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ABSTRACT 1 

The National Air Quality Forecast Capacity (NAQFC) system, which links NOAA’s 2 

North American Mesoscale (NAM) meteorological model with EPA’s Community 3 

Multiscale Air Quality (CMAQ) model, provided operational ozone (O3) and 4 

experimental fine particular matter (PM2.5) forecasts over the continental United States 5 

(CONUS) during 2008. This paper describes the implementation of a real-time Kalman 6 

Filter (KF) bias-adjustment technique to improve the accuracy of O3 and PM2.5 forecasts 7 

at discrete monitoring locations. The operational surface level O3 and PM2.5 forecasts 8 

from the NAQFC system were post-processed by the KF bias-adjusted technique using 9 

near real-time hourly O3 and PM2.5 observations obtained from EPA’s AIRNow 10 

measurement network. The KF bias-adjusted forecasts were created daily, providing 24-11 

hour hourly bias-adjusted forecasts for O3 and PM2.5 at all AIRNow monitoring sites 12 

within the CONUS domain. The bias-adjustment post-processing implemented in this 13 

study requires minimal computational cost; requiring less than 10 minutes of CPU on a 14 

single processor Linux machine to generate 24-hr hourly bias-adjusted forecasts over the 15 

entire CONUS domain. 16 

 The results show that the real-time KF bias-adjusted forecasts for both O3 and 17 

PM2.5 have performed as well as or even better than the previous studies when the same 18 

technique was applied to the historical O3 and PM2.5 time series from archived AQF in 19 

earlier years.  Compared to the raw forecasts, the KF forecasts displayed significant 20 

improvement in the daily maximum 8-hr O3 and daily mean PM2.5 forecasts in terms of 21 

both discrete (i.e. reduced errors, increased correlation coefficients, and index of 22 

agreement) and categorical (increased hit rate and decreased false alarm ratio) evaluation 23 

metrics at almost all locations during the study period in 2008.  24 

Keywords: Air quality index forecast; Bias-adjustment; O3; PM2.5; Kalman filter 25 
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1. INTRODUCTION 1 

 Ozone (O3) and fine particulate matter (PM2.5 – particles with aerodynamic 2 

diameters less than 2.5 µm) pollution is of concern due to their adverse effects on human 3 

and ecosystem health. Ambient levels of O3 and PM2.5 are the two primary components 4 

used in the calculation of the Air Quality Index (AQI), a standardized indicator of air 5 

quality degradation at a given location (Federal Register, 1999). The National Oceanic 6 

and Atmospheric Administration (NOAA), in partnership with the United States 7 

Environmental Protection Agency (US EPA), has been operationally implementing the 8 

National Air Quality Forecasting Capacity (NAQFC) system. This program, which 9 

couples NOAA’s North American Mesoscale (NAM) weather prediction model with 10 

EPA’s Community Multiscale Air Quality (CMAQ) model, has provided forecasts of 11 

ozone (O3) mixing ratios since 2004 (Eder et al., 2006; Eder et al., 2010). Developmental 12 

PM2.5 forecasts were initiated during the summer of 2004 (Mathur et al., 2008; Yu et al., 13 

2008). The modeling domain for both the operational and developmental predictions 14 

currently covers the continental United States (CONUS).  15 

Despite continuous refinement and improvement, all numerical models suffer from 16 

significant errors and uncertainties due to numerical solvers, emissions inventory, 17 

boundary conditions, as well as our incomplete understanding of the physical and 18 

chemical processes occurring in the atmosphere. Incorporating recent model forecasts 19 

with observations to adjust model forecasts, the bias-adjustment method has been proven 20 

to be an effective way to reduce the systematic errors in numerical model outputs (Kang 21 

et al., 2008). The implementation of bias-adjustment postprocessing for air quality 22 

forecasts relies on the availability of near real-time observations. The U.S EPA’s 23 

AIRNow measurement network, which reports near real-time hourly O3 and PM2.5 24 
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observations nationwide, provides an ideal opportunity to perform bias-adjusted O3 and 1 

PM2.5 air quality forecasts for air quality forecast modeling systems. 2 

Bias-adjustment techniques have been used to correct systematic biases in surface O3 3 

predictions (McKeen et al., 2005; Delle Monache et al., 2006; Wilczak et al., 2006; Delle 4 

Monache, et al., 2008; and Kang et al., 2008), and more recently have also been extended 5 

to PM2.5 forecasts (Kang et al., 2009). Among these techniques, the Kalman Filter (KF) 6 

(Kalman, 1960) predictor forecast method has shown the most improvement in forecast 7 

skill. However, all previous research efforts on bias-adjustment predictions were 8 

performed on retrospective basis, i.e., the bias-adjusted predictions were formulated by 9 

using archived model predictions and observations.  To test the applicability of the 10 

methods in the operational real-time setting during 2008, the KF bias-adjustment 11 

technique (Kang et al., 2008, Kang et al., 2009) was implemented, for the first time, in 12 

real-time along with the NAQFC system to provide daily bias-adjusted O3 and PM2.5 13 

forecasts at all the locations where observations from EPA’s AIRNOW network are 14 

available within the CONUS domain. The bias-adjusted O3 forecasts were performed for 15 

the April to mid- September period covering the entire O3 season while PM2.5 bias-16 

adjusted forecasts were conducted throughout the entire calendar year. This paper 17 

presents the implementation of the KF bias-adjusted forecasts and its performance 18 

evaluation for O3 and PM2.5 forecasts. 19 

 20 
2. EXPERIMENTS AND METHODS 21 

2.1 The NAM-CMAQ Air Quality Forecast System 22 
 23 
The NAQFC system is based on the National Centers for Environmental Prediction’s 24 

(NCEP’s) NAM meteorological model (Black 1994; Rogers et al., 1996) and EPA’s 25 

CMAQ (Byun and Schere, 2006) air quality modeling system.  A brief summary of the 26 
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linkage between the NAM and the CMAQ models, relevant to this study, is presented 1 

below.  A more in-depth description of the NAM-CMAQ system can be found in Otte et 2 

al. (2005). 3 

For this application, O3 and PM2.5 were forecast over the CONUS US at 12-km 4 

horizontal grids on the Lambert Conformal map projection.  The vertical domain was 5 

discretized with 22 layers set on the sigma coordinate, extending from the surface to 6 

~100 hPa.  The Carbon Bond IV (CB-IV) chemical mechanism was used to represent the 7 

gas phase reaction pathways for O3 forecasts and for the early part of PM2.5 forecasts. The 8 

chemistry mechanism was updated to the CB05 (Yarwood et al., 2005; Sarwar et al., 9 

2008) for the PM2.5 forecasts on July 15, 2008. The AERO3 aerosol module was used 10 

with CB-IV model configuration; the module was updated to AERO4 when the chemistry 11 

mechanism was updated to CB05. Three-dimensional chemical fields were initialized 12 

from the previous forecast cycle.  The primary NAM-CMAQ model forecast for next-day 13 

surface-layer O3 was based on the current day’s 12 UTC cycle, while for PM2.5 14 

forecasts, the 06 UTC cycle was used. The target forecast period was local midnight 15 

through local midnight next day.  16 

The processing of the emission data for various pollutant sources was adapted from 17 

the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system (Houyoux et 18 

al., 2000). Emission estimates were based on the 2005 U.S. EPA National Emission 19 

Inventory. NOX and SO2 emitted from elevated point sources were projected to 2008 20 

using the 2006 Continuous Emission Monitoring (CEM) data in conjunction with 21 

projections derived from the Department of Energy’s Annual Energy Outlook (Pouliot 22 

and Pierce, 2003).   23 

 24 

 25 



 5

2.2 Domain, Evaluation Regions, and Observational Data 1 

As shown in Figure 1, the NAQFC domain covers the CONUS US. Due to large 2 

region-to-region differences in the atmospheric physical and chemical processes, the 3 

CONUS domain is divided into six subregions to facilitate the performance evaluations 4 

(see Figure 1). The four easternmost subregions, northeast (NE), southeast (SE), upper 5 

Midwest (UM), and lower Midwest (LM), are based on climatology that identified areas 6 

of homogeneous concentration variability using the Principal Component Analysis 7 

technique (Eder et al., 1993; Gogo et al., 2005). The Rocky Mountain (RM) subregion is 8 

characterized by high elevation (generally > 1000 m) and complex terrain. The Pacific 9 

Coast (PC) subregion contains the west coast states which are often under marine 10 

influence from the Pacific Ocean. 11 

Hourly, near real-time, surface O3 (ppb) and PM2.5 (µg/m3) data obtained from EPA’s 12 

AIRNow program were used in the KF bias-adjustment forecasts and performance 13 

evaluations. Roughly 1000 O3 (crosses) and 500 PM2.5 (circles) routine measurement 14 

stations, mostly in urban areas, are available (Figure 1) for the study period.  For O3 15 

forecasts, the daily maximum 8-hr concentrations were calculated at each station for each 16 

day over the study period. The running 8-hr average O3 concentrations were computed 17 

using the concentration at the current and succeeding 7 hours; the daily maximum 8-hr O3 18 

is the maximum of the 8-hr average values over the day. For PM2.5 forecasts, the 24-h 19 

daily mean at each site was used in the performance evaluations. To facilitate 20 

performance evaluations for PM2.5, the study period is divided into a cool season (from 21 

January to April 20th and from September to December) and a warm season (from April 22 

21st to August 31st). 23 

 24 

 25 
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2.3 Implementation of the KF bias-adjustment method 1 

 The KF predictor bias-adjustment algorithm (Kalman, 1960) is described in detail 2 

by Delle Monache et al. (2006). The adaptation and implementation of the technique for 3 

our applications has been presented by Kang et al., (2008). In that study, a key parameter 4 

in the KF approach which determines the relative weighting of observed and forecast 5 

values was investigated extensively with O3 forecasts at over 1000 monitoring locations.  6 

Even though the optimal error ratios inherent in the KF algorithm implementation were 7 

found to vary across space, the impact of using the optimal values on the resultant bias-8 

adjusted predictions was found to be insignificant when compared with using a 9 

reasonable single fixed value of this parameter across all locations within the modeling 10 

domain. We further tested the error ratio values in the range 0.01 to 0.10 for the entire 11 

domain, and found that the impact on the performance was relatively insignificant when 12 

the error ratios were in this range, consistent with results in Kang et al. (2008).   In this 13 

study, the same single fixed error ratio value of 0.06 was used at all the locations for the 14 

real-time bias-adjusted O3 and PM2.5 forecasts. 15 

  The KF bias-adjustment technique was implemented for O3 and PM2.5 forecasts 16 

separately. First, the KF was initialized with the initial estimates of KF parameters as 17 

outlined in Kang et al. (2008) and with two days of hourly observations and raw model 18 

predictions. It then generated the third day’s bias-adjusted forecasts by combining the 19 

third day’s raw forecasts with the updated KF parameters. All updated KF parameters at 20 

each site for each hour were saved into a file for use in the next KF run. The KF runs then 21 

continued by reading the previous day’s KF parameters and two preceding days’ 22 

observations and raw model predictions to continuously generate the next day’s bias-23 

adjusted forecasts through combining with the next day’s raw forecasts. The KF 24 

simulations run daily when the preceding days’ observations and the raw forecasts for 25 
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next day (issued on current day) were available. In our implementation, if data at two 1 

consecutive days were missing at a site, the method would automatically drop this site 2 

from future bias-adjustment forecasts; however, if a new site with two consecutive days’ 3 

data appeared in the observation data set, the KF would initialize the site with initial 4 

values of KF parameters and generate bias-adjusted forecasts further on. This 5 

implementation is very adaptable to the variable nature of monitoring stations reporting 6 

hourly observations to the AIRNow network, and can be easily combined with the 7 

operational AQF system to provide bias-adjusted forecasts operationally. The bias-8 

adjusted forecasts were initialized on January 4 and April 3 for PM2.5 and O3 forecasts, 9 

respectively, and the programs were run daily on a Linux system; it took less than 10 10 

minutes of computation to create a bias adjusted forecast. 11 

 12 

2.4 Verification statistics 13 

 To assess the performance of the KF bias-adjusted forecasts, model verification 14 

statistics commonly used by the air quality modeling community (Kang et al., 2005; Eder 15 

et al., 2006; Kang et al., 2008) are used in this study and include Root Mean Square Error 16 

(RMSE), Normalize Mean Error (NME), Mean Bias (MB), Normalized Mean Bias 17 

(NMB), and correlation coefficient (r). In addition, the index of agreement (IOA) 18 

(Willmott, 1981; Kang et al., 2008) is also calculated to specify the degree to which the 19 

observed deviations about the mean observed value agree, both in magnitude and sign, to 20 

the predicted deviations about the mean observed value. For a forecast product, another 21 

set of verification statistics is the categorical metrics (Kang et al., 2005); among those the 22 

False Alarm Ratio (FAR) and Hit Rate (H) are used in the current study.  23 

 24 

3. RESULTS 25 
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3.1 Overall Performance 1 

 Table 1 presents a summary of domain (Dom) and sub-regional mean discrete 2 

statistics for the raw model and the KF forecast daily maximum 8-h O3 mixing ratios 3 

during the study period. Table 2 presents similar model performance statistics for the 4 

daily average PM2.5 concentrations for warm and cool seasons. As seen in Table 1, for the 5 

daily maximum 8-h O3 raw forecasts, RMSE values ranged from 10.4 to 16.0 ppb. The 6 

application of the KF bias-adjustment reduced the RMSE to the range of 8.5 to 10.5 ppb, 7 

reflecting more than a 25% improvement. Similar improvement was reflected in NME. 8 

More noticeable improvement by the KF forecasts over the raw model is seen in the MB 9 

and NMB; the MB values were reduced from several ppb to about 1 ppb across all the 10 

regions, and NMB from as high as 17% to less than 2%. The correlation coefficients (r) 11 

also increased systematically from 0.5 to 0.7 range for the raw forecasts to 0.7 - 0.84 12 

range in the KF forecasts. Similar forecast skill improvement in PM2.5 forecasts by the KF 13 

forecasts over raw forecasts is shown in Table 2. Compared to O3 forecasts, the overall 14 

statistics for PM2.5 forecasts still need to be improved due to the difficulty in simulating 15 

the complexity of PM2.5 formation and distribution by the NAM-CMAQ system.    16 

Figures 2 and 3 present scatter plots of selected forecast and observed percentiles for 17 

the daily maximum 8-h O3 and daily mean PM2.5, respectively. In these figures, both 18 

measured and forecast time series were examined at each site and percentiles of the 19 

concentration distributions over the study period were computed for both observations 20 

and forecast values following Mathur et al. (2008). Scatter plots of specific percentiles of 21 

the concentration distributions of the modeled and observed time series are then 22 

examined to assess the ability of the model to capture the spatial variability in frequency 23 

distributions of the species of interest across the sites. As shown in Figures 2 and 3, the 24 

KF forecasts displayed a much improved match with the observed distributions as 25 
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reflected by the reduced and even scatter about the 1:1 line (perfect prediction) when 1 

compared to the raw forecasts. The r2 associated with the forecast and observed percentile 2 

distributions increased from 0.80 to 0.98 for the daily maximum 8-h O3 forecasts, and 3 

increased from 0.42 to 0.90 for the daily average PM2.5 forecasts, When the KF bias-4 

adjustment procedure was implemented. 5 

The improvement in the performance of the KF bias-adjusted forecasts over the raw 6 

forecasts is also evident in the index of agreement (IOA) comparisons (Figures 4 and 5). 7 

As seen in Figure 4, for the daily maximum 8-h O3 forecasts over the entire domain and 8 

across all the subregions, the IOA values associated with the KF forecasts increased 9 

significantly when compared with those of the raw forecasts. The median IOA values for 10 

the raw forecasts were generally less than 0.80, while the median IOA values for the KF 11 

forecasts were generally greater than 0.80.  For the daily average PM2.5 forecasts (Figures 12 

5a and 5b), the KF forecasts again resulted in larger IOA values compared to the raw 13 

forecasts for both the warm and cool seasons as well as across all subregions. 14 

Comparison of Figure 4 with Figure 5 indicates that the IOA values for both the raw 15 

forecasts and KF forecasts for O3 were larger than those for PM2.5; for the raw forecasts, 16 

the difference in IOA was about 20%, while for the KF forecasts, the difference was 17 

reduced to about 10%. Another important feature is that for O3 forecasts, both the raw 18 

forecasts and the KF forecasts performed better in the eastern portions of the domain 19 

(NE, SE, UM, and LM) than in the western regions (RM and PC). However for PM2.5 20 

forecasts, the raw forecasts did not perform well in SE for both seasons, though the IOA 21 

values significantly increased by the KF forecasts; both the raw forecasts and the KF 22 

forecasts displayed lower IOA values for LM and RM during both seasons than for the 23 

rest of the regions, while they performed better in PC during the cool season than during 24 

the warm season. Both raw forecasts and KF bias-adjusted forecasts displayed the largest 25 
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IOA values in NE for both O3 and PM2.5 among all the regions except that the IOA values 1 

in UM were larger than those in NE for the KF PM2.5 forecasts for the cool season. It 2 

should also be pointed out that the performance of KF bias-adjusted forecasts is always 3 

dependent on the performance of raw forecasts, i.e., if the IOA values associated with the 4 

raw forecasts were lower at a region than at other regions, then the IOA values associated 5 

with the KF bias-adjusted forecasts at this region will also be lower than at other regions. 6 

 7 

3.2 Temporal and Spatial Performance 8 

Figure 6 presents time-series comparisons of mean daily maximum 8-h O3 mixing 9 

ratios forecast by the raw and bias-adjusted models with corresponding measurements.  10 

Figure 7 presents a similar comparison for the daily-average PM2.5 forecasts. As seen in 11 

Figure 6, the NAM-CMAQ system underestimated the daily maximum 8-h O3 12 

concentrations at the beginning of the study period, then transitioned to overestimation 13 

with time; significant overestimation occurred towards the end of the study period. 14 

However, the KF forecasts were able to correct for both overestimation and 15 

underestimation and track the observed time series quite well. As noted in Figure 7, the 16 

raw model overestimated daily mean PM2.5 concentrations during cool season and 17 

underestimated during warm season. Again the KF time series tracked the observed time 18 

series very well throughout the entire year and was able to reduce the systematic seasonal 19 

biases considerably.   20 

 To further investigate the temporal and spatial performance, boxplots of monthly 21 

RMSE values for daily maximum 8-h O3 and daily mean PM2.5 for each of the subregions 22 

are displayed in Figures 8 and 9, respectively. As illustrated in Figure 8, the RMSE 23 

values associated with the raw model daily maximum 8-h O3 forecasts for the SE, UM, 24 

and RM subdomains exhibited a tendency to increase as the O3 season progressed; 25 
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similar trends in the NAM-CMAQ O3 forecast error were also noted for prior years (Eder 1 

et al., 2009). These trends were found to be partially related to trends in temperature 2 

forecast error in the meteorological model (NAM); the subsequent impacts on modeled 3 

emissions and chemistry are currently under investigation. Despite the systematic trend 4 

for RMSE values associated with the raw forecasts, the KF bias-adjusted forecasts were 5 

able to effectively adjust the errors and produced comparable distributions of RMSE 6 

values during the entire period.  7 

For the year-long daily mean PM2.5 forecasts (Figure 9), the monthly RMSE 8 

values associated with the raw forecasts started higher at the beginning months (January, 9 

February, and March). The significant decrease of RMSE values associated with the raw 10 

forecasts during the October to December period compared to the January to March 11 

period is attributable to the switch in the chemical mechanism from CB-IV to CB05 and 12 

the corresponding aerosol module from AERO3 to AERO4 on July 15, 2008. The 13 

significantly higher RMSE values during June and July in the PC region can be attributed 14 

to missing emissions from wide spread wild fires in California during these two months 15 

which resulted in elevated observed PM2.5 concentrations which were not simulated by 16 

the raw model. Nevertheless, the KF bias-adjusted forecasts were able to produce 17 

significantly smaller RMSE values compared to the raw forecasts for all the regions 18 

during each of the months.  19 

The ability of the KF technique to improve O3 and PM2.5 forecast across the 20 

continental U.S. is further illustrated in Figures 10 and 11 which compare maps of mean 21 

bias in the raw and bias-adjusted forecasts. As seen in Figure 10a, the NAM-CMAQ 22 

system generally overestimated in the eastern part of the domain, especially in the 23 

northeast and southeast with MB values greater than 5 ppb. In California, the MB values 24 

indicated mixed results with both overestimation (MB ≥ 5 ppb) and underestimation (MB 25 
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< -5 ppb) coexisting in the same area. However, with the application of KF bias-1 

adjustment (Figure 10b), the MB values at almost all the locations were reduced to be 2 

within ±2 ppb, demonstrating the robustness of the KF bias-adjustment technique for O3 3 

forecasts across all locations.  4 

Similar effects are also demonstrated for PM2.5 forecasts over the CONUS domain 5 

(Figure 11). During warm season, underestimation of the daily average PM2.5 6 

concentrations by the raw forecasts dominated the entire domain (orange and purple 7 

squares in Figure 11a). During the cool season (Figure 11c), the raw forecasts generally 8 

overestimated in the east, and displayed mixed results in the west. However, during both 9 

warm and cool seasons, the KF forecasts were able to adjust either the overestimation or 10 

underestimation concentrations very effectively with mean bias of ±2 µg/m3 at majority 11 

of the sites (Figures 11b and 11d). Even at the sites where MB values were greater than 2 12 

µg/m3 or less than -2 µg/m3, the magnitude of the MB values was significantly reduced in 13 

the KF forecasts compared with those in the raw forecasts. 14 

3.3 Performance over observation concentration bins  15 

To examine the performance of the KF bias-adjustment technique over different 16 

concentration ranges, RMSE and MB for both O3 and PM2.5 forecasts were examined as a 17 

function of observed ambient levels. As seen in Figure 12a, the RMSE values for daily 18 

maximum 8-h O3 forecasts were larger at both lower (<30 ppb) and higher (≥85 ppb) O3 19 

levels than those in the middle. For the PM2.5 forecasts, the raw forecasts displayed lower 20 

RMSE values at lower observation bins and higher RMSE values at higher observation 21 

bins for both the warm (Figure 13a) and cool seasons (Figure 13b). Compared to the O3 22 

forecasts (Figure 12b), the distribution of MB values for PM2.5 forecasts (Figures 13 c and 23 

d) over concentration bins displayed very different features; during the warm season, the 24 

distribution of the MB values associated with the raw forecasts showed very little 25 
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variations, while when the observed concentrations were greater than 10 µg/m3, the raw 1 

model displayed increased underestimation with the increasing concentrations. In 2 

contrast, during the cool season (Figure 13d), the PM2.5 MB values associated with the 3 

raw model showed very little variation, even though the distributions became 4 

increasingly wider at higher observation bins.  The KF bias-adjustment technique is able 5 

to effectively reduce the errors and biases across all concentration ranges and for both the 6 

warm and cool seasons. 7 

3.4 Categorical Performance  8 

 It is important for an air quality forecast product to be able to accurately predict 9 

exceedance and non-exceedance events (categorical predictions). Figure 14 presents the 10 

categorical evaluations for the raw forecasts and KF bias-adjusted forecasts for daily 11 

maximum 8-hr O3 and daily mean PM2.5 concentrations, respectively. The statistical 12 

measures presented include the FAR and H (Kang et al., 2005).  Exceedance threshold of 13 

both the 85 ppb 8-hr maximum O3 and the revised NAAQS of 75 ppb are examined; the 14 

corresponding metrics are denoted as FAR85, FAR75, H85, and H75. The threshold 15 

value for daily mean PM2.5 exceedance is 35 µg/m3 and the corresponding metrics are 16 

denoted as FAR35 and H35. 17 

As shown in Figure 14, the KF bias-adjusted forecasts were able to significantly 18 

reduce FAR values and increase H values for both daily maximum 8-h O3 forecasts and 19 

daily average PM2.5 forecasts. Comparison of the categorical metrics for the two 20 

threshold values for O3 forecasts indicates that for the new standard of 75 ppb, both the 21 

raw forecasts and the KF forecasts provide better categorical forecasts relative to those 22 

with the old standard. The KF forecasts produced an H value of 50% based on the new 23 

exceedance standard and the FAR was slightly higher than 50%, further illustrating the 24 

robustness of the KF bias-adjustment technique. For the PM2.5 forecasts, the FAR reduced 25 
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from 93% to 76% and H increased from 24% to 38% through the application of the KF 1 

bias-adjustment technique. 2 

3.5 Performance for Air Quality Index 3 

The air quality index (AQI) is frequently used to report daily air quality conditions.  4 

The index is an indicator of how clean or polluted the air is and what the associated 5 

health effects might be for sensitive populations. The breakpoints for converting from O3 6 

mixing ratio (ppb) or PM2.5 concentrations (µg/m3) to AQI values are presented in Table 7 

3. As seen in Table 3, AQI values range from 0-500, with higher values representing 8 

greater level of air pollution and a greater associated health concern; an AQI value of 100 9 

generally corresponds to the National Ambient Air Quality Standard (NAAQS) for the 10 

pollutant.  The AQI is divided into six color-coded categories; values of 0-50 (code 11 

green) represent good air quality conditions, 51-100 (code yellow ) represent moderate 12 

pollution, 101-150 (code orange) represent air pollution levels unhealthy for sensitive 13 

groups, 151-200 (code red) represent unhealthy conditions, while 201-300 (code purple) 14 

and 301-500 (code maroon) represent very unhealthy and hazardous air quality 15 

conditions, respectively.  The ability of the bias correction technique to improve the AQI 16 

forecasts for O3 and PM2.5 at each of the monitoring locations was examined.  Figure 15 17 

presents comparisons of the category hit rate for each AQI category across all monitoring 18 

locations for O3 forecasts with the raw model and the KF bias-adjusted forecasts. The 19 

Category Hit Rate (cH) (Eder et al., 2009b) is defined as: i
obs

i
f

i N
N

cH = , where i is the AQI 20 

index (1, 2, 3, 4, 5), and i
fN  is the number of correctly forecast instances in the ith 21 

category and i
obsN is the number of observed instances in the ith category. Figure 16 22 

presents similar comparisons for surface-level PM2.5 forecasts.  For forecasts of both 23 
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pollutants, a systematic improvement in the predictions of the different AQI categories is 1 

evident when the bias-adjustment technique was applied.  The improvements in the 2 

accuracy of the AQI forecasts for the moderate to unhealthy categories, further 3 

demonstrate the applicability of the methodology and suggest the need to adopt bias-4 

adjustment operationally for improving the reliability of model-based air quality 5 

forecasts. 6 

 7 

4. SUMMARY 8 

 The near real-time Kalman filter bias-adjustment technique was applied to NAM-9 

CMAQ derived O3 and PM2.5 air quality forecasts for the continental United States. These 10 

bias-adjustment forecasts were implemented to run daily for improving the next-day 11 

forecast. Bias-adjustment on operational basis adds minimal computational burden; on a 12 

daily-basis, it required less than 10 minutes of CPU on a single processor Linux machine. 13 

Hourly O3 and PM2.5 bias-adjusted forecasts have been generated for all the locations 14 

where the observations are available from the AIRNow network. The performance 15 

evaluation of the KF forecasts for both O3 and PM2.5 has shown significant improvement 16 

over the raw forecasts for a variety of statistical measures. Specifically, systematic errors 17 

or biases have been reduced, correlation coefficients increased, false alarm ratios 18 

reduced, while hit rates have gone up. The robustness of this bias-adjustment technique is 19 

evident for various concentration ranges over CONUS. The forecast skill has improved at 20 

all the locations within the domain during all seasons. Though the bias-adjustment 21 

technique was only applied at discrete points in this study, the bias-adjusted spatial maps 22 

of O3 and PM2.5 forecasts could be readily developed by using appropriate statistical 23 

methods (e.g., Hogrefe et al., 2009; Denby et al., 2009; Garcia et al., 2010). Comparison 24 

of model forecasts skills for PM2.5 and O3 have clearly indicated that more work needs to 25 
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be done to improve the accuracy of PM2.5 forecasts.   Improvements in the representation 1 

of fine particulate matter emissions as well as the physical and chemical processes 2 

regulating sources and sinks in atmospheric models are expected as a result of on-going 3 

research over the next several years.  Nevertheless, our analysis indicates that despite the 4 

current limitations in the representation of atmospheric processes dictating the 5 

distribution of ambient PM2.5, bias-adjustment techniques can be used to help improve 6 

the accuracy and reliability of short-term PM2.5 forecasts and AQI from such models. 7 

 8 

 9 
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Tab Table 1. Regional summary of discrete statistics for raw model and KF bias-adjusted 1 
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TYPE 
RMSE 
(ppb) 

NME 
(%) 

MB 
(ppb) 

NMB 
(%) r 

Dom-mod 12.5 20.1 3.2 6.8 0.65 

Dom-kf 9.1 14.5 0.6 1.3 0.81 

NE-mod 10.6 16.9 2.7 5.6 0.70 

NE-kf 8.9 13.8 0.7 1.4 0.78 

SE-mod 12.2 20.1 5.8 12.2 0.70 

SEkf 9.1 14.7 0.5 1.1 0.80 

UM-mod 10.4 17.5 2.5 5.4 0.59 

UM-kf 8.5 13.7 0.7 1.5 0.72 

LM-mod 13.6 27.0 7.0 16.9 0.64 

LM-kf 9.8 17.7 0.8 1.9 0.77 

RM-mod 11.4 16.4 2.7 5.1 0.50 

RM-kf 8.9 12.8 0.7 1.3 0.70 

PC-mod 16.0 21.9 -3.2 -5.9 0.60 

PC-kf 10.5 14.5 0.2 0.3 0.84 
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Table 2. Regional summary of discrete statistics for raw model and KF bias-1 
adjusted daily mean PM2.5 forecasts during 2008 warm/cool season: In each cell, 2 
the value on the left of slash (/) is for warm season and the value on the right of 3 
the slash is for the cool season. The values in the rows of each table with white 4 
background marked with “–mod” represent statistics associated with raw 5 
forecasts, while those in the rows with shaded background and with the 6 
extension “–kf” represent the statistics associated with the KF bias-adjusted 7 
forecasts. 8 

 9 
 10 

 11 
 12 
 13 
 14 
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 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 

TYPE RMSE 
(µg/m3) 

NME 
(%) 

MB 
(µg/m3) 

NMB 
(%) r 

Dom-mod 9.6/10.5 47.5/70.5 -2.3/4.5 -19.6/45.1 0.33/0.53 

Dom-kf 6.6/6.4 32.9/42.5 -0.1/1.7 -0.4/16.5 0.71/0.68 

NE-mod 7.5/12.3 39.5/76.1 -2.4/6.6 -17.8/59.9 0.56/0.63 

NE-kf 5.5/7.3 29.1/44.7 -0.4/2.4 -2.7/22.1 0.76/0.72 

SE-mod 7.8/9.1 41.5/62.1 -3.9/4.6 -27.5/43.8 0.40/0.47 

SE-kf 5.3/5.4 27.1/37.2 -0.4/1.3 -2.7/12.8 0.63/0.58 

UM-mod 6.0/10.7 36.6/68.3 -0.7/6.5 -6.0/57.4 0.58/0.62 

UM-kf 5.0/6.1 30.7/37.3 -0.2/1.7 -1.7/15.2 0.69/0.73 

LM-mod 8.7/9.4 52.4/67.7 -4.0/3.6 -32.9/36.8 0.17/0.32 

LM-kf 5.8/5.9 34.9/42.5 -0.2/1.2 -1.5/12.2 0.37/0.49 

RM-mod 6.4/9.3 50.5/75.7 -1.5/3.5 -17.2/43.1 0.18/0.37 

RM-kf 4.6/5.6 33.5/44.4 0.0/1.3 0.2/16.2 0.57/0.62 

PC-mod 15.3/10.2 57.9/60.2 -3.4/1.8 -30.6/15.8 0.23/0.53 

PC-kf 10.5/7.0 39.0/40.9 0.2/1.2 1.9/10.4 0.73/0.72 
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Table 3. Air quality index categories with their O3 and PM2.5 concentrations 1 
breakpoints 2 
 3 

 4 

AQI Category Index values Daily maximum 8-hr O3 
(ppb) 

24-hr PM2.5 
(µg/m3) 

Good 0 - 50 0 - 59 0 - 15 
Moderate 51 - 100 60 - 75 16 - 35 

Unhealthy for 
Sensitive Groups 101 - 150 76 - 95 36 - 55 

Unhealthy 151 - 200 96 - 115 56 - 140 
Very Unhealthy 201 - 300 116 - 375 141 - 210 

 5 
 6 
 7 
 8 
 9 

 10 



Figure 1. Model domain, evaluation regions, and observational O3 sites (crosses) 
and PM2.5 sites (cirles): The regions are Northeast (NE), Southeast (SE), Upper 
Midwest (UM), Lower Midwest (LM), Rocky Mountains (RM), and Pacific Coast (PC)



Figure 2. Scatterplots between forecasts and observations for selected percentiles for daily 
maximum 8-h O3 mixing ratios (ppb).
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Figure 3. Scatterplots between forecasts and observations for selected percentiles for daily mean 
PM2.5 concentrations (µg/m3).
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Figure 4. Box plots of index of agreement (IOA) of daily maximum 8-h O3 (ppb) for the 
raw model (MOD) forecasts and KF bias-adjusted forecasts over the domain (DM) and 
across all subregions
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Figure 5. Box plots of index of agreement (IOA) of daily mean PM2.5 (µg/m3) for the raw model 
(MOD) forecasts and KF bias-adjusted forecasts over the domain (DM) and across all subregions
during (a) warm season and (b) cool season
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Figure 6. Time series of observed, raw model forecast, and KF bias-adjusted forecast mean daily 
maximum 8-h O3 (ppb) over the domain 
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Figure 7. Time series of observed, raw model forecast, and KF bias-adjusted forecast mean daily 
PM2.5 (µg/m3) over the domain 
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Figure 8. Monthly box plots (only 25th and 75th percentiles and median values are shown) of RMSE 
values of the daily maximum 8-h O3 (ppb) for the raw model and KF bias-adjusted forecasts for all 
sub-regions
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Figure 9. Monthly box plots (only 25th and 75th percentiles and median values are shown) of RMSE 
values of the daily mean PM2.5 (µg/m3) for the raw model and KF bias-adjusted forecasts for all 
sub-regions
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Figure 10. Mean Bias (MB, ppb) for daily maximum 8-h O3 forecasts at each location within the 
continental U.S. domain: (a) raw model, (b) KF bias-adjustment
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Figure 11. Mean Bias (MB, µg/m3) for daily mean PM2.5 forecasts at each location within the 
continental U.S. domain: (a) raw model during warm season, (b) KF bias-adjustment during warm 
season, (c) raw model during cold season, (d) KF bias-adjustment during cold season
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Figure 12. RMSE and MB values over observed daily maximum 8-h O3 mixing ratio bins for the 
raw model forecasts and Kalman filter bias-adjusted forecasts over the domain: (a) RMSE and (b) 
MB
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Figure 13. RMSE and MB values over observed daily mean PM2.5 concentration bins for the raw model 
forecasts and Kalman filter bias-adjusted forecasts over the domain: (a) RMSE during warm season, (b) 
RMSE during cool season, (c) MB during warm season, and (d) MB during cool season
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Figure 14. FAR and H values for both raw model and KF forecasts: a. daily maximum 8-h 
O3 (ppb), and b. daily mean PM2.5 (µg/m3)
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Figure 15. Categorical Hit Rates for each AQI Category for daily maximum 8-hr O3
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Figure 16. Categorical Hit Rates for each AQI Category for daily mean PM2.5
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