on the developofea
global percent tree canopy cover product usingra@aODIS
time-series data [5].

Similar to per-pixel mapping, the performance db-pixel
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LC estimation may also vary across different areas
subregions, depending on cover type heterogenigiggery
resolution, and analytical methods applied. Aeewof recent
remote sensing literature suggests that sub-pirskification
accuracies are often reported for the entire afeanterest
[13]. As a result, spatial variations of classifioa quality at
the subregional level are often poorly understodthis can
lead to inconsistent map quality, which may lea@timneous
results in subsequent change analysis,
assessment, and other applications that incorpotaie
products as primary inputs. Previous studies sstgdethat
ecoregion-based image stratification may be useddoce the
complexity of the large-area mapping problem. Penfng
independent image categorizations within
ecoregions may improve performance [18]. The egiore
based approaches, however, have not been fullyiegdnfor
sub-pixel performance, especially for
products.

The performances of sub-pixel classification magoal

Canada. The specific research objectives addressdtis
study included the following (TABLE I).

(1) Examine the spatial variations of classificatio
performances across different sub-regions of theB.GL
Develop an ecoregion-based sub-pixel classificasipproach
to quantify the differences in classification penfances
between an entire-region versus an ecoregionfsdhti
approach.

environinenta (2) Determine how the sub-pixel classification periance

may vary when different MODIS input datasets amedusTwo
standard MODIS data products were examined: MODIS-
NDVI and MODIS surface reflectance values. For MGD
surface reflectance data, a number of MODIS band

individuatombinations were tested for the sub-pixel classtiion.

(3) Compare the sub-pixel classification perfornenc
between MODIS time-series data and individual insage

B. Study Area
The GLB region includes all or part of eight statéshe

MODIS-derived

depend on the MODIS data type(s). MODIS NDy(United States and a portion of the province of @ota

(Normalized Difference Vegetation
reflectance values are two commonly used inputhéosub-
pixel classifier [5], [19]. Some researchers mayase
MODIS products from a single acquisition date fab-pixel
classification, while most have used time-series IN®
products such as the 8-day or 16-day composite. data
practice, few studies have quantified the diffeemnof sub-
pixel categorization performances using differenODMS
products (e.g., NDVI and/or reflectance bands).difidnally,
it is widely accepted that the use of time-seriesadmay
improve the classification performance comparethéouse of
an individual image; however, the magnitude of iay@ment
has not been
phenometrics (i.e., start and end of season) fiame-series
data; however, the use of phenometrics for imagssdication
can be questionable and lower classification acyunzsight be
obtained compared to the direct use of time-sataga [20].
The primary concern of using time-series data ésititrease
in data dimensionality. The so-called “curse
dimensionality” problem may lead to slower trainizigd even
a deterioration in categorization performance [ZLhe spatial
registration problem in time-series datasets map aause
difficulties for sub-pixel classification with timgeries data,
including medium resolution MODIS data at 250 m][22

A. Research Objectives

The goal of this study was to examine the potential
MODIS data for the sub-pixel

Index) and suefac

reported. Researchers have also dlerivbanization from the last four decades [23].

LC classifications. €Th

Canada. The region spans more than 1,200 km frest te
east, and it contains the largest surface fresvegtem on
the Earth. The southern portion of GLB is heavily
industrialized. More than ten major metropolitaiess are
located in the southern portion of the GLB. Thegheist
density of croplands is located in the southerfidfahe GLB,
especially in the states of Michigan, Ohio, and &bissin in
the United States and the southern portion of @ntaihe
northern portion of the GLB is relatively undevetap Climate
and soil quality limit large-scale agricultureidtdominated by
diverse forest types, freshwater aquatic systentsyatlands.
The major LC change in the GLB is believed to be
Wrba
expansions occurred around edges of metropolitaasaand
other smaller cities in both the United States &@zhadian
portions of the GLB, typically at the cost of agidicral lands
[24]. Urban expansion and agricultural intenstiica in the
GLB has caused increased concerns about watertyguali

ohatural habitats, and ecosystem health relateess@5], [26].

Currently, many remote sensing mapping efforts laeéng
conducted by both the US and Canadian governmental
agencies, but most have been focused on decadapaatucts
(e.g., NLCD-2001). The lack of a consistent mapping
approach and product schedule could negatively éijodure
GLB-wide environmental assessment efforts.

Il. DATA AND PRE-PROCESSING
The 2001 National Land Cover Database (NLCD-20043 w

experimental design was developed to provide aebetiypained from the United States Geological Surueé$Gs),

understanding of the interactions between spedpalial, and
temporal resolutions for the purpose of the sulelpixapping.
Three general cover types were considered includled
canopy, impervious surface, and cropland.
classification experiments were conducted for Latias
Great Lakes Basin (GLB); which includes all or pafteight
states within the US and a portion of the Proviat@©ntario,

Earth Resources Observation and Science (EROS) Data
Center. In addition to the most commonly used 20Q@1
thematic data, the impervious surface data andréfeecanopy

Sublpix@ata were also acquired from EROS. All three ddtabave

30 m spatial resolution. The fractional impervicusface and
tree canopy were estimated for each 30 m pixel gusin
regression tree techniques. The accuracies wéirea¢sd to
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be about 83—-91% and 78-93% for the impervious seréad
tree canopy, respectively [27]. The finer spatgssiolution (30
m) of the NLCD allowed us to develop proportionaver type
maps at coarser spatial scale (e.g., 250 m), wdachbe used
as reference dataset to examine the potential oDNSGsub-
pixel classification.

MODIS time-series products from year 2001 were aequ
from the USGS EROS Data Center. These include@30em

performance.

A three layer multi-perceptron (MLP) neural netw@MNdN)
was employed for the sub-pixel classification. Altigh the
regression tree is probably the most commonly adgorithm
for large-area sub-pixel mapping problems, a nunolbeecent
studies suggested that MLP-NN regression may atbieae
similar or higher sub-pixel classification accuesiespecially
when appropriate training protocols are used [B&]]. The

16-day NDVI composite data (MOD13Q1), 250 m 8-dayNIX-based Stuttgart Neural Network Simulator safte

surface reflectance composite data (MOD09Q1), &drb 8-
day surface reflectance composite data (MODO09AT)e 250
m 8-day surface reflectance data include two spkbi@nds,
centered at 648 nm (red) and 858 nm (NIR), respagti The
500 m 8-day surface reflectance data provides sepentral
bands at 500 m resolution. In addition to red Bitid bands,
the 500 m data also contains spectral bands centdrd70
nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm.

package was used for the three layer MLP-NN trgiramd
classification. The three layer MLP-NN consistecboé input
layer, one hidden layer, and one output layer. fimaber of
nodes at the input layer depends on the numbemudt i
features. A total of 12 input features were usedefaresent
MODIS-NDVI 16-day composite data obtained from duali
day 97 to 273. The number of hidden nodes typiaadigds to
be examined through a trial-and-error approach ractre.

The NLCD-2001 and MODIS data products were refhere was only one output node at the output layer,

projected to an Alber's Equal Area Conic projectioffor

MODIS data products, a Savitzky—Golay filter waplad to

estimate new values for pixels with poor qualitpizol (QC)

flags [28]. The spatial extents of snow cover warbstantial
for winter and early spring in the GLB, thus the time-

series data products in those time-periods wereadigd.

MODIS datasets from Julian day-of-year (DOY) 97rkea
April) to 273 (late-September) were used as primapyts to

characterize sub-pixel LC information. There werksoa
noticeable error observed for some water pixeliakes and
large streams. These pixels have extremely high'INRlues

(e.g., >0.7). All water pixels in MODIS data thusne masked
out using NLCD-2001 as references.

representing sub-pixel LC estimation for each djmeciover
type (e.g., tree canopy). It should be noted tiegause three
cover types were considered for sub-pixel clas#ifin, three
independent NNs for the sub-pixel estimations eé tcanopy,
impervious surface, and cropland were required.

To train the NN regression, sub-pixel proportiomtta
were required for the training pixels to providepui targets.
The NN simply approximated the regression funcbetween
the input features (e.g., MODIS-NDVI) and the targalues.
For each NN classifier, only a small percentag%). of
MODIS-NDVI pixels was selected for network trainind he
training data points were further divided into miag and
validation groups. It was important to have a \atiioh dataset

A geographic linkage between the NLCD-2001 and th® reduce the risk of over-fitting and increasedeagalization

MODIS products was developed.
pixel, cover type proportions were calculated feetcanopy,

For each 250m MODIR7], [21].

For the entire-region classification approach, traning

impervious surface, and cropland. For tree canopy asample size was 10,292 pixels. For the ecoregiatifsd

impervious surface, the NLCD-2001 continuous LCadaere approach, the training sample size ranged from 638,644
simply aggregated to 250 m scale. For croplarelthiematic for different ecoregions. Several network trainipgptocols
cover type (class 82) was used as input for spagigiegation. such as learning rate, momentum, and the numbéidaen
It was assumed that each 30 m NLCD cropland pixaet wlayer nodes were examined to achieve optimal sxélpi

homogeneous.

Ill. METHODS

A. GLB versus Ecoregion Approach

Sub-pixel classifications were examined for twoiniray
strategies using time-series MODIS-NDVI data. Thiestf
strategy was the entire-region classification apphousing
training data points randomly selected from theirentUS
portion of the GLB. The second training strategyswa
stratify the entire GLB into 12 ecoregions [29]dapport an
independent sub-pixel classification for each egiore (Fig.
1). New training sample set was randomly seleetétin
each ecoregion boundary for the ecoregion-strditifi
classification. The motivation for the image sfiatition was
to reduce the complexity associated with the lange
mapping problem, and potentially improve classtfma

e

classification performance.

Generally, a higher learning raieg(, 0.2) leads to faster
network training; however, the network learning neryd to
oscillate, thus causing unstable classificatiomlte§21]. On
the other hand, a small learning rdte.(0.01) may result in
long training time. For this study, three differégdrning rates
(0.01, 0.05, and 0.1) were examined. The momentam w
specified as 0.9 to reduce the risk of local minifriae
numbers of nodes in the hidden layer were exananéd 12,
and 24. For all NN classifiers, the training waspgted when
the minimum error was achieved according to th&lasibn
dataset. It should be noted that the network tngican be
easily trapped in local minima, depending on tligain
weights and learning protocol employed, therefostwork
training were repeated 10 times for all parameg#irgs to
obtain the best solution. The trained networks Weea
employed for the sub-pixel classification of the &L
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B. NDVI and Reflectance Data

The MODIS-NDVI data products contain important
information for vegetation-related applicationspewer, the
NDVI may suffer data nonlinearity, scaling and sign
saturation problems that could reduce its usefslf@ssub-
pixel LC mapping applications [6], [14]. Both tMODIS
surface reflectance bands at 250 m and 500 m swe a
examined for the sub-pixel classification. The BO@ixels
from MODIS bands 3—7 (MODO09A1) were rescaled to 850
to match the spatial resolutions in MODIS bandsd 2
(MODO09Q1). As with the MODIS-NDVI classificatiothe
surface reflectance bands from DOY 97 to 273 weszlas
inputs for the sub-pixel classification.

One of the main concerns for using multiple MODU&ace
reflectance data was the growing number of inptd da
features. The 8-day composite surface reflectdatz (e.g.,
DOY 97 to 273) have 26 composite images for eaelatsal
band. The total number of input features couldease to 182
(26 x 7) if all seven MODIS spectral bands wereduse the
sub-pixel classification. The “curse of dimensilitya
problem could increase computational requirememts a
possibly deteriorate classification performancd.[2ere we
examined three simple band selection approachhes.fiist
approach used MODIS bands 1 and 2 (red and NIR)pass,
yielding a total of 52 (26 x 2) input features. tthe second
approach, the MODIS bands 1 and 2 were combinddonié
additional band from MODIS bands 3—7. The redoitthe
five possible three-band combinations were compaxed the
best band combinations were identified. The thjpgroach
used an “all-band” combination including MODIS barid-7,
to make full use of the MODIS spectral signals. Shme
training data points were used for all the MODISW[Rnd
MODIS surface reflectance classifications, so #wuiits could
be directly compared for different inputs or MOOd&nd
combinations.

C. Sngle Date versus Time-Series Data

The performance of individual MODIS images (e.gQYD
105) within the composite time period was furthearained
for the estimation of sub-pixel unmixing. For exde) there
were 12 individual NDVI images for the MODIS-NDVB41
day composite data from DOY 97 to 273. A total &f 1
independent NN classifiers were developed for taaeopy
estimations; each classifier used only one NDVIgmas
input for the sub-pixel classification. The sanairting data
points were used as those for the entire times&i@DIS
data classification. This allowed us to examinetivbr it is
necessary to use the entire time-series dataqnplysuse the
best individual image at a certain acquisition tfimethe sub-
pixel classification. Additionally, comparing indilual
images may reveal their relative importance wipeet to the
sub-pixel cover type mapping.

D. Validation

Accuracy assessments were conducted for the dhited
States portion of the GLB. The pixels used intth@ing and
validation procedures were removed and all the igng
pixels were used to generate random data poiets 2% of

total points) to support the accuracy assessmdiftsre were
no similar reference datasets available for theaGem
portion of the GLB, thus no assessments were cdaaddor
Canada. Two statistical measures were used fadberacy
assessments: root-mean-square-error (RMSE) arfeleidueson
coefficient of determination @ It should be noted that the
RMSE and R2 values may be disrupted if a large rurab
pixels with 0% and 100% fraction cover (i.e., ppieels) are
used in accuracy assessment [32]. In this studypewesed on
the pixels with faction cover (i.e., tree canopy}he range of
5% to 95%, because these pixels can be consideractzal
mixed pixels.

The results were reported for all three cover tyjres
canopy, impervious surface, and cropland). Acourac
assessments were also conducted at 500 m resadfytion
simply scaling up the 250 m sub-pixel cover ty@efions to
reduce the impacts of mis-registration between M®and
NLCD-2001 reference data.

IV. RESULTS ANDDISCUSSION

A. GLB versus Ecoregion Approach

For the entire-region approach using MODIS-NDV Ity
the RMSE values were 0.20, 0.18, and 0.29 fordes®py,
impervious surface, and cropland, respectivelyr€gponding
R? values were 0.50, 0.51 and 0.24, respectivelycaBse
GLB is a relatively large and complex study regilange
variations of sub-pixel classification performaneese
expected. TABLE Il shows RMSE and f®alues across the
ten different ecoregions. For tree canopy, thedRies ranged
from 0.19 to 0.50. The lowesfRere obtained for ecoregion
4, mainly located in the State of Ohio. Based @aNhCD-
2001, this ecoregion was dominated (>63%) by crupldree
canopy only consisted of less than 8% of total lareh. The
NLCD-2001 also shows that forest fragmentation higher
in ecoregion 4 compared to other ecoregions [33§ual
interpretation of the sub-pixel tree canopy estesauggested
that there were overestimations of tree canopw feignificant
number of cropland pixels. A similar problem wagaged by
[27], although their research was based on a sx#d-pi
classification of Landsat data.

The R values for impervious cover ranged from 0.19 to
0.61. The best estimation was obtained for ecoregd,
where two major cities (Milwaukee and Chicago) lamated.
Relatively low R values were obtained for ecoregions 2, 7, 8
and 9. Statistics from NLCD-2001 also suggestetlttieze
were relatively less urban area (i.e., <1%) inéhesoregions
compared to other ecoregions (i.e., >2.5% urbaa)aaad it
was difficult to estimate small and scattered imjmars
patches using MODIS-NDVI data. Visual interpretatif
sub-pixel impervious surface estimate indicated tfvere was
obvious classification error for Michigan's Uppeamihsula or
ecoregion 9, and a significant number of bare awil
cropland pixels were falsely estimated with ove¥630
impervious surface proportions. The spectral csinfu
between impervious surface, bare soil and crophaag cause
the low sub-pixel classification accuracy [34]. TRfevalues
for cropland ranged from 0.05 to 0.23, with the 1@sb result
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being obtained for ecoregion 9, where the few @oglareas  reflectance bands 1 and 2, respectively. The coatioin of
(2% estimated by the NLCD-2001) were sparsely ibisted. MODIS bands 1, 2, and 6 further increased the¢oR0.59. It
The large variation of sub-pixel classification a@rcies should be noted that all possible three-band coatioins were
across the GLB is a cause of concern for potemtégd users.  examined. The combination of MODIS bands 1, 2, &nd
Ecoregion-stratified sub-pixel classifications weomducted appeared to provide the best overall performancengnall

and the results were compared to those of theeereigion possible three band combinations. The MODIS allban
classification approach. Fig. 2 a-c compa?g/ﬁdu_es forthe  combination achieved the highest Ralue (0.63), which was
two approaches. For tree canopy, ecoregion-statitn about 12 percent higher than using MODIS-NDVI gsuis.

improved sub-pixel classification results for ecpoas 4, 6, 7 The RMSE value (0.15) obtained for the MODIS alhtia
and 10. In contrast, the entire-region classifaraBipproach combination was also much lower than the numbeveerfor
generated similar or slightly higher sub-pixel sifisation the MODIS-NDVI input (RMSE = 0.18). Visual companis
f for t in th ini . e ST ;
zig?erg?(?:s © F(z)rr iﬁg:@?&fg ;Erfa?:ereangglzlrr(])?olsdigeqwas of sub-pixel classification maps suggested thanthgr factor
' contributing to the performance improvement wagduction

also no clear advantage using the ecoregion-stictif ) ) )
approach. This result was unexpected, becauseitfa i of confusion between impervious surface, croplard] bare

purpose of image stratification was to reduce treexity of ~ Sil- For sub-pixel cropland estimation, the MODdEband

sub-pixel classification and thereby improve cliisaiion combination also achieved the best overall perfogea
performance. (RMSE = 0.26, B= 0.30). This represented a 6%?(R
One possible reason for the lack of performance increase compared to the results for the 16-day ME=NIDVI
improvement using ecoregion-stratification approaels the data.
limited number of training pixels used. In traigithe neural Overall, MODIS-NDVI data performed poorest among th
network, only a small number of training pixelsy(e0.2 %) four scenarios tested for all three cover typesRIE | and
were randomly selected. To determine if the trajrdata I1). The computation of NDVI can be consideredaafeature
provided insufficient information associated withbspixel transformation procedure that reduces the speafiaimation
variations for specific cover types (e.g., impenssurface),  contained in the original surface reflectance bandEhis
the percentage of training pixels was increaseth 2% o requction in information may decrease the sub-pixel

10% of the MODIS-NDVI pixels. The network trainiagd classification performances. In addition, the MOBBVI
classification were repeated for each individuaregion. The  y4t5 used in this study were 16-day composite mtsgdwhich
sub-pixel classification accuracies were assesseata have a coarser temporal resolution than thosedzy8MODIS

lecorle(i:%ion ?nd efntir[e GLB scale_s. At indglidual egimnt A 4surface reflectance bands. The choice of a caam®gosite
evel, R values for tree canopy increased approximatelyd— time-period (i.e., 16 versus 8) might be benefidé@l noise

for several ecoregions. The slight improvement masl . . .
g 9 b asy reduction purpose, but it may also lose crucial cspé

observed for ecoregions with relatively lower toa@o . . . .
9 y by information for cover type mapping. Generally, theb-pixel

cover. Similar rates of improvement were also atgdifor e .
impervious surface and cropland. At the entire GicBle, the classification performance improves when the number

R? values were 0.53, 0.52 and 0.25 for tree canopyeivious MODIS surface reflectance bands increases. The dmpfa

surface and cropland, respectively. These valegs anly MODIS MIR bands for sub-pixel impervious cover map
slightly better than those obtained from the entirgion sub- ~ Was particularly strong. The results were suppobigdtudies
pixel classification approach. using other remote sensing data for the urban iperivious

. mapping [35], [36]. Although there were concernghwhe

B. NDVI and Surface Reflectance Analysis handling of multiple spatial resolutions (i.e., 5®0versus 250

TABLE IIl shows the RMSE and Rvalues calculated by m), the results suggested that it is still benafitd examine

using different MODIS input datasets for the sukebi qata fusion or data stacking from multiple spasizdles. The
classification. The results are reported for thére-region comparison of different MODIS band combinations oals

classification approach only, because the ecoregfi@tified indicated that “the curse of dimensionality” wast an issue

approach did not achieve higher classification eaxies. For for this sub-pixel mapping application, because alieband

tree canopy, the RMSE values (i.e., 0.19-0.20) wetdy  combination performed best for both impervious comad
close for different band selection scenarios. Tt wf cropland mapping.

MODIS surface reflectance bands 1 and 2 increaded ®56 TABLE IV shows the accuracy statistics at 500 mtispa

compared to MODIS-NDVI data (R= 0.50). The addition of scale. The RMSE values reduced approximately 148%
MODIS spectral bands from 3-7 and the MODIS allébangifferent land cover types compared to those fram250 m
combination only achieved a slight increase 6fvRlue. A gata, Consistent with that result, th&\RIues for the 500 m
possible reason is that because 8-day MODIS surfaggta were approximately 3-29% higher than for t68 th
reflectance bands 1 and 2 already captured a majofi gata. Fig. 3 illustrates reduced scattering at 5O@or the
vegetation-related information, thus it providede tlmost three cover types compared to 250 m. The resubts fihe
efficient approach for sub-pixel tree canopy magpin MODIS all-band combination were used for the crplsds

The R values for sub-pixel impervious surface were 0.53nd comparison. The sub-pixel classification acyra
and 0.57 by using MODIS-NDVI and MODIS surface
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increased if pixels were scaled up to coarse dpatalutions. the plants and deciduous trees have fully grown tmrd
These results were consistent with those previoteghprted canopy density has reached the highest durindithésperiod.
[5]. The mis-registration between the NLCD-2001d anFor impervious surfaces, images obtained betweel RQL

MODIS data might be reduced as coarser spatiatscatre
used as mapping units. The classification uncgiés or
errors tend to smooth out as results were aggregdte
addition, MODIS’s point spread function is alongsc
tridiagonal and extends half pixel in the neighbgripixels
[37], [38]. This may explain that the integratiof sub-pixel

estimation over a larger area yields better resWits further
developed simple regression lines between the lastibapixel

cover type proportions (i.e., NLCD-2001) and thénested

proportions from the MODIS data. At 250 m spatizdle, the
slope values were 0.83, 0.86, and 0.73 for treeoman
impervious surface, and cropland, respectively. W@DIS-

based sub-pixel classification appeared to underat land
cover proportions at the high extremes. The slopkies
increased to 0.95, 0.94, and 0.82 at the 500 nmiassale.
This further suggested the improved sub-pixel diassion

performance at coarse spatial resolutions. Fighdws the
sub-pixel proportional maps for tree canopy, impmIg

surface, and cropland. Results were estimated $iggu
MODIS all-band combination. Only a subset of theBG
study region was presented for better visual imeggility.

The sub-pixel cover proportions were aggregatedfite

categories using 20% equal intervals, which cledllgtrate

the different intensity levels of cover types.

C. Sngle Date versus Time-series Analysis

TABLE V(a) shows the highest?Rvalues derived from
individual images (or individual DOY) using MODISEN/I,
MODIS bands 1 and 2, MODIS three-band combinat#org
MODIS all-band as inputs. For MODIS-NDVI data, thest
results were obtained for images from DOY 193, D@09,

and DOY 145 for tree canopy, impervious surfaced an

cropland, respectively. For all other band selecgoenarios,
the best results were obtained for images from DUBB,

(mid July) to 249 (early-September) generated thest b
performance. This may also be explained by vegetatlated
dynamics, because impervious surface can be besttdéd
when other natural land surfaces are fully or plyticovered
by vegetation. For sub-pixel mapping of croplarreé were
two peaks of Roccurred around DOY 113 (late-April) and
161 (early-June). The timing of the first peakresponded
well with the growing season of winter wheat. THghhR
value thus may suggest high potential of wheattifiestion
using MODIS images obtained around DOY 113. Thesdc
peak can be linked to the phonological developnwnthe
major summer crops such as corn and soybean. Fhesaer
crop types just started their green up around €anhe, thus
they can be successfully detected using MODIS earfa
reflectance data. The performance of MODIS imagsw/éen
DOY 175 to DOY 250 dropped substantially, but irsed
again after DOY 250 (late-September), which isteglao the
start of mature-harvest stages for some summescrop

We further examined the temporal composition ofed¢hr
MODIS images from DOY 185, 217, and 113 for the-pixel
classification, because these three individual esguerformed
best for tree canopy, impervious surface, and ergjl
respectively. The MODIS surface reflectance bands dere
used in the temporal composition. This approactegead R
values of 0.55, 0.66, and 0.30 for three cover gype
respectively. These values were very similar ts¢hobtained
from the entire time-series data. This suggested this
possible to reduce the input data dimension ancease the
computation efficiency, if appropriate individuahages are
selected from the MODIS data.

V. CONCLUSIONS

This research examined sub-pixel classification trefe
canopy, impervious surface, and cropland in therdsmtian

DOY 217, and DOY 113 for three cover types, respelt GLB.  Th " ducted Ui
For tree canopy, the’Rralues were in the range of 0.38 to ‘ € accuracy assessments were conducted Using
Both entire-regiord an

0.46 using different MODIS input datasets. For impmrIs NLCD-2001 as referer_1c_e data. .
training approaches were erathi

surface, the range of’Rvalues was 0.45 to 0.60. For Cropecoreg|.on-strat|f|_e.d . . : .
Ecoregion stratification did not improve the sukebi
classification performance. There were large vianet of

land, the range of Rvalues was 0.21 to 0.26. TABLE V(b)
shows the Rvalues derived using entire time-series composit

data from DOY 97 to 273 as inputs. The use ofrerttine- gassmcatlon accuracies across different ecoregianainly

series of MODIS data largely increased Wlues for tree
canopy and impervious surface, and to a lesseredeglso

increased R values for cropland. These results show th

importance of using the MODIS time-series datatfar sub-
pixel LC mapping.

Fig. 5a-c shows the ‘Rvalues derived for each individual '~ © : . .
Sof input features, thus it has the advantage inprgational

image using MODIS-NDVI, MODIS bands 1 and 2, MODI
bands 1, 2, and 6, and MODIS all-band combinat®mputs.
The performance of sub-pixel tree canopy estimatiared
substantially when individual MODIS images (i.eQW) were
used. The time-period between DOY 185 (early- Jtdyp41
(late-August) appeared to be most useful; becaeseet on

due to high variations in LC patterns. DifferenOMIS data
products were examined for the sub-pixel clasdifica
gverall, the MODIS all-band combination achievee thest
sub-pixel performance for impervious surface andplamd
mapping. The combination of MODIS bands 1 and 2dgie
relatively high accuracy for tree canopy with a ésvmnumber

efficiency. The accuracies of sub-pixel classifizat were
much improved when the results were aggregated #60hm
to a coarse spatial resolution of 500 m. The subipi
classification performances were also examined gusin
individual images corresponding to different DOYheTbest
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results were achieved at Julian days 185 (early)J@17
(early-August), and 113 (late-April) for tree cagpp
impervious  surface, and cropland, respectively. The ~ “_andscape cover-type modeling using a multi-sdbeeatic mapper
importance of these DOY images can be attributed to mosaic,"Photogrammetric Engineering and Remote Sensing, vol. 63,
dynamics of vegetation and major crop types.
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Tables
TABLE I. All tested sub-pixel classification sceita for tree canopy, impervious surface, and crupbkacross the GLB.

TABLE Il. MODIS-NDVI sub-pixel classification restd for individual ecoregions. Sub-pixel estimatidgesived from 250 m
MODIS-NDVI (2001) were compared with proportiongiged from NLCD-2001.

TABLE lll. Comparison of sub-pixel classificatiorsults using MODIS-NDVI and MODIS
surface reflectance bands. Sub-pixel estimationgettfrom MODIS-NDVI and surface
reflectance bands (2001) were compared with the: ¢cawer proportions derived from the
NLCD-2001.

TABLE IV. Comparison of sub-pixel classificationstdts using MODIS-NDVI and MODIS surface
reflectance bands. Sub-pixel estimations derivecthfimODIS-NDVI and surface reflectance
bands (2001) were compared with the land covergtagms derived from the NLCD-2001.
Sub-pixel cover type proportions were aggregatesDtb m for comparison.

TABLE V. GLB accuracy assessment statistics (23Qsing the different MODIS data
products as inputs. Reported are the higRésalues derived using individual images (a) andethiére MODIS time-series data
(b). The corresponding DOY (97—-273) for e&Ctvalue are also reported.
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Figures

Fig. 1. Ecological regions across the United Stptetion of the Great Lakes Basin based on a mextli®mernik (1987)
classification system. The ecoregion boundariagwsed to stratify the MODIS-NDVI sub-pixel cld&sitions.

Fig. 2. Comparison of entire-region and ecoregitvatified image classification approaches for traeopy (a), impervious
surfaces (b), and cropland (c).

Fig. 3. Scatter plots for three sub-pixel coveretyat 250 m and 500 m resolutions. MODIS all-b@rd) combination was
used as the input for the sub-pixel estimation.

Fig. 4. The sub-pixel proportional maps for treaagay (b), impervious surfaces (c), and cropland MPDIS all-band (1-7)
combination was used to support the analysis.

Fig. 5 (a-c). The Pearson R2 values derived foh @atividual image composite using MODIS-NDVI, MOB®bands 1 and 2,
MODIS bands 1, 2, and 6, and MODIS bands 1-7 & tanopy (a), impervious surfaces (b), and crap{en
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TABLE I. All tested sub-pixel classification sceita for tree canopy, impervious surface, and crupkacross the GLB.

Sub-pixel classification Input dataset

Entire GLB approach versus ecoregion stratifiedMODIS-NDVI (16-day composite)

approach

MODIS-NDVI (16-day composite)
Comparison of different input feature/band MODIS surface reflectance bands 1,2 (8-day comgpsit
combinations (entire GLB approach) MODIS surface reflectance three-band combinatied&$ composite)

MODIS surface reflectance seven-band combinatiete§8composite)

MODIS-NDVI (16-day composite)

Comparison of individual image (DOY) and time-MODIS surface reflectance bands 1,2 (8-day comepsit

series data (entire GLB approach) MODIS surface reflectance three-band combinatieda{ composite)
MODIS surface reflectance seven-band combinatietafBcomposite)
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TABLE Il. MODIS-NDVI sub-pixel classification restd for individual ecoregions.
Sub-pixel estimations derived from 250 m MODIS-ND®2D01) were compared
with proportions derived from NLCD-2001.

Tree Canopy Impervious Surfaces Cropland
RMSE R RMSE R RMSE R
Ecoregion 1 0.26 0.21 0.19 0.39 0.32 0.07*
Ecoregion 2 0.25 0.23 0.15 0.19 0.33 0.05*
Ecoregion 3 0.23 0.33 0.16 0.51 0.34 0.10
Ecoregion 4 0.21 0.19 0.17 0.41 0.28 0.21
Ecoregion 5 0.20 0.42 0.18 0.55 0.28 0.21
Ecoregion 6 0.20 0.43 0.19 0.51 0.28 0.23
Ecoregion 7 0.20 0.37 0.11 0.25 0.25 0.10
Ecoregion 8 0.21 0.50 0.12 0.28 0.30 0.14
Ecoregion 9 0.18 0.38 0.15 0.37 0.31 0.05*
Ecoregion 10 0.19 0.37 0.22 0.61 0.30 0.10
All 0.20 0.50 0.18 0.51 0.29 0.24

* Statistically insignificant (p = 0.01)
RMSE (root-mean-square-error)

12
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TABLE lll. Comparison of sub-pixel classificatiorsults using MODIS-NDVI and MODIS
surface reflectance bands. Sub-pixel estimationseattfrom MODIS-NDVI and surface
reflectance bands (2001) were compared with the: ¢cawer proportions derived from the
NLCD-2001.

Resolution (250 m) Tree Canopy Impervious Surfaces Cropland
RMSE R RMSE R RMSE R
NDVI 0.20 0.50 0.18 0.51 0.29 0.24
2 MODIS Bands (1,2) 0.19 0.56 0.17 0.57 0.27 0.28
3 MODIS Bands (1,2,6) 0.19 0.57 0.16 0.59 0.26 0.30
7 MODIS Bands (1-7) 0.19 0.57 0.15 0.63 0.26 0.30

All R* values are statistically significant (p = 0.01)

13
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TABLE IV. Comparison of sub-pixel classificatiorstdts using MODIS-NDVI and MODIS surface
reflectance bands. Sub-pixel estimations derivethfiODIS-NDVI and surface reflectance
bands (2001) were compared with the land covergitams derived from the NLCD-2001.
Sub-pixel land cover proportions were aggregatesDdm for comparison.

Resolution (500 m) Tree Canopy Impervious Surfaces Cropland
RMSE R RMSE R RMSE R
NDVI 0.16 0.68 0.17 0.58 0.22 0.49
2 MODIS Bands (1,2) 0.15 0.75 0.16 0.60 0.18 0.56
3 MODIS Bands (1,2,6) 0.14 0.76 0.14 0.65 0.18 0.59
7 MODIS Bands (1-7) 0.14 0.76 0.13 0.68 0.18 0.59

All R values are statistically significant (p = 0.01)

14
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TABLE V. GLB accuracy assessment statistics (25@isimg the different MODIS data
products as inputs. Reported are the higResalues derived using individual images (a)
and the entire MODIS time-series data (b). Theesponding DOY (97-273) for eaffi
value are also reported.

(a) Individual Images MODIS Products/Band Combimiadi
NDVI bands 1,2 bands 1,2,6 bands 1-7
Tree Canopy 0.40 (193) 0.38 (185) 0.44 (185) 01485)
Impervious Surfaces 0.45 (209) 0.47 (217) 0.48)217 0.60 (217)
Cropland 0.21 (145) 0.21 (113) 0.22 (113) 0.26 J113
All R values are statistically significant (p = 0.01)
(b) All Images MODIS Products/Band Combinations
NDVI bands 1,2 bands 1,2,6 bands 1-7
Tree Canopy 0.50 0.56 0.57 0.56
Impervious Surfaces 0.51 0.57 0.59 0.63
Cropland 0.24 0.28 0.30 0.30

All R values are statistically significant (p = 0.01)

15
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Fig. 1. Ecological regions across the United Stptetion of the Great Lakes Basin
based on a modified Omernik (1987) classificatigstem. The ecoregion boundaries
were used to stratify the MODIS-NDVI sub-pixel d#dgations.
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Fig. 2. Comparison of entire-region and ecoregitvatified image classification approaches for traeopy (a), impervious
surfaces (b), and cropland (c).
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Fig. 3. The scatter plots for three sub-pixel cdypes at 250 m and 500 m resolutions. MODIS aitéh(1-7) combination was
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Fig. 4. The sub-pixel proportional maps for treaagay (b), impervious surfaces (c),
and cropland (d). MODIS all-band (1-7) combinatieas used to support the analysis.
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Fig. 5 (a-c). The Pearsorf Ralues derived for each individual image compassieg MODIS-NDVI, MODIS bands land 2,
MODIS bands 1, 2, 6, and MODIS bands 1-7 for te®opy (a), impervious surfaces (b), and cropland (c



