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Introduction

While environmental scientists focused on indukaral agricultural pollutants
(e.g. PCBs, volatile organics, dioxins, benzeneTPid the 1970’s and 1980's,
overlooked was the subtle connection between pafr$mman activities, such as drug
consumption, and the subsequent release of antieopndrugs and drug metabolites
into the natural environment. There was evideri¢his possible connection nearly 30
years ago wheGarrison et al. (1976) reported the detection ofilatic acid (the
bioactive metabolite from a series of serum triglyde-lowering drugs) in a groundwater
reservoir that had been recharged with treatedemedér.(Garrison et al. 1976) A year
later Hignite and Azarnoff (1977) reported findiagpirin, caffeine, and nicotine in
wastewater effluent, and then Watts et al. (198Bbrted the presence of three
pharmaceuticals (erythromycin, tetracycline, arebghylline), bisphenol A and other
suspected endocrine disrupting compounds (EDCaYiver water sample.(Hignite and
Azarnoff, 1977; Watts et al. 1983jollowing those three journal articles there hinog
was publishedior nearly a decade regarding the drug-human-enmenmtal connection.
Renewed interest in the subject was reported bybtan and Ternes’s seminal and
authoritative work published in 1999.(Daughton dednes, 1999) Since the 1999
publication of Daughton and Ternedlse number of publications from the scientific
community regarding the human drug consumptionearwironmental interaction have
increased from two publications in the1980’s torently over 300 scientific publications

per year. Most of these publications report methods fordétection of common
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pharmaceuticals and over-the-counter (OTCs) dritysvever, very few publications

have dealt with the occurrence, transport, anddhiiicit drugs in the environment.

In the United States (US), Snyder et al. (2001presul the presence of
hydrocodone, codeine, and diazepam (valium), ime@as entering into Lake Mead,
Nevada.(Snyder et al., 2001) While these drugsat considered illicit substances,
they are considered controlled substances, comgainati the Drug and Enforcement
Agency (DEA) lists as schedule Il and IV drugssabstances for potential abuse.

(DEA, http://www.usdoj.gov/dea/pubabuse/1-csa.htm) Then for the first time the

presence of an illicit substance, methamphetarmwas,reported by Khan and Ongerth, in
wastewater effluent from a large US city in Califierand announced publicly at the
2003 National Ground Water conference.(Khan ande@hg2003) Jones-Lepp et al.
(2004) reported for the first time in the peer-eaved literature the detection of two illicit
drugs, methamphetamine amethylenedioxy-methamphetamine (MDMA, Ecstasy),
collected from wastewater treatment plant (WWTHRueht streams in Nevada and

South Carolina, US.(Jones-Lepp et al., 2004)

In the US, there are the following possible souafaglease of illicit drugs into
US waterways. The largest possible contributalioft drugs would be from consumer
consumption, and subsequent excretion into the cipalisewer systems and transport
through the WWTP process into streams, lakes,sj\@rwetlands.(Jones-Lepp et al.,

2004; Chiaia et al., 2008; Loganathan et al., 2@28telt-Hunt et al., 2009) A smaller
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contribution could be from consumer consumption sultsequent excretion into septic
systems, or other non-seweraged systems (e.g.phboms, outhouses), and then leakage
from the septics into surrounding source wateexks, bays, and wetlands.(Jones-Lepp
2006) Another possible source of illicit drugs denfrom runoff from biosolids that
have been applied as soil amendments to cropscipahparkways, or during forest
restoration.(Kaleta et al., 2006; Kinney et al.0@0Jones-Lepp and Stevens, 2007;
Edwards et al., 2009) A likely source of illicitudys could be from clandestine drug
laboratories. For example, during the illegal nfanturing of methamphetamine well
over 50 hazardous chemicals are either used, dupeal, as methamphetamine by-
products.(US EPA, 2008) All of these hazardousmaumds, including
methamphetamine, have the potential to enter thiecarment through improper disposal
into the city sewer or individual septic systemsyia shallow drainage ditches directly
onto surrounding soils (commonly used in remotehax@phetamine operations), and

through burn or burial pits.(US EPA 2008)

Another aspect of environmental monitoring of itlidrugs is socioeconomic.
Daughton in 2001 was the first researcher to comimemieveloping an environmental
monitoring program for the use of illicit substasg¢®aughton, 2001) Daughton
proposed using sewerage monitoring to provide datdoe daily influxes of drugs from a
community and applying this data to obtain a réaligerspective on the overall
magnitude and extent of community illicit drug usésing Daughton’s premise, two

epidemiology studies have been completed in Eufib@ly, Spain) (Zuccato et al., 2005;
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Postigo et al., 2009). Recently, in 2009, the #@demiologic study, using Daughton’s

premise, was completed in the US and publishedtéB&@neen et al., 2009)

Besides environmental monitoring data and as itapois the lack of data
regarding the ecotoxicity of the pharmaceuticald idlicit drugs. The missing
ecotoxicity data makes estimations of predicteckfieet concentrations (PNEC), and
hazard and risk assessments almost impossibléwarae, a “best guess” scenario.
Some researchers try to derive risk assessmenfrdatdhe use of models that use

guantitative structure-activity relationships (QS$ARnd other measurements.

In the absence of empirical environmental data,roight be tempted to use such
models as EPA’s Ecological Structure Activity Relaships (ECOSAR) program, which
is insufficiently accurate to actually predict exdtity.(Fent el al., 2006) For example,
the collapse of the vulture populations in Indi@ do exposure to minimal (sub-
therapeutic doses) amounts of diclofenac would neaee been predicted with
modeling.(Oaks et al., 2004) Even more criticajeserating risk assessments for those
organisms that live in the aquatic environmenteritthough acute toxicity may not be a
high risk, chronic exposure to sub-lethal doses al®gy an aquatic organisms feeding
and mating behaviors. Brown et al. (2007) demaiesti the deficiencies of trying to
model bioconcentration factors (BCFs) versus adtall measurements in fish
plasma.(Brown et al., 2007) There were extrerfferénces for some of the compounds

measured, and Brown points out the importance iougal-life exposures to test
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theoretical models at an early stage in model dgreént.(Brown et al., 2007)

Ecotoxicological consequences of illicit drugs lgedeposited into environmental
matrices, particularly water, have not been closglgmined. Therefore, it can only be
surmised that these substances may have the @btengidversely affect biota that are
continuously exposed to them, even at very lowltev&he potential for chronic effects
on human health is also unknown, and of increasomgern due to the multi-use
(continuously recycled in a closed-loop) charaofewater, as in densely populated arid
areas.The focus of this chapter will be on the statelad-art in sampling, extraction and
analysis of illicit drugs in the waterways of th&UHowever, since much of the work
with illicit drugs has been performed outside tH&, Jome of that data will also be given
as examples. Better characterization of illicigh in the environment forms the

foundation of improved risk assessments and socied&-based environmental policy.

Physical-Chemical Propertiesof Illicit Drugs

The persistence of illicit drugs or any chemicahimaquatic ecosystem depends on its
physical-chemical and ecosystem-specific propertlemong these are concentration of
dissolved/suspended organic matter, solubility rafi@l population, etc. (Baughman et
al., 1978; Loganathan and Kannan, 1994) Persistehmethamphetamine, MDMA and
related compounds in aquatic systems are a funofiphysical (e.g., volatilization from,

and adsorption to, suspended solids and sedinod@inical (hydrolysis, photolysis) and
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biological removal (microbial degradation, uptakechanisms in addition to flow and
other water characteristics.(Loganathan et al.1p0Donsidering the chemical makeup
of illicit drugs, the volatilization of these comyads from natural water and sediment
mixture is minimal, due to adsorption onto suspémsidids or sediment.(Loganathan et
al., 2009) Very limited information is availabla the half-lives of illicit drugs in water,
sediment, and biota. For example, cocaine hydoochd’s water solubility is 0.17 g/100
mL, whereas its solubility in ether is 28.6 mg/100, and the boiling point is about
188°C, these characteristics indicate that it matible with organic matter and will
adsorb onto solid materials.(Claustre and Bres&@uRi999) Photolysis of small
molecules, such as methamphetamine and MDMA, maobsible in clear surface

waters; however, there photolysis rates for thésenicals are not available.

ThepKa, along with logDow (the pH-dependemi-octanol-water distribution
ratio), can provide strong evidence of whether coumgls will be in an ionized state and
their hydrophobicity.(Wells, 2006) These two plegdichemical properties can help
determine whether they will be retained in watéssblids, sediment and/or biological
medium. For example, thpKa's and logDow of methamphetamine, MDMA, cocaine,
all weak bases, were 9.9 pKa/-0.23 gy, 10.38 pKa/-1.11 lo®ow, and 8.6 pKa/1.83
log Dow, respectively.( pKa: methamphetamine, Logan, 2MR2MA, Tsujikawa et al.,
2009; and cocaine, Domenech et al., 20090pg was calculated using SPARC

program, at pH Mttp://ibmlc2.chem.uga.edu/sparc/index.kfrlthough all three

compounds have been detected in the water coluranpgDow's would suggest that
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only methamphetamine and MDMA will make it throutle WWTP process and into the
water column, while cocaine may be more likely &otpion to the solids.(Logan, 2002;
Garrett et al., 1991; Jones, 1998) Structuressatett physicochemical properties of a

few common illicit drugs are given in Figure 1 ahable 1.

There are four efficiency studies available thaklat the removal of illicit drugs
from WWTPs.(van Nuijs et al. 2009; Huerta-Fontdlale2008a; Castiglioni et al.
2006a; Loganathan et al. 2009) However, we carnhesdata from van Nuijs et al.
(2009) and Loganathan et al. (2009) to illustrageimportance of using ldQow, in
conjunction with pKa, to predict removal and p#otiting. If we consider the loQow of
cocaine and methamphetamine, 8.6 pKa/1.8Dlgg and 9.9 pKa/-0.23 loBow ,
respectively, one would predict that cocaine (agy > 1) would be removed from
wastewater more efficiently than methamphetamiog@ow < 1). And indeed van
Nuijs et al. (2009) showed that cocaine is nea®@% removed by those WWTPs using
conventional activated sludge (CAS) treatment, lazghnathan et al. (2009) calculated
the removal efficiency of methamphetamine at 55%nather WWTP that also uses

CAS.(van Nuijs et al., 2009; Loganathan et al. 2009
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Sampling of Illicit Drugsin Surface Waters

The techniques used for collecting samples of sarfeaters, or of any
environmental matrix, for the detection of illicitugs are no different than would be
used for any other chemical class. lllicit drdgee many OTC and prescription
pharmaceuticals, can have vast differences in ttemical structure resulting in a wide
range of water solubility, photolytic stability, dother physicochemical parameters. The
specific parameters, important in determining tioeage and extraction conditions, have

little to no impact on the selection of the sangméection method.

The decision on the sampling method to use is cainsd by the type of
information needed to answer a specific hypothasgby the available resources (both
logistical and financial). Instantaneous or timeegrated, whole water or dissolved
(filtered), one sample or replicates, and how marath what types of quality control
measures will be used are all options that neée tconsidered as part of the sample
collection plan (Alvarez and Jones-Lepppress. The development of a sound
sampling plan will help eliminate problems in tield and ensure a representative

sample will be collected to meet the needs of thedys

Sampling Techniques



187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

The collection of surface water samples generallg into two classes of
methods: active or passive. Active sampling teqmes involve physically taking a
sample either by manual or automatic means. Gaaipkng methods are among the
most common of active methods which in the mospsstic form is filling a container
with water at a specific location. This is perfeuby “hand-dipping” a container from
the shore or boat or by lowering a container in®water from a structure such as a
bridge. If discrete samples are desired to bentékan a specific depth in the water
column, a variety of systems such as the Kemm¥igr,Dorn, and double check-valve
bailers can be used (Lane et al., 2003). Depthnadth integrated samples can be
collected using specialized samplers which can beeah either vertically or horizontally
across a water body. Composite samples are @kemto achieve a representative
sample of a larger body of water or to obtain agrage water sample over time.
Composite samples are generated by combining snvallemes of water in a single
container either manually or by use of an automagedpler. Automated samplers are
often used in remote locations or locations wertemfow may be intermittent. They
can be programmed to take samples at predeternmtezdals or be started by an

external sensor such as a flow meter or depth gauge

The majority of the published studies for illictugis use a simple grab sampling
technique of collecting a 1 L water sample in aglbottle (Buchberger and Zaborsky,
2007; Huerta-Fontela et al., 2008b; Loganathanh €2@09). Other studies used

automated sampling devices to take 24-hour comgpeainples of 1-2 L of untreated
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WWTP influent (raw sewage) and treated effluentgas(Castiglioni et al., 2006b;
Zuccato et al., 2008). Postigo et al. (2008) atdtected 24-hour composite samples of
influent and effluent samples, but only neededal fsample size of 5 mL due to the use
of an on-line solid phase extraction system coupealliquid chromatography

electrospray tandem mass spectrometer.(Postidq 20a8)

Passive sampling techniques are those that regaireanual or mechanical
means for the sampling to occur. The samplerplaced in the water for a defined
period of time and chemical uptake (sampling) osdy diffusion or partitioning
process. Passive samplers have advantages ower sannplers in that they can be
deployed for extended periods (months) in rematatlons; episodic events such as
runoff, spills, etc. are not missed; they alloweddibn of trace concentrations of
chemicals that may not be possible with standa2d_lsample sizes; and in the case of
time-integrative samplers, they provide time-weggh&verage concentrations of
chemicals which are a fundamental part of ecoldgisk assessments (Alvarez and

Jones-Leppin press.

Time-integrative and equilibrium samplers makehghulk of the passive
sampling techniques. Among these, the semi-perim@admbrane device (SPMD), the
polar organic chemical integrative sampler (POC$8hid phase microextraction
(SPME), polymer sheets, polymers on glass (PO@s)itee Chemcatcher are the most

common (Alvarez et al., 2007; Mills et al., 200pnes-Lepp et al. (2004) were the first
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to demonstrate the utility of passive sampling desiin illicit drug monitoring studies.
Since then, three other publications describe sgeafl passive samplers to sample for
illicit drugs (Alvarez et al., 2007; Mills et ak007; Bartlet-Hunt et al., 2009). In all of
these cases, the POCIS was used as it has thg &b#ample chemicals containing
varied functional groups over a range of polaritesmmon with illicit drugs. Although
many of the other passive sampling devices wouldapable of sampling certain drugs,

they are much more limited in the range of chemitadses that could be sampled.

Handling and Storage Considerations

In general, the collection of environmental watersthe detection of illicit drugs
should follow common handling and storage protac&amples are generally collected
in amber glass containers and shipped chilled @€)-Gia overnight carrier to the
laboratory. As with most emerging contaminants,ube of additives as sample
preservatives is not required. Upon receipt ataberatory, the samples should be
stored chilled and extracted within 7-14 days.with all laboratory procedures, storage
and holding times for any new chemical should Eweated prior to sample collection to

ensure the integrity of the samples.

Quality Control
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The types and amount of quality control used dutinggfield component of a
study can vary depending on the data requireméntestudy. At a minimum, field
blanks should be used to identify any contaminagidimer through direct contact or
airborne exposure of the sample. Other qualityrobsamples to be considered include
equipment blanks if the same sampling equipmerggstitively used, trip blanks
(contaminant-free water samples which accompanyi¢teecollected samples from the
field to the laboratory but are not exposed toding and positive control samples (water
samples fortified with the target analytes useoh&asure any loss or degradation of the

analytes due to the handling and storage methods).

Analytical Methodsfor Illicit Drugs

While this chapter is devoted to detection lagitldrugs in water, we will also
briefly mention the analytical methods for enviramtal media other than water. Many
analytical challenges are offered to environmecti@mists by the variety of
environmental matrices, e.g., sediments, watentgjdiosolids/sludges, and soils, in
their quest to tease out individual chemicals ftbese complex matrices. Additives and
naturally occurring chemicals can cause substant@tferences during both extraction
and detection methodologies. Since most illicitgdr usually occur in the environment at
part-per-trillion (ppt) levels, the analytical metts can require intensive separation and
cleanup procedures to isolate and concentratehimical from the matrix before

analysis.



274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

Extraction Techniques

Solid phase extraction (SPE) is the most widelpregal method for the
extraction of pharmaceuticals and illicit drugsnfraqueous matrices. In this section we
will look at SPE, as well as large-volume injecti@VI1) and direct injection as
extraction techniques.(Jones-Lepp, 2006; Loganathah, 2009; Chiaia et al., 2008;

Banta-Green et al., 2009; Bisceglia et al., 2009)

Solid phase extractions (SPE). The SPE sorbeatsharsen for their ability to retain the
pharmaceuticals of interest based upon a varietlyeophysical-chemical properties of
the analytes of interest (e.g., §Oow, polarity). The SPE sorbent most frequently
reported for recovery of illicit drugs, is the hgghobic lipophilic balanced (HLB)
sorbent containing cartridges. Mixed cation exgefMCX) sorbents have also been
used. Jones-Lepp (2006) and Loganathan et al9j26ported using the HLB [6-mL
capacity, 0.2 g, 3@un, obtained from Waters Corporation (Milford, MAgrbent for the
extraction of pharmaceuticals and illicit drugsgaacently published the US EPA’s
pharmaceutical Method 1694 recommends the HLB sbrdsetridges/discs for aqueous
extractions of pharmaceuticals.(Jones-Lepp, 200§ahathan et al., 2009; USEPA
method 1694) However, Boles and Wells (2009), ievéew of analytical methods for
amphetamine-like compounds, point to a number alygical studies using both MCX
and HLB sorbents.(Boles and Wells, 2009) They kale; along with van Nuijs (2009),

that MCX and HLB are interchangeable as SPE soshi@&ales and Wells, 2009; van
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Nuijs et al., 2009) The choice of one sorbent @mther depends on the compounds of
interest, and what interferences would be remoBedtegs and Wells, 2009; van Nuijs et

al., 2009)

Large volume injection (LVI). In Chiaia et al. @8), they report directly coupling a
large volume injector (1800L) to a tandem mass spectrometer.(Chiaia et 2080
Their method allowed them to detect part-per-tnll{(ppt) to part-per-billion (ppb) levels
of methamphetamine, amphetamine, ephedrine, cqa@oaine metabolites (e.g.,
benzoylecgonine, norcocaine, norbenzoylecgonin@kdtodone, oxycodone,
methadone, MDMA, MDMA metabolites (e.g., MDA, MDEMBDB), LSD, and PCP.
Banta-Green et al. (2009) used the LVI techniquegcty coupled to a liquid
chromatography-mass spectrometry-mass spectroifidtiy C/MS/MS), to determine
the utility of community-wide drug testing.(Bantaegn et al., 2009) They surveyed 96
WWTPs for the presence of the illicit drugs, aneitimetabolites, then back calculated

the target community’s drug use.(Banta-Green ¢2809)

Direct injection. Bisceglia et al. (2009) haveerty submitted a publication presenting
an isotope dilution direct injection (B.) method for the simultaneous detection of 23
drugs of abuse and their metabolites.(Biscegla.e2009a) They've also submitted a
companion publication demonstrating a streamlingttdlysis procedure for the

determination of cocaine and its two major metdbsli Both methods demonstrate low-
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level detection limits (e.g., 20 fg for cocaine}imwminimal interferences.(Bisceglia et al.,

2009a,b)

Pressurized liquid extraction (PLEY.ery few papers have been written describing the
extraction of illicit drugs from solid matrices.tefh et al. (2008) describe a PLE method
for extracting psychoactive compounds from sedimemd Jones-Lepp and Stevens
(2007) also describe a PLE method for extractinthamaphetamine and MDMA from
biosolids.(Stein et al., 2008; Jones-Lepp and $iev2007) Due to the complexity and
variable sizes of environmental solids, the samp$eslly need to be dried, pulverized
and homogenized before extraction. Briefly, smaatbunts of homogenized solid
samples (usually < 2 g) are sub-sampled and egttaddepending upon what matrix and
what analytes are being extracted, the proper stdypressures and temperatures are

chosen.(Stein et al. 2008; Jones-Lepp and Ste2603)

Detection Techniques

lon Mobility Spectrometry. It is interesting toteahat in 1976 Karasek and colleagues
used IMS to detect heroin and cocaine at atmosppegssure.(Karasek et al., 1976) In
the 1980’s Lawrence further developed IMS to deddfoer illicit drugs from solid
surfaces and for atmospheric sampling.(Lawrenc@7;1Bawrence, 1986). More
recently Hill's research group expanded the utii@aof IMS to amphetamine,

methamphetamine, PCP, morphine, THC, LSD, and hecoupling the IMS to a mass



339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

spectrometer for more specificity.(Wu et al., 2000)

Mass Spectrometry (MS). The majority of detectechniques for pharmaceuticals and
illicit drugs are liquid chromatography-mass speatetry (LC-MS) based. To date the
only instruments reported in the US for detectihgiti drugs in environmental matrices
are mass spectrometers. The reality is that nmy$tasnmental matrices are complex,

and only the mass accuracy and specificity givembags spectrometry can overcome the
large amounts of interferences found in real-waonktrices. There are a variety of mass
spectrometers now being used as detectors couplepid chromatographs (LC).
Available as mass detectors are ion trap massrspeeters (ITMS), quadrupole-time-of-
flight mass spectrometers (g-TOFMS), triple quadiepass spectrometers (QqQ),
magnetic sector mass spectrometers, and most keoénitrap mass spectrometers. A
variety of mass spectrometers have been used |ldd8 aesearchers have reported using
the tandem mass spectrometry (MS/MS) mode whertiggdllicit drugs, as well as

other emerging contaminants. The MS/MS mode is@hgrecursor ion [typically a
(M+H)" in the positive mode, or (M-Hjon in the negative mode] is formed in the
LC/MS source. The ion formed is transported t@iga of the MS where it is energized
and collided (either in a QQqQ, ITMS, g-TOFMS, anagnetic sector mass spectrometer)
subsequently producing product ions. Product avegypically the loss of various
functional groups from the analytes, for example-t&MOH)" or (M+H-CHy)*. Table 1

shows several illicit drugs, their precursor anddurct ions as reported in the literature.



361 In the US, Jones-Lepp et al. (2004) used microdighromatography-

362 electrospray/ion trap mass spectrometry (L-LC-B88] to assess and detect four
363  prescription drugs (azithromycin, fluoxetine, omeggmle, levothyroxine) and two illicit
364 drugs (methamphetamine and MDMA) in wastewateuefft.(Jones-Lepp et al., 2004)
365 Chiaia et al. (2008) and Banta-Green et al. (2@089pled LVI to a tandem mass

366 spectrometer (triple stage quadrupole) to accyradehtify and quantify a variety of
367 llicit and prescription drugs and their metabdi{€hiaia et al., 2008; Banta-Green et al.,
368 2009) Bartelt-Hunt et al. (2009) and Biscegliale{2009) used a QgQ to accurately
369 identify and quantify a variety of prescription dsj non-prescription drugs (e.g., DEET,
370 caffeine), and the illicit drugs, methamphetameutaine, MDMA, etc.(Bartelt-Hunt et
371 al., 2009; Bisceglia et al., 2009)

372

373  Accurate illicit drug identification. When usingCtMS techniques for identifying

374  known and unknown chemicals, it cannot be emphd®reugh that the analyst must
375 use a MS/MS technique in order to accurately idgatnalytes. For example, MDMA
376  and caffeine while having different molecular wagyhave overlapping product ions
377 (mass 163 m/z). However, they have different prsmuto product pathways. MDMA
378  with a molecular weight of 193 m/z, forms 194 n{i;+H)", forming the predominant
379  product ion, 163.0 m/z, (M—GMNH»+H)", using collision induced dissociation (CID).
380 While caffeine having a molecular weight of 194 rfgme amu different from MDMA),
381 forms 195 m/z, (M+H), and under CID, forms predominantly the produnti88 m/z,

382  (M-CHsNCOY', with mass 163 m/z also formed, but less abunglaftherefore, if an
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analyst was monitoring the 163 m/z ion channel, @etdcted 163 m/z, near or at the
same retention time as caffeine, they might midiflethat compound as MDMA, when
in fact it is caffeine. Another example would kEkeen methamphetamine and n,n’-
dimethylphenethylamine (DMPEA, a widely-used indiastchemical, used as a
flavoring agent). These two chemicals are isohanes of each other, both have exactly
the same molecular mass (149.0 m/z), but are Bligifterent in chemical structure.
Fortunately, under CID LC-ESI MS/MS conditions,2Béwo chemicals form unique
predominant product ions, 119 m/z (M+H—HH)", and 105 m/z (M+H-N(Ch)2 )"
However, both compounds also form 91 m/z as a skegrproduct ion (M+H-CH-N-
(CHa),)". If a researcher chose to monitor mass 91 mgread of 119 m/z, for
methamphetamine (and there are those who haveiedmding so in the literature) then
a false positive for methamphetamine could ocdurerefore, it is important that the

proper product and transition ions are chosen sorenspecificity and accuracy.

Occurrenceof illicit drugsin US waterways

Jones-Lepp et al. (2004) report detecting botthamaphetamine and MDMA
(Ecstasy) in the low ppt range from two sewagauefits, one in the southwest and the
other in the southeast regions of the US.(Joneg-ke¢pl., 2004) Jones-Lepp reported
finding in 2006 methamphetamine at two sites, @amfan urban creek in Las Vegas,
Nevada and the other in the State of Maine, U&thimphetamine was detected at 5

ng/L in the urban creek, which is surrounded by éstiat were on septic tanks.
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Methamphetamine was also detected at 7 ng/L aetvage effluent outfall of a large
WWTP in Maine.(Jones-Lepp, 2006) Chiaia et al.806ported detecting
methamphetamine at five of the seven WWTPs sanipbed throughout the US, with
concentrations ranging from 10 to 2000 ng/L, andWfDat five of the seven plants,

with concentrations ranging from 3 to 70 ng/L.(Ghiet al., 2008) Chiaia et al. (2008)
also reported finding cocaine at all seven of th&WPs sampled (ranging from 10 to
860 ng/L), as well as the prescription opiates:rbgddone, oxycodone, and methadone.
Bartelt-Hunt et al.(2009) sampled eight sites axtbs State of Nebraska (USA) for a
variety of pharmaceuticals and methamphetamineaf€let al., 2008; Bartelt-Hunt et al.,
2009). They detected methamphetamine at seves) sikcept one upstream from the
Lincoln WWTP, ranging from 2 ng/L to 350 ng/L (eféint from Omaha WWTP). The
lower levels of methamphetamine were detected nigtin WWTP effluents, but also in
streams that were upstream from large city WWTRstéB-Hunt et al., 2009) This
finding can possibly indicate the presence of atstide drug labs, as well as input from
septic tank leakages into these feeder streamstaBareen et al. (2009) sampled 96
WWTPs effluents from across the State of Oregon) foSmethamphetamine, MDMA
and cocaine.(Banta-Green et al., 2009) At aMA&TPs methamphetamine was
detected, while MDMA was detected at less than W@ TPs, and benzoylecgonine (a
cocaine metabolite) was primarily detected in tHeaon WWTPs effluents.(Banta-Green
et al. 2009) Bisceglia et al. (2009b) reportecdigtg methamphetamine: average of 200
ng/L; MDMA: average of 20 ng/L; cocaine: average860 ng/L; and several metabolites

of MDMA and cocaine, from the effluent of the Bakkrer WWTP (a large urban,
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Baltimore, Maryland, WWTP serving nearly 1 millipeople).(Bisceglia et al., 2009b)

A recent, extensive study [conducted by Jonepl(EPA), Alvarez (USGS)
and Sanchez (University of Arizona, Yuma Agricudti@enter)] along the Colorado river
shows the input of illicit drugs into the ColoraBever from various sources. The
Colorado River, USA, is the main water source (elgnking, agricultural, industrial) for
millions of people living in the Southwestern pafthe United States (e.g., Nevada,
Arizona, California, Utah, Colorado) and westernxdide. Samples were taken
throughout the Colorado River Basin, from the Uppasin, starting at Glenwood
Springs, Colorado, to the Lower Basin, ending im8don, Arizona (see figure 2).
Using a modified version of the method (Oasis M@tead of Oasis HLB, SPE
cartridges) established by Jones-Lepp (2006), mgthatamine, MDMA and
pseudoephedrine were detected in most of the etSus the WWTPs sampled, and at
three different non-WWTP sites (Crystal Beach, Aéw River, CA; Cedar Pocket, AZ),

see table 2.

Pseudoephedrine (a similar in structure to methatgphine and MDMA) was
detected in the Virgin river (a tributary of thel@@do River) at Cedar Pocket, AZ.
Cedar Pocket is located along the Virgin River, snabproximately 18 km downstream
from the St. George, UT, WWTP, which empties ifte Yirgin River. One possibility
for detection at this site is may be the negatelow = -1.85, at pH 7, indicating that it

is more hydrophilic, and therefore more likely taysin the water column, as compared
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to methamphetamine and MDMA.

Methamphetamine, at 220 ng/L, was detected in #ne Nver, CA. The New
river, is interesting, geographically speakingthressNew river flows out of Mexicali,
Mexico, and back into Calexico, United Stateshi $alton Sea sink in California.
There are raw human waste sources, and illegalamgthetamine manufacturing
laboratories, along the New river, starting in Mexiand back along to the Salton Sea,
that could contribute this drug into the waterwpgréonal communication with

anonymous US Border Patrol officer)

The third non-WWTP site, was off-shore, in the niédof the Colorado river,
near Crystal Beach, AZ. This site was sampledcethires, May, July, and November of
2007, and methamphetamine and MDMA were detectgdamce, at 22 and 36 ng/L,

respectively, in the July 2007 sample.

Conclusions

We can see from this chapter, that there are akviable methods available,
depending upon the analytical need, to separateetrate, quantify and reliably detect
these compounds. The caveat is that mass spettyomthe only definitive detection
method, and it must be used in the MS/MS mode sorenaccurate detection of not only

the illicit compounds, but other emerging contamisa Papers showing the detection of
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illicit drugs in the USA are still few in numbere table 3). However, we can discern
from these few studies that illicit drugs, and theetabolites, are making their way into
US waterways. There are potential ecotoxicologaral sociological ramifications from
these findings not yet addressed. Lacking aretlo¢oxicological studies to determine
whether the levels of illicit drugs detected arsighificance to both ecological and
human health, both for acute and chronic exposuitess of socioeconomic significance
that, using the methods outlined in this Chaptsearchers have been able to
demonstrate the utility of back-calculating frone gimounts of illicit drugs found in

sewerages, and WWTP effluents, to community usé@gsta-Green et al., 2009)

Concluding, the methods and approaches presentadiGhapter to detect illicit
drugs will provide information needed for develapmframework for exposure and

ecotoxicological studies to ensure accurate risks@ments for future regulatory efforts.
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Table 1. Several common illicit drugs and thegqursor and product ions formed by ESI-MS/MS.

lllicit drug Precursor ions Product ions LODs Reference
molecular weight (CAS #)
Methamphetamine 150.0 (M+H)" | 119 (M+H-CHNH,)" 1.5ng | Jones-Lepp et al. 2004

149.3 amu (537-46-2)

91 (M+H-CH(CH)NH(CHg))*

1.5 ng/L | Chiaia et al. 2008
MDMA 194.1 (M+H)" | 163 (M+H-CHNH,)" 1.0ng Jones-Lepp et al. 2004
193.1 amu (69610-10-2)

1.0 ng/L | Chiaia et al. 2008
Cocaine 304.1 (M+H)" | 182.3 (M+H-GHs0,)" 2.0 ng/L | Chiaia et al. 2008
303.4 amu (50-36-2)

20 fg Bisceglia et al. 2009
LSD 324.4 (M+H)" | 223.3 (M+H-GH1:NO)* 0.5 ng/L | Chiaia et al. 2008
323.4 amu (50-37-3)
PCP 244.2 (M+H)" | 159.4 (M+H-GH1iN)" 2.5 ng/L | Chiaia et al. 2008

(1-(1-phenylcyclohexyl)piperidine)
243.4 amu (77-10-1)
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Table 2. Concentrations of methamphetamine, MDA pseudoephedrine from Colorado River Basin

Sampling site Sample Amount detected

type ng/L

Methamphet. MDMA Pseudoephedrine

Grand Lake, CO (headwaters CR ND ND ND
Glenwood Springs, CO WWTP 253 74 ND
Glenwood Springs, CO CR ND ND ND
Roaring Fork, CO CR ND ND ND
Grand Junction/Fruita, CO CR ND ND ND
Moab, UT WWTP ND ND ND
Moab, UT CR ND ND ND
St. George, UT WWTP ND ND 350
Cedar Pocket, AZ VR ND ND 230
Lee’s Ferry, AZ CR ND ND ND
Las Vegas Wash LVW 230 ND ND
Crystal Beach, AZ CR ND - 22 ND - 36 ND
Lake Havasu, AZ WWTP | 103 (ND —480)] 4 (ND — 17) 330 (ND — 780)
Yuma, AZ WWTP 650 ND ND
Gila River, AZ GR ND ND ND
Tucson, AZ WWTP 245 ND 372
Imperial Diversion Dam, AZ CR ND ND ND
Somerton, AZ WWTP 84 ND ND
New River, CA NR 221 ND ND

ND = not detected. Sample Type: CR = Colorado Ri&#t = Gila River; LVW = Las Vegas Wash below camence of

three WWTPs effluents; NR = New River; VR = VirdRiver; WWTP = wastewater treatment plant;
! Average from 2 sampling evenfsRange of concentrations of 3 sampling events (Arimax)
% Average from three WWTPs (Northwest Regional, Matip, and Island)

over one year, where n = 7 sampling events (mirax)rfl Average of n = 9 sampling events from 02/08 t®87/
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Table 3. Analytical methods and illicit drugs itiied in US waterways

Reference lllicit drugs identified Extraction metho Environmental media
Chiaia et al. 2008 methamphetamine, MDMA, cocainkarge volume injection| wastewater
cocaine metabolites
Bartelt-Hunt et al. 2009 methamphetamine POCIS avesier
Banta-Green et al. 2009 cocaine, cocaine metabolite Large volume injection sewerage
Bisceglia et al. 2009b methamphetamine, MDMA, coea| Direct injection wastewater
MDMA metabolites, cocaine
metabolites
Jones-Lepp et al. 2004 methamphetamine, MDMA POCIS wastewater
Jones-Lepp et al. 2006 methamphetamine SPE soatee, wastewater
Jones-Lepp et al. 2007 methamphetamine PLE bissolid
Khan and Ongerth 2003 methamphetamine unknown wastewater
Loganathan et al. 2009 methamphetamine, MDMA SPE Stevater
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Figure 1. Chemical names, common names, structamelsselect properties of common illicit drugs.

Methamphetamine
{Meth, Crystalmeth, Speed)

CHj
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688  Figure 2. Colorado river: Upper and Lower Basin.
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