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Abstract. The induced polarization model developed recently by Revil & Florsch (2010) to model 1 

the complex conductivity of fully saturated granular materials has been extended to partial saturation 2 

conditions. It is an improvement over previous models like the Vinegar and Waxman model, which 3 

do not account explicitly for the effect of frequency. The Vinegar and Waxman model can be 4 

considered as a limiting case of the Revil and Florsch model in the limit where the distribution of 5 

relaxation times is very broad. The extended model is applied to the case of unconsolidated sands 6 

partially saturated with oil and water. Laboratory experiments were performed to investigate the 7 

influence of oil saturation, frequency, grain size, and conductivity of the pore water upon the 8 

complex resistivity response of oil bearing sands. The low-frequency polarization (below 100 Hz) is 9 

dominated by the polarization of the Stern layer (the inner part of the electrical double layer coating 10 

the surface of the grains in contact with water). The phase exhibits a well-defined relaxation peak 11 

with a peak frequency that is dependent on the mean grain diameter as predicted by the model. Both 12 

the resistivity and the magnitude of the phase increase with the relative saturation of the oil. The 13 

imaginary (quadrature) component of the complex conductivity is observed to decrease with the oil 14 

saturation. All these observations are reproduced by the new model.  15 

Keywords: Complex resistivity, complex conductivity, induced polarization, oil. 16 
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1. Introduction 1 

 2 

Induced polarization represents the measurement of the conductivity response (magnitude 3 

and phase) over a frequency range typically occurring from one milliHertz (sometimes down to the 4 

microhertz, see Olhoeft, 1985) to a few tens of kHz. Two electrodes are used to inject and retrieve 5 

the electrical current and two electrodes are used to measure the resulting difference of electrical 6 

potential and the phase lag between the current and the voltage (Marshall & Madden, 1959; Olhoeft, 7 

1986; Sturrock 1999; Lesmes & Morgan 2001; and Slater & Lesmes 2002a). In addition to the 8 

classical applications of induced polarization to the prospection of ore bodies, this non-intrusive 9 

method has been used for environmental purposes, especially to investigate contaminant plumes 10 

(Olhoeft, 1986; Slater & Lesmes, 2002b) and to interpret downhole measurements in oil-bearing 11 

sediments (Vinegar & Waxman, 1982, 1984). 12 

In the present study, we are interested in the effect of a non-wetting oil in the pore space of a 13 

porous sand upon the measurements of the spectral induced polarization. The presence of oil in 14 

porous materials has a characteristic electrical signature that depends on the amount of polar 15 

components in the oil and therefore depends on its wettability with respect to the solid phase 16 

(Olhoeft, 1986; Börner et al., 1993). Therefore the electrical signature of an oil-bearing sand also 17 

depends on the maturity of the oil or the time in which the oil has existed in the subsurface. This 18 

time dimension is one of the main factors controlling the biodegradation and the biogeophysical 19 

response of oil spills. Previous works have already shown that the induced polarization response of 20 

unsaturated porous materials changes with the saturation of the water phase (Vinegar & Waxman, 21 

1982, 1984; Ulrich & Slater, 2004; Binley et al., 2005; Ghorbani et al., 2008). Olhoeft (1986) 22 

reported an increase of the phase of materials containing clay particles and contaminated with oil. 23 
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Vanhala et al. (1992) described the spectral induced polarization signature associated with the 1 

presence of toluene, heptane, and ethylene glycol in glacial tills. They observed an increase of the 2 

magnitude of the phase in the presence of these organic contaminants. Börner et al. (1993) observed 3 

an increase of the magnitude of the phase in clays in the presence of organic contaminants and a 4 

decrease of the magnitude of the phase for oil contaminated sandstones except in the case of 5 

benzene. Vanhala (1997) showed that the introduction of motor oil decreases the magnitude of the 6 

phase of glacial sediments (sands and tills). Recently, Cassiani et al. (2009) performed an 7 

investigation showing the effect of the saturation in hydrocarbons upon induced polarization (using a 8 

non-wetting oil) but they investigated only few extreme values in the oil saturation. They were able 9 

to fit their data with the empirical Cole-Cole model but this empirical relationship does not explain 10 

the experimental results from a mechanistic standpoint.  11 

With the exception of the work of Vinegar & Waxman (1984), no quantitative model has 12 

been developed to interpret the available experimental data and to see what fundamental mechanisms 13 

could explain these experimental observations. Vinegar & Waxman (1984) were the first to develop 14 

a model based on the polarization of the Stern layer plus the effect of membrane polarization. 15 

However, they did not accounted for frequency dependence of the in-phase and quadrature 16 

conductivities and therefore were not be able to explain experimental data showing peaks in the 17 

phase lag or quadrature conductivity.  18 

In the present investigation, we performed new laboratory experiments showing the influence 19 

of oil saturation, grain size, and conductivity of the pore water upon the complex resistivity response 20 

of oil bearing sands. In addition, we developed a quantitative and testable model to explain these 21 

experimental results. This model is based on a description of the polarization of the electrical double 22 
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layer at the grain / water interface and is an extension of the model published recently by Revil and 1 

Florsch (2010). 2 

 3 

2. Theoretical Background 4 

 5 

There exist numerous models describing the high-frequency electromagnetic properties of 6 

partially saturated sedimentary rocks (e.g., Cappacioli et al., 2001). However, to the best of our 7 

knowledge, the only quantitative model proposed in the literature to account for the effect of oil 8 

saturation upon low frequency (< 100 Hz) complex conductivity measurements of partially saturated 9 

sandstones is the model developed by Vinegar & Waxman (1982, 1984). A description of this model 10 

is provided in Appendix A. However, this model does not account for the frequency dependence of 11 

the in-phase and quadrature conductivities and therefore needs to be extended with that respect. We 12 

will show that the Vinegar & Waxman (1982, 1984) model could be considered as the limiting case 13 

of a model accounting explicitly for the grain size distribution. 14 

Recently a new model has been developed by Revil & Florsch (2010) in terms of providing a 15 

linear quantitative model for the low frequency complex conductivity of a partially saturated pack of 16 

sand grains characterized by a median D50 and a standard deviation ̂ . This model was developed to 17 

relate quantitatively spectral induced polarization to permeability for fully water-saturated granular 18 

media. It accounts explicitly for the grain size distribution through a polarization of the electrical 19 

double layer coating the surface of the grains. At low frequencies (typically below 100 Hz), the main 20 

induced polarization mechanism discussed by Revil & Florsch (2010) corresponds to the polarization 21 

of the inner portion of the electrical double layer, the so-called Stern layer (Figure 1). The external 22 

part of the electrical double layer only contributes to the DC conductivity and is considered to be 23 
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independent of the frequency. An additional mechanism, called Maxwell-Wagner polarization, is 1 

also known to contribute at higher frequencies. While the electrical double layer polarization is due 2 

to the accumulation of charge carriers at some discontinuities in the porous material (called 3 

polarization length scales), the Maxwell-Wagner polarization is due to the discontinuity of the 4 

current displacement at the interface between the different phases of the porous material. The 5 

Maxwell-Wagner contribution is therefore dielectric in nature. This dielectric contribution can be 6 

dominant above 1 kHz (e.g., Lesmes & Morgan, 2001; Leroy et al., 2008). In the present paper, we 7 

are mainly interested in the low-frequency content of the induced polarization spectra for which the 8 

Stern layer polarization seems to dominate, so we ignore the Maxwell-Wagner polarization effect 9 

and we consider only our data in the frequency range 1 mHz-100 Hz because the effect of the 10 

saturation upon the Maxwell-Wagner polarization is fairly well-known.  11 

In a water saturated sand, the polarization of the Stern layer occurs because the Stern layer is 12 

discontinuous at the scale of the representative elementary volume. Indeed, the grains are in contact 13 

with each other but the grain-to-grain contiguity provides only a continuous pathway for the diffuse 14 

layer that extends few nanometers to tens of nanometers in the pore space. The Stern layer formed by 15 

the sorption of counterions (generally cations) on the mineral surface remains discontinuous at the 16 

grain-to-grain contacts. In addition, we consider that sorption-desorption processes of the 17 

counterions do not appear in the investigated frequency range (1 mHz-100 Hz). Therefore, when an 18 

electrical field is applied to a grain, the electromigration of the weakly sorbed cations of the Stern 19 

layer (moving in the direction of the electrical field) accumulate at the edge of the grain and back-20 

diffuse in their concentration gradients (Leroy et al., 2008, Revil and Florsch, 2010). This idea is not 21 

new and is essentially the same as proposed by Schwarz nearly fiftty years ago (Schwarz, 1962). 22 

Schwarz studied the polarization of a compact layer of counterions coating the surface of an 23 
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insulating sphere. He based his approach on the assumption that there is no exchange of ions 1 

between the Stern and the diffuse layers or the pore water. He therefore assumed that the counterions 2 

can only move tangentially along the surface of the grains. This assumption seems plausible as the 3 

kinetics of sorption/desorption of ions in the Stern layer is very slow (typically several hours, see 4 

discussion in Revil et al., 1999, their Figure 7 and Li et al. 2010). We consider therefore that the 5 

characteristic length scale associated with this polarization mechanism is related to the size of the 6 

grains. In the model developed by Revil & Flosch (2010), the influence of a grain size distribution is 7 

accounted for through the use of a convolution product (see also Lesmes & Morgan, 2001).  8 

In the presence of a partially saturated oil sand with a non-wetting oil, the pore volume is 9 

filled by two continuous and immiscible fluid phases, a wetting fluid and a non-wetting fluid. In the 10 

present investigation, the wetting fluid is water (subscript w) and the non-wetting fluid is oil 11 

(subscript o). We denote ] 1 ;0 [ws  the relative saturation of the water phase and =1o ws s  is 12 

therefore the oil relative saturation. A sketch of the distribution of the different phases in the 13 

presence of a non-wetting oil is shown in Figure 2a. When oil is the non-wetting phase, the diffuse 14 

layer coating the surface of the sand grains is supposed to stay continuous over a representative 15 

elementary volume of the sand including at high oil saturation because oil is the non-wetting phase. 16 

The situation would be very different for a wetting oil as the electrical response would be possibly 17 

controlled by the properties of the electrical double layer at the oil/water interface rather than by the 18 

properties of the solid/water interface (see Figure 2).  19 

We denote  = 2  f the angular frequency, f the frequency (in Hertz), and 1/2( 1)i    the pure 20 

imaginary number. The magnitude of the conductivity   and the phase lag   are related to the real 21 

(in-phase) and imaginary (out-of-phase or quadrature) components of the complex conductivity *, 22 

'  and "  (expressed in S m-1) by,  23 
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* exp( ) ' "i i       ,      (1) 1 

2 2' "    ,      (2) 2 

tan "/ '   .      (3) 3 

Induced polarization is usually displayed as a resistivity magnitude 1 /   (in ohm m) and a 4 

phase   (in rad) or alternatively as in-phase and quadrature conductivities, '  and " , respectively. 5 

We will use both representations below because the quadrature conductivity is directly related to 6 

surface conductivity while the phase angle depends on both the in-phase and quadrature 7 

conductivities.  8 

In the present paper, we do not account (1) for the Maxwell-Wagner polarization occurring at 9 

higher frequencies (>100 Hz) and (2) the conductivity of the oil, which is assumed to be insulating 10 

like the silica grains. As explained previously, the Stern layer is discontinuous at the scale of the 11 

grains and therefore the relevant polarization length scale is the grain size. The diffuse layer is 12 

continuous because it extends inside the pore space and therefore surrounds continuously all the 13 

grains. The oil phase phase is assumed to be continuous and the oil-water interface is assumed to be 14 

uncharged. Using the approach of Revil & Florsch (2010) (see also Leroy et al., 2008 and Leroy & 15 

Revil, 2009), the low-frequency complex electrical conductivity is written as (see Appendix B), 16 
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0

( ) 1g d 


 ,       (7) 1 

and mF    is the electrical formation factor (m is called the cementation exponent and  is the 2 

connected porosity), n is the saturation exponent (also called the second Archie's exponent, Archie, 3 

1942), the term ( ) VQ   (in S m-1) represents the surface conductivity associated with the excess of 4 

charges in the pore water (the so-called diffuse layer contribution, see Revil et al., 2005), VQ  (in C 5 

m-3) is the excess of charge per unit pore water volume due to the diffuse layer, ( )   (in m2 s-1 V-1) 6 

represents the mobility of the cations in the main pore space assumed to be the same in the bulk pore 7 

water and in the Stern layer, w
 

is the conductivity of the pore water, S  is the equivalent 8 

conductivity of the grains coated by the Stern layer (in S m-1), ( )g   represents the probability 9 

distribution of the relaxation times , hE  (in m-1) is the expected value of the probability density 10 

function ( )h  , which is the probability density distribution of the inverse of the grain diameter  = 11 

1/D (D is the grain diameter) and ( )f D  is the probability density of the grain diameter distribution 12 

(see Revil & Florsh, 2010 for details). The assumption that the mobility is the same in the bulk pore 13 

water and in the Stern layer should be considered with caution: This assumption may be valid for 14 

counterions that are weakly sorbed in the Stern layer (like sodium that keeps its hydration shell in the 15 

Stern layer) but obviously does not hold for counterions that are strongly sorbed on the mineral 16 

surface. A discussion on this subject is provided in Revil & Florsch (2010).   17 

The saturation dependence of Eq. (4) is consistent with the model and experimental data of 18 

Vinegar & Waxman (1982, 1984) (see Appendix A for a check of the consistency between the two 19 

models). However, the model of Vinegar & Waxman (1982, 1984) does not explicitly account for 20 

the frequency dependence of the in-phase and quadrature conductivities and the influence of the 21 

grain size distribution while our model accounts explicitly for these dependencies. The reason for 22 

this discrepancy is the following: Vinegar & Waxman (1982, 1984) worked with rocks characterized 23 

by a very broad distribution of heterogeneities that translate into a very broad distribution of 24 
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relaxation times. Therefore, the convolutive effect of the heterogeneity is responsible for the lack of 1 

dependence of the in-phase and quadrature components of the conductivity with the frequency over a 2 

quite broad frequency range. In our case, the distribution of the heterogeneities will mainly 3 

controlled by a narrow grain size distribution and we will clearly see the peak in the phase associated 4 

with the expected value of this distribution. As explained in Appendix A, our model can be 5 

considered as an extension of the Vinegar & Waxman model accounting explicitly for the effect of 6 

the frequency.  7 

The so-called surface conductivity ( ) '( ) "( )S S Si        associated with the Stern layer 8 

shown in Figure 1 can be decomposed into a real component and a quadrature component, 9 
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The grain size distribution of the sand that we will consider later in this paper is log normal,   14 
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with ˆ ln g   and 50ln D   are the standard deviation and the mean of the grain diameter natural 17 

logarithm, respectively, g  is the geometric standard deviation, and 50D  represents the median of 18 

the grain size distribution. The median 50D  (in m) is used as a measure of the average particle 19 

diameter size for the granular material. The standard deviation is a measure of the dispersion about 20 

the mean grain diameter for a given distribution. In this case, the expectation of the distribution of 21 
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the inverse of the grain size is given by, 1 
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For such a grain size distribution, the related distribution of the relaxation times is given by (Revil & 4 

Florsch, 2010), 5 
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Note that the standard deviation for the distribution of the relaxation times is ˆ2  and not ̂ . In the 7 

model developed by Schwartz (1962), the relaxation time for an ion of species i, τ0 (in s), is therefore 8 

related to the diffusion coefficient of the ion i in the Stern layer i
SD  by,  9 
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where F   is the tortuosity given by the product of the formation factor F with the connected 11 

porosity . This tortuosity correction does not appear in the original paper of Schwartz (1962) and is 12 

due to Binley et al. (2010). For the sands investigated in the present paper, the formation factor is 3.9 13 

and the porosity is 0.4. This yields a bulk tortuosity equal to 1.56.  14 

On a silica surface, surface conductivity is general very small with respect to the pore water 15 

conductivity (except for very fresh pore waters). We assume conditions such as the conductivity 16 

term associated with the pore water is larger than the surface conductivity term ( 1) SF   . This 17 

condition is satisfied for the tap water and is a quite good approximation for the demineralized water 18 

used below in the experiments. Neglecting the contribution of the surface conductivity to the in-19 

phase conductivity, the in-phase and quadrature conductivities and the phase are given by,  20 
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respectively.  4 

In our model, we do not consider polarization for the diffuse layer because we assume that it 5 

forms a continuous phase through the porous material even at partial saturations as long as oil is the 6 

non-wetting phase. In contrast, the Stern layer polarizes because it is discontinuous. However the 7 

assumption that the polarization is entirely due to the Stern layer should be consider with caution as 8 

other contributions, such as the membrane polarization, have not been considered yet from a 9 

quantitative standpoint (see a short discussion in Leroy & Revil, 2009). 10 

An alternative view of the problem is to consider the influence of the specific surface area, S, 11 

upon the phase or the quadrature conductivities. It is generally admitted that the higher the specific 12 

surface area, the higher the polarization and therefore the quadrature conductivity. The surface area 13 

per pore volume ratio is related to the expectation Eh by: 14 
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where   represents the connected porosity. Therefore the mean grain size, the standard deviation of 1 

the grain size distribution, the connected porosity, and the surface to pore volume ratio are all 2 

connected parameters through Eq. (19) or Eq. (20).  3 

 We note 0  the value of the phase at the relaxation frequency (in s-1) defined by 0 01/   4 

where 0  is given by Eq. (14). Note that the relaxation occurs at a frequency that is, in principle; 5 

independent on the saturation of the water phase. As successfully explained by Jougnot et al. (2010) 6 

for clay-rocks (argillites), the effect of the saturation upon the phase is due to the fact that the 7 

Maxwell-Wagner is not entirely negligible at the frequency at which the relaxation of the Stern layer 8 

occurs. An alternative possibility would be that there is a small contribution from membrane 9 

polarization that is saturation-dependent because occurring in the pore water phase and not along the 10 

mineral surface. Using Eq. (18), this phase is given by, 11 
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Our model predicts therefore a change of the phase peak with the saturation. Using this high salinity 13 

assumption, we obtain: 14 
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Using Eqs. (8) and (12) with the grain size distribution assumed to be described by a log normal 16 

distribution, the high frequency surface conductivity is given by, 17 
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and therefore the phase peak is given by, 19 
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Neglecting the surface conductivity in the in-phase conductivity (for the brine saturated case), the in-1 

phase and quadrature conductivities at the phase peak are given by, 2 
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Replacing the surface conductivity S
  by its expression as a function of the specific surface 5 

conductance, see Eq. (23), the quadrature conductivity peak can be written as, 6 
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The sign "-" in this equation means that the phase lag between the current and the voltage is negative 8 

(if the current is imposed, the voltage follows the current with a phase lag). These equations will be 9 

tested below in Section 4.  10 

 A last point that is worth of discussion is the influence of the oil water interface upon 11 

complex conductivity. In Figure 2, two end-members cases correspond to the cases of a pure non-12 

wetting oil and a pure wetting oil. In the first case, there are two interfaces to consider in principle in 13 

the pore space: the grain/water interface and the oil/water interface. The model discussed above does 14 

consider only the grain/water interface. This assumption is valid if the oil/water interface is non-15 

reactive and therefore does not form an electrical double layer in water or if the specific surface area 16 

of the oil/water interface is much smaller than the specific surface area of the grain/water interface. 17 

Experimental data shows however that there is an electrical double layer at the oil/water interface 18 

including for non-wetting oils (Volkov et al., 1996). However if the oil phase form a continuous 19 

phase in the pore space of the porous material, we should not expect any polarization of the Stern 20 

layer of the oil/water interface.  21 
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The case of a wetting oil should be quite different. Indeed, in the extreme case where oil 1 

covers uniformly the surface of the grains, there is only one interface (the oil/water interface) and the 2 

polar components contained in the oil (e.g., asphatenes) makes the oil/water interface quite reactive 3 

in water and the setting of a strong electrical double layer. However this second case in not 4 

investigated in the present paper and will be investigated in a separate contribution.  5 

 6 

3. Material and Methods 7 

 8 

As explained in Section 2, the spectral induced polarization method is based on the 9 

measurements of the complex resistivity ρ* (in ohm m) over several decades in frequency (in the 10 

present case from 1 mHz to 45 kHz). The complex resistivity is the inverse of the complex 11 

conductivity * : *1*   . What is actually measured is the complex resistance or impedance R* 12 

(in ohm) between the end-faces of a cylindrical sample for instance:  13 
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I
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where U is the measured voltage difference between electrodes M and N, which are called the 15 

potential electrodes (see Figure 3), I the magnitude of the imposed current between the electrodes A 16 

and B, which are called the current electrodes (Figure 3), and  *R   and    are the amplitude 17 

and the phase of the complex impedance, respectively. The complex resistivity ρ* is related to R* by 18 

a geometrical factor K (in m):    * *KR   . This geometrical factor K takes into account not 19 

only the position of the electrodes in the tank but also the insulating boundary conditions at all 20 

boundaries (Figure 3). The insulating boundary condition means that the normal component of the 21 

current density and the electrical field are equal to zero at the boundaries. The geometrical factor was 22 
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calibrated by measuring the conductivity of the sand independently with a two-electrode device and 1 

a cylindrical cell at 4 kHz (at this frequency, the polarization of the stainless steel electrodes can be 2 

neglected). Note that the phase    is the same for the resistivity and the impedance and is 3 

independent on the value of the geometrical factor K.  4 

 To perform the experiments, we used a small tank filled with a mix of oil, water, and sand 5 

grains (Figure 3). The amount of sand was kept the same and only the volumetric proportion of oil 6 

and water was changed. A sketch of the experimental setup is shown in Figure 3. Both demineralized 7 

and tap waters were used. The conductivity of the tap water was comprised between 1.20x10-2 S m-1 8 

and 1.70x10-2 S m-1 at 25°C. The electrical conductivity of the demineralized water was 5 x 10-4 S m-9 

1 at 25°C. The sand was a silica sand with the properties summarized in Table 1. The properties of 10 

this sand were measured by Sakaki & Illangasekare (2007), and Sakaki (2009). We used two sands 11 

denoted as Types A and B, respectively. Type A has a mean grain diameter of 200 m while Type B 12 

has a mean grain diameter of 500 m.  13 

 All the experiments have been done under the same conditions, at ambient laboratory 14 

temperatures, typically 24 ± 3 °C using exactly the same procedure. The composition of the tap 15 

water is given in Table 2 (mass density 1000 kg m-3). The light North Sea oil has a mass density of 16 

898 kg m-3. Its composition is reported in Table 3. So the difference in mass density between water 17 

and oil is quite small. The plastic tank used for the experiments has a height of 8 cm, a length of 18 

15cm, and a width of 10 cm.  19 

The spectral induced polarization measurements were conducted using a ZEL-SIP04 20 

impedance-meter developed at the Forschungszentrum, Juelich, Germany by Egon Zimmerman. The 21 

characteristics of this apparatus including its accuracy and reliability were described extensively by 22 

Zimmerman et al. (2008) and are not repeated here. An additional test can be found in Jougnot et al. 23 
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(2009). The sensitivity of this apparatus is typically at 0.1 mrad over most of the investigated 1 

spectrum. A test reported in Jougnot et al. (2009) using a pure carbonate rock sample show no phase 2 

as expected for this type of material. 3 

At a room temperature of 24 ± 3 °C, measurements comprise 25 sinusoidal signals at various 4 

frequencies, three measurements per decade, and the measurements are log-spaced in the frequency 5 

range from 1 mHz to 45 kHz. Current was driven at the current electrodes A and B (Figure 3) by a 6 

potential difference of 5 V. Both Cu/CuSO4 (home-made) and Pb/PbCl2 (Petiau electrodes, 7 

manufactured by Geonesis in France) had been tested. The Cu/CuSO4 electrodes have a 12 mm 8 

diameter porous ceramic with a pore mean diameter of 2 m and a hydraulic conductivity of 2.2x10-9 9 

m s-1. The electrodes are made by a 10 cm length flexible plastic tube filled with CuSO4 solution in 10 

which a 10 cm length copper wire (diameter of 1mm) is inserted.   11 

All the measurements performed with the non-wetting oil have been done with both types of 12 

electrodes to compare the results. We found that (1) the experimental data were very similar, 13 

especially in low frequency range from 10 mHz to 500 Hz and (2) accurate measurements could not 14 

always be achieved in the very low frequency range (1 to 10 mHz) with the Cu/CuSO4
 electrodes 15 

because of leakages of the copper sulfate solution in the tank generating sometimes instable 16 

readings. Therefore only the Petiau electrodes were used in the entire frequency range from 1 mHz 17 

to 45 kHz and are shown below. We used a square array of electrodes with AB=MN=AM=BN=7 cm 18 

because it was the easiest electrode array to use with our tank geometry. However the response 19 

should be independent of the selection of the electrode array as the sand in the sandbox is 20 

homogeneously distributed. 21 

For all the experiments, the preparation of adequate quantities of sand, oil, and water was 22 

performed about 30 minutes before the beginning of the measurements. We mixed the different 23 
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components in the box shown in Figure 3. We first mixed oil with water and then the oil/water 1 

mixture was mixed together with the sand. The same amount of sand was used for all the 2 

experiments. At saturation with water, the porosity was estimated from the volume of the box, the 3 

mass of the sand, and the density of silica (2650 kg m-3). The measured porosity is 0.40±0.02. The 4 

electrodes were inserted in the oil/sand/water mixture at a precise depth of 2 cm ± 1 mm (Figure 3). 5 

The duration of a complete cycle of measurements was 90 minutes, most of the time required to do 6 

the measurements being used to perform the measurements at lowest frequencies. Except when 7 

shown on the figures, the estimated phase uncertainty was 0.1 mrad based on the tests reported in 8 

Zimmerman et al. (2008). 9 

A typical plot of the phase versus the frequency is shown in Figure 4. A clear relaxation can 10 

be observed at low frequency and this relaxation is usually considered to be due to the polarization 11 

of the electrical double layer coating the sand grains (see Leroy et al., 2008 for a complete modeling 12 

of this contribution in sands). At high frequencies (>100 Hz), the phase increases because of the 13 

Maxwell-Wagner polarization as discussed extensively by Leroy et al. (2008). In the present paper, 14 

we are however interested in the low-frequency behavior and we will plot only the low frequency 15 

range of the investigated frequency range.  16 

 17 

4. Experimental Results and Interpretation 18 

 19 

All spectral induced polarization phase curves show a peak at low frequencies (in the 0.001- 20 

0.1 Hz range), consistent with results presented recently by Cassiani et al. (2009) who used a non-21 

wetting oil. The values of the phase angles and the resistivity at the peak of the relaxation are 22 

reported in Table 4. Measurements were done at five different saturations: sw = 1 (the pore space is 23 
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fully saturated with water), sw = 0.80, sw =0.60, sw = 0.40, and sw = 0.20. In the case of the pore space 1 

fully saturated by oil, it was impossible to inject current in the sand/oil mixture because of the high 2 

resistivity of the oil (typically 109 ohm m).  3 

Both the magnitude of the resistivity and the absolute value of the phase increases when the 4 

water saturation decreases. The resistivity increased from 300 ohm m for sw = 1 to 10,000 ohm m for 5 

sw = 0.2. The absolute value of the phase increased from 3.4 mrad for sw = 1 to 14.5 mrad for sw = 0.2 6 

(Figure 5). We also observed a shift in the frequency of the peak from 100 mHz at sw = 1 to 10 mHz 7 

at sw = 0.2.  8 

In order to check the influence of the salinity of the pore water, we did four experiments at 9 

two water saturations (sw =0.4 and 0.6) with two different types of pore waters (Figure 6). We used 10 

tap water (conductivity varying from 1.20x10-2 S m-1 and 1.70x10-2 S m-1 at 21±1°C) and 11 

demineralized water. We observed a slight shift of the peak of the polarization with the change in the 12 

ionic strength (from 20 mHz with tap water to 50 mHz with demineralized water). This is consistent 13 

with the fact that the peak of the phase is not expected to be very sensitive to the conductivity of the 14 

pore water, see Eq. (14). The most dramatic change concerns the amplitude of the phase, which is 15 

much stronger for demineralized water ( = 11.3 mrad for sw =0.6 and ( =12.3 mrad for sw =0.4) 16 

than for tap water (( =5.7 mrad for sw =0.6 and ( =7.6 mrad for sw =0.4). This is consistent with 17 

the model developed by Revil & Florsch (2010) and explained by the salinity dependence of the 18 

specific surface conductivity S . 19 

In order to also check the influence of the grain size, we performed experiments at two 20 

distinct water saturations (sw =0.4 and 0.6) for the two types of sands: type A (200 m) and B (500 21 

m). The results are shown in Figure 7. The resistivities did not show a strong dependence with the 22 
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grain size at sw =0.6 and at sw = 0.4. The effect of grain size is associated with surface conductivity in 1 

the electrical double layer surrounding the grains (Figure 1). The conductivity is given by, 2 

50

4
( 1)

n
w S

w
w

s
F

F s D
 

 
   

 
,     (29) 3 

We use the following values for the model parameters: D50 = 200 m (Type A), D50 = 500 m (Type 4 

B), w  = (1.4±0.2) x 10-2 S m-1 (tap water), F = 3.9, S  = 2x10-9 S (see below), and n=2.14 (see 5 

below). For sw =0.6, we find (sand A) = 820 ohm m (measured ~850 ohm m) and (sand B) = 827 6 

ohm m (measured ~850 ohm m). For sw =0.4, we find (sand A) = 1939 ohm m (measured ~1600 7 

ohm m) and (sand B) = 1963 ohm m (measured ~1500 ohm m). So surface conductivity can be 8 

neglected in the in-phase conductivity. It represents ~1% of the in phase conductivity response for 9 

sands A and B for the pore waters used in the present study. Therefore the in phase conductivity is 10 

unable to distinguish the two types of sands.   11 

With the phase (or the quadrature conductivity), it is easier to distinguish the two types of sands 12 

because there a strong shift in the maximum of the phase maxima can be observed (Figure 7). Type 13 

A (200 m) sand has a peak frequency occurring at higher frequencies than Type B sand (500 m). 14 

The measured peak of the (ordinary) frequency 0f  is in the range 60-100 mHz for type A at 15 

saturation in water (Figures 5 and 8) and 2 to 6 mHz for sand B (see Figure 5). These results are 16 

consistent with the fact that the peak of the frequency depends on the square of the grain size: the 17 

larger the grain size, the smaller the frequency peak. According to our model, the relaxation 18 

frequency (in Hertz) is defined as 2
0 0 0 50/ 2 1/ 4 / ( )i

Sf D D      . Taking i
SD = 2.5 x 10-9 m2 s-19 

1 (Leroy et al., 2008) and a tortuosity  = 1.56 (given as the product of the formation factor by the 20 

connected porosity), the relaxation frequency is 51 mHz for Type A and 8 mHz for type B. 21 

Therefore there is a fair agreement between the theory and the observations. Type A is also 22 
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characterized by phases that are higher than Type B. This is consistent with the fact that a pack of 1 

small grains has a surface area higher than a pack of coarser grains (see discussion in Section 2).  2 

In Figure 8, we mixed in equal volume Sand A (fine) and Sand B (coarse) and we measured 3 

the complex conductivity of the mixture using the same procedure as before. The spectrum of the 4 

phase is compared with the spectra obtained with Sand A and Sand B at full water saturation (see 5 

Figure 8). At 100 Hz the phase is found to be exactly in between the phase of Sand A and Sand B. 6 

The frequency peak of the mixture (~30-50 Hz) is observed to be closer to the frequency peak of 7 

Sand A (60-100 mHz) than to the frequency peak of sand B (~1-6 mHz). These results are also 8 

qualitatively in agreement with our model as the characteristic grain size of a multimodal distribution 9 

is given by (Revil & Florsch, 2010),  10 

1

0

1
( ) ln

h

f D d D
E

 
  
 
 .      (30) 11 

If we consider a mixture of two very narrow grain size distributions (described by two delta 12 

functions), we can write (Revil & Florsch, 2010): 13 

1 1

/ /h f f c cE f D f D



,      (31) 14 

where ff  is the volumetric fraction of fine grains of diameter fD  and cf  is the volumetric fraction 15 

of coarse grains of diameter cD . In our case ff  = cf  =1/2, fD  = 200 m, cD = 500 m. Using Eq. 16 

(31), this yields 1/ hE = 286 m. Replacing D50 in the expression of the peak frequency by 1/ hE , the 17 

relaxation frequency (in Hertz) is given as 2
0 4 / ( )i

S hf D E  . This yields a relaxation frequency of 18 

25 mHz in fair agreement with the observed frequency peak of the mixture (~30-50 Hz) 19 
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We come back now to the in phase conductivity. The small dependence of the electrical 1 

conductivity with the grain size implies that surface conductivity can be neglected. Therefore, 2 

according to Eq. (4), we can write, 3 

1 n
w ws

F
  ,      (32) 4 

From Figure 9a, the formation factor can be determined experimentally as 275 ohm m divided by the 5 

resistivity of the pore water. The conductivity of the pore water is w  = (1.4±0.2) x 10-2 S m-1, so the 6 

formation factor is 3.9. This is consistent with a porosity of 0.40 and a cementation exponent of 1.5. 7 

The experimental data obey also the second Archie's law with a saturation exponent n equal to 2.14 8 

(see Figure 9). Vinegar & Waxman (1984, Their Table 10) reported a mean value of the exponent 9 

term equal to 2.06 for sandstones). We use the following power law relationship to fit the values of 10 

the phase (at the frequency of the peak of the low-frequency relaxation) with the saturation: 11 

0
b

was  .      (33) 12 

We find a = - 3.5 ± 0.5 mrad and the exponent term is b = 0.89 ± 0.10. In the case of the exponent, 13 

the theoretical value obtained in Section 2 (equation 22) is b = 1. According to our model, the 14 

constant a is given by, 15 

2

50

2 ( 1) 1
ˆexp

2

S

w

F
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


      

 
.     (34) 16 

The formation factor is equal to F = 3.9 (see above). The conductivity of the pore water is w  = 17 

(1.4±0.2) x 10-2 S m-1. The mean diameter of the grains is 50D = 200±10 m (see Table 1). With the 18 

values of the standard deviation reported in Table 1 (corresponding to a very narrow grain size 19 

distribution), the exponential term is very close to one (1.04 for sand A and closer to 1 for sand B). 20 

The specific surface conductivity S  found by Bolève et al. (2008) is equal to 4x10-9 S at 25°C. 21 
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They used sodium chloride solutions. In the present case, the solution is dominated by the bivalent 1 

cation Ca2+ in the pore water (see Table 2). The presence of bivalent counterions decreases by a 2 

factor two the inner potential of the diffuse layer (Lorne et al., 1999, their Figure 18) and therefore 3 

the specific surface conductance. Therefore, we consider S  = 2x10-9 S in Eq. (31) to determine the 4 

value of the coefficient a. This yields a = -4.1±0.7 mrad. This value is consistent with the value 5 

determined from the fit of the experimental data a = - 3.5 mrad (see above). So both coefficients a 6 

and b can be predicted by the model.  7 

 Another way to represent the data is to plot the quadrature conductivity as a function of the 8 

frequency or the water saturation. Some authors prefer this representation of the data as the 9 

quadrature conductivity is independent of the in-phase conductivity while the phase angle depends 10 

both on the in-phase and quadrature conductivities. However one can argue that the in-phase and 11 

quadrature conductivities are not independent either as they depends on the same parameters 12 

(formation factor, specific surface conductance). The results are shown in Figure 10. The quadrature 13 

conductivity at the relaxation frequency (denoted with a subscript m) increases with the water 14 

saturation.  15 

0 " p
wcs  ,      (35) 16 
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And according to our model, we have, 18 
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,    (36) 19 

and p = n-1. Using n equal to 2.14 (see above), the theoretical value predicted by our model is p = 20 

1.14. Using F = 3.9 (see above), 50D = 200 m, a narrow grain size distribution such as the 21 

exponential term is equal to one, and S  = 2x10-9 S, the theoretical value of c is equal to 1.6 x 10-5 S 22 
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m-1. These values can be compared to the experimental values p = 1.26 (Figure 11) and c = 1.3 x 10-5 1 

S m-1 (Figure 10). There is again a good agreement between the theory and the experimental data.  2 

Figure 10 shows the dependence of the normalized quadrature conductivity versus water 3 

saturation for the sand filled with the non-wetting oil and water and for two sandstones investigated 4 

by Vinegar & Waxman (1984). The normalization is done with respect to the value of the quadrature 5 

conductivity at saturation of the water phase. Our results are consistent with those of Vinegar & 6 

Waxman (1984). According to the model developed above and the model of Vinegar & Waxman 7 

(1984), the exponent of this relationship is p = n -1. As n = 2.14 for our sample and the mean of n is 8 

equal to 2.06 for the samples investigated by Vinegar & Waxman (1984, their Table 10), we expect p 9 

= 1.14 in our case and p = 1.06 in the case of the data reported by Vinegar & Waxman (1984). We 10 

observe an exponent that is equal to 1.26 for our data. Vinegar & Waxman (1984, p. 1282) found p = 11 

1.11 ± 0.17. Therefore, the agreement between our model and the experimental data is fairly good. 12 

 13 

5. Concluding Statements 14 

 15 

We have performed spectral induced polarization measurements with fresh oil bearing sands 16 

investigating the influence of different parameters including (1) the oil saturation, (2) the 17 

conductivity of the pore water, and (3) the mean grain diameter of the sand. Our goal was to extend 18 

and to further test the spectral induced polarization model developed recently by Revil & Florsch 19 

(2010). This model is based on the polarization of the Stern layer at the sand / water interface and the 20 

polarization length scale is the size of the grains because of the discontinuity of the Stern layer 21 

between grains. For a non-wetting oil, the absolute value of the phase increases with the oil 22 

saturation and decreases with the salinity. An increase of the mean grain diameter shifts the peak 23 
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frequency at lower frequencies and decreases the value of the phase in a predictable way. All these 1 

results obtained with the non-wetting oil can be reproduced with the extension of the Revil & 2 

Florsch model except the broadness of the distribution of relaxation times which remains 3 

unexplained. The explanation may be found in the membrane polarization that has not being 4 

incorporated yet in our model or in mutual polarization effects between the grains that are not 5 

captured by the convolution product (David Lesmes, personal communication 2010). The application 6 

of the present model to in situ measurements will require the determination of the temperature 7 

dependence of the in-phase and quadrature conductivities and the experimental results and 8 

temperature dependence of surface conductivity shown by Vinegar & Waxman (1984) could be used 9 

for this purpose. The change of chemistry and biochemistry of an oil undergoing biodegradation in 10 

the subsurface would be probably reflected by a change in the time-lapse induced polarization 11 

signature and wettability of the oil. This is something worth to investigate in future works. 12 
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Appendix A. Comparison with the Vinegar and Waxman Model 1 

The Vinegar & Waxman (1982, 1984) model was developed to determine the phase and the 2 

resistivity of oil-bearing sandstones partially saturated with non-wetting oils. In this model, the 3 

distribution of the relaxation times is considered to be very broad but it is not explicitly accounted 4 

for. Therefore, over a broad frequency range, the in-phase and quadrature conductivities are 5 

frequency independent. At the opposite, in our model the distribution of the relaxation times is 6 

explicitly taken into account through a convolution with the probability distribution of the inverse of 7 

the grain diameters. We show below that our model is, however, consistent with the equations 8 

developed by Vinegar & Waxman (1982, 1984) with the exception that our model accounts for the 9 

frequency dependence of the in-phase and quadrature conductivities with frequency.  10 

From Eq. (4), the low-frequency electrical conductivity is given by, 11 

  1
( ) 1

n
w

w w V S

s
s Q F

F
   


      .     (A1) 12 

Using a first order Taylor expansion of Archie's law for a pack of spherical grains characterized by a 13 

value of the cementation exponent equal to 1.5 (from the differential effective medium theory 14 

applied to purely spherical grains, see Sen 1981), the term (F-1) at high porosities is approximated 15 

by,  16 
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The in-phase surface conductivity associated with the Stern layer is given by,  18 

( )

2
'

3 1S Vf Q
 
 

 
   

,    (A3) 19 

where f is the fraction of surface conductivity due to the Stern layer (0≤ f ≤ 1), (1- f ) is the fraction 20 

of surface conductivity due to the diffuse layer, and the factor  2 / 3(1 )   represents a conversion 21 
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factor to convert a charge per unit surface of the mineral to a charge per unit pore volume. In Eq. 1 

(A3), VQ  represents the total charge per unit volume including the Stern and the diffuse layer 2 

contributions. The charge density QV can be determined from the Cation Exchange Capacity (CEC, 3 

expressed in C kg-3) of the rock (Waxman & Smits, 1968):  4 

1
CECV SQ

 
  

 




,      (A4) 5 

where ρS is the mass density of the solid phase (in kg m-3) and   is the connected porosity. In 6 

addition, we have (1 )V VQ f Q  . Combining Eq. (A1) to (A3), the in-phase conductivity is given 7 

by, 8 
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Eq. (A4) corresponds to the Waxman & Smits (1968) model. The quadrature conductivity is 10 

assumed related to the quadrature conductivity of the surface conductivity by, 11 
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At high porosity, inserting Eq. (A2) into Eq. (A6), we have, 13 
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Assuming that, 15 
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and inserting Eq. (A8) into Eq. (A7), the quadrature conductivity is given by, 17 
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This can be compared with the quadrature conductivity model of Vinegar & Waxman (1984, their 1 

Eq. 36), 2 

1

"
n

w
a V

s
Q

F
 



  .       (A10) 3 

A comparison between Eqs. (A9) and (A10) implies ( )a f   . Taking f = 0.84 (see Revil & 4 

Florsch, 2010), we obtain a  = 4.3x10-8 m2 s-1 V-1 using the mobility of sodium in water (5.19x10-8 5 

m2 s-1 V-1 at 25°C) and a  = 4x10-9 m2 s-1 V-1 using the value of the mobility of sodium along the 6 

mineral surface suggested by Revil (1999, his Table 1) (0.51x10-8 m2 s-1 V-1 at 25°C). The value 7 

given by Vinegar & Waxman (1982, 1984, their Table 5) is equal to a  = 4 ± 2 x10-9 m2 s-1 V-1. 8 

However it would be presumptuous to conclude too quickly that the mobility of the counterions in 9 

the Stern layer is necessarily ten times lower than in the bulk pore water. Vinegar & Waxman (1982, 10 

1984) indicated that in addition to the polarization of the mineral surface, there is an additional 11 

polarization mechanism called the membrane polarization effect, which is not included in our model. 12 

In addition, our model would predict a distribution of relaxation times that is narrower than observed 13 

in the experiment reported in the main text. This may point out that another hidden mechanism, like 14 

membrane polarization, is at play. 15 
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Appendix B. Extension of the Revil and Florsch model 1 

For a water-saturated sand, the model developed by Revil & Florsch (2010) can be recasted 2 

as, 3 

 ( )

1
( ) 1 ( )w V SQ F

F
           .    (B1) 4 

The first term in brackets corresponds to the frequency-independent conductivity of the brine, the 5 

second term corresponds to the frequency-independent surface conductivity associated with the 6 

diffuse layer, and the third term corresponds to the frequency dependent surface conductivity term 7 

associated with the Stern layer. Extending this model for partial saturations requires making this 8 

model compatible with some well-known relationships. One of them is the second Archie's law when 9 

surface conductivity can be neglected. This law states that the inverse of the formation factor should 10 

be replaced by (1/ ) n
wF s  at partial saturation ws . When surface conductivity can be neglected, this 11 

yields, 12 

1 n
w ws

F
  ,       (B2) 13 

where n is the second Archie's exponent. In addition, we know from electrokinetic measurements 14 

that the excess of charge per unit volume scales as /V wQ s  for conditions of partial saturations (see 15 

Revil et al., 2007 and Linde et al., 2007). Assuming that the whole surface conductivity contribution 16 

follows the same dependence, we obtain the following equation at partial saturation, 17 
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Table 1 

Table 1. Measured properties of the loosely compacted sands used in the present study (from Sakaki 2 

& Illangasekare, 2007 and Sakaki, 2009). These measurements include the connected porosity , the 3 

hydraulic conductivity at saturation Ks, the mean grain diameter D50, and the standard deviation of 4 

the log normal grain size distribution ̂ .  5 

Sand Type  (-) Ks (10-3 m s-1) D50 (mm) ̂  

Type B(#30) 0.42 1.16±0.09 0.5 0.2 

Type A(#70) 0.42 0.141±0.15 0.2 0.3 

 6 

 7 

Table 2. Composition of the tap water (from City of Golden, 2009) with the assumption that 8 

hardness is due to Calcium. This yields a TDS of 245 ppm (~4.9x10-2 S m-1 at 25°C). Measurement 9 

made in April-May 2009. 10 

Substance Concentration  

(mmol/l) 

Ca2+ 

K+ 

Na+ 

Cl- 

SO4
2- 

HCO3
- 

pH 

0.95 

0.09 

1.44 

1.30 

0.82 

0.75 

8.4 

 11 
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Table 3. Composition of the oil (in wt %) used for the experiments. 1 

Molecules Weight fraction 
(%) 

Butanes 
Pentanes 
Hexanes 
Heptanes 
Octanes 
Nonanes 
Decanes 

Undecanes 
Dodecanes 
Tridecanes 

Tetradecanes 
Pentadecanes 
Hexadecanes 
Heptadecanes 
Octadecanes 
Nonadecanes 

Eicosanes 
Heneicosanes 

Docosanes 
Tricosanes 

Tetracosanes 
Pentacosanes 
Hexacosanes 
Heptacosanes 
Octacosanes 
Nonacosanes 
Triacontanes 

Untriacontanes 
Dotriacontanes 
Tritriacontanes 

Tetratriacontanes 
Pentatriacontanes 
Hexatriacontanes 
Heptatriacontanes 
Octatriacontanes 
Nonatriacontanes 

Tetracontanes 
C4O+ 
Total: 

0.0 
0.0 
0.0 
0.3 
0.5 
1.0 
1.4 
1.9 
2.5 
3.1 
3.7 
4.1 
3.7 
3.8 
4.0 
3.8 
3.8 
3.3 
3.0 
2.8 
2.7 
2.5 
2.3 
2.4 
2.2 
2.2 
2.2 
2.2 
1.8 
1.7 
1.5 
1.7 
1.4 
1.1 
1.0 
1.0 
1.0 
22.5 
100.0 
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Table 4. Values of the phase and the modulus of the resistivity at the peak of the relaxation for a 1 

sand (Type A) saturated by the non-wetting oil.  2 

Water saturation  

sw (-) 

Phase  

(mrad) 

Resistivity  

(ohm m) 

1.0 -3.4 279.1 

0.8 -4.3 449.6 

0.6 -5.7 853.7 

0.4 -7.6 1740.0 

0.2 -14.5 9149.2 

 3 



 38

                    1 

 2 

Figure 1. Sketch of the electrical double layer at the pore water interface for a fully water-saturated 3 

sand. The electrical double layer is made of the Stern layer with mobile counterions able to move 4 

tangentially along the mineral surface and the diffuse layer of counterions and coions existing in the 5 

pore water in the vicinity of the mineral/water interface. For a pack of silica grains, the main 6 

polarization mechanism seems to be associated with the polarization of the Stern layer. The 7 

conductivities S and d are the specific surface conductivities (in S) of the Stern and diffuse layers, 8 

respectively, and VQ  is the excess of charge of the pore water per unit pore volume at full water 9 

saturation and due only to the contribution of the diffuse layer coating the surface of the pores. 10 
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 1 

Figure 2. Sketch showing the difference in the position of the different phases between the solid 2 

phase, oil, and the pore water depending on the wettability of the oil with respect to the solid phase 3 

(silica). a. Oil is the non-wetting fluid. They are two interfaces that may carry an electrical double 4 

layer: the solid/water interface and the oil/water interface. The electrical diffuse layer of the pore 5 

water is squeezed in a smaller volume when the saturation of the oil phase increases. b. Oil is the 6 

wetting phase.   7 
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 1 

 2 

 3 

 4 

Figure 3. Sketch of the experimental setup using the Petiau Pb/PbCl2 electrodes manufactured by 5 

Geonesis. a. View of above. b. Size of the Petiau electrodes (from Geonesis). c. d. Views from the 6 

side. 7 
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 1 

            2 

Figure 4. Full spectra of the phase shift between the current and the voltage. The low (ordinary) 3 

frequency polarization is usually considered to be due to electrical polarization phenomena with 4 

possibly a contribution from membrane polarization (see Vinegar & Waxman, 1984) while at higher 5 

frequencies, the response is controlled by the Maxwell-Wagner polarization. This Maxwell-Wagner 6 

contribution to the overall polarization is not considered in the present study. 7 
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 2 

 3 

 4 

Figure 5. Modulus and phase of the complex resistivity for a non-wetting (NW) oil for different 5 

values of the relative water saturations in the range 1.0 to 0.2 (the case corresponding to the fully oil 6 

saturated sand could not be measured). Sand: Type A (fine sand).  7 
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 2 

 3 

Figure 6. Modulus and phase of the complex resistivity for a non-wetting (NW) oil for two different 4 

values of the water saturations sw = 0.6 and sw = 0.4 for two values of the conductivity of the pore 5 

water. Sand: Type A (fine sand). Note that smaller is the conductivity of the pore water, higher the 6 

value of the phase angle. The error bars are explicitly shown except when they are on the order of the 7 

size of the symbols or smaller.  8 
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 3 

Figure 7. Modulus and phase of the complex resistivity for a non-wetting (NW) oil for two different 4 

values of the water saturations sw = 0.6 and sw = 0.4 and for two values of the mean grain size. Sand: 5 

Type A (fine sand) and Type B (coarse sand). Note that the finest sand corresponds to the highest 6 

value of the absolute value of the phase angle and the highest specific surface area and surface 7 

conductivity. The error bars are explicitly shown except when they are on the order of the size of the 8 

symbols or smaller. 9 
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 2 

 3 

Figure 8. Phase of the complex resistivity for a 1:1 mixture (in volume) of sand A (fine sand) and 4 

sand B (coarse sand) compared with the phase spectra for Sand A and Sand B at full water 5 

saturation. The error bars are explicitly shown except when they are on the order of the size of the 6 

symbols or smaller. 7 

 8 
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 1 

Figure 9. Modulus and peak value of the phase of the complex resistivity/conductivity for a non-2 

wetting (NW) oil as a function of the saturation of the water phase. Type A (fine sand). The fit of the 3 

linear trend between the resistivity and the saturation provides a value for the second Archie's 4 

exponent n when surface conductivity can be neglected in the in phase conductivity.  5 
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 3 

 4 

Figure 10. Left side: Quadrature or imaginary component of the complex conductivity versus the 5 

ordinary frequency f. Right side: Quadrature or imaginary component of the complex conductivity 6 

versus the water saturation at the frequency corresponding to the low frequency peak of the phase.  7 

 8 

 9 
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 2 

Figure 11. Quadrature (imaginary) conductivity versus water saturation. Comparison between our 3 

results for the sand filled with the non-wetting oil and the two sandstone samples investigated by 4 

Vinegar & Waxman (1984). The values reported on the figure represent the values of the exponent p 5 

(the line represents the linear trend with p = 1.26). 6 

 7 


