

Recent applications of single particle - inductively coupled plasma for metal-based nanomaterial determinations in surface water

> National Exposure Research Laboratory U.S. Environmental Protection Agency

> > Ed Heithmar

◆ Rep. 1 ■ Rep. 2 ▲ Rep. 3 × Rep. 4 * Rep. 5

ICON Workshop on the Eco-Responsible Design of ENMs. With permission: Alvarez, P. J. J., V. Colvin, et al. (2009). "Research Priorities to Advance Eco-Responsible Nanotechnology." ACS Nano 3(7): 1616-1619. Office of Research and Development National Exposure Research Laboratory

Ranking metrology research needs

Current State of Art

Measuring metal-based ENMs in the environment

• Ensemble methods allow representative samples, provide good particle size resolution. high elemental sensitivity.

- Light-scattering methods are useful for characterizing starting materials and, in limited cases, simple experimental systems.
- Hyphenated methods, e.g., flow-field flow fractionation coupled with ICPMS, offer higher sensitivity and elemental selectivity, so are more useful for characterizing metal-based ENMs in complex media.

• Ensemble methods provide total metal concentration associated with a size fraction of nanoparticles.

•Single particle – ICPMS is a complementary method to ensemble methods.

SP-ICPMS - complementary to hyphenated methods

SP-ICPMS

- Provides concentration of metalbased nanoparticles, and mass of metal in each nanoparticle.
- No direct information on particle diameters.

Hyphenated Methods

- Provide separation of nanoparticles according to hydrodynamic diameter, and determines total metal concentration associated with each nanoparticle size.
- No direct information on number or composition of metal-based nanoparticles.

Conventional ICPMS analysis – long integration time improves S/N

Single particle - ICPMS analysis

Keys to SP-ICPMS

- ICPMS sensitivity is the same for dissolved element and element in nanoparticle.
- Each ion pulse is produced by a single nanoparticle (assuming low nanoparticle concentration).
- Number of ion pulses counted during total acquisition time is proportional to nanoparticle concentration in sample.

- This proportionality is the same for all elements, so only one nanoparticle standard of any element detectable by ICPMS is needed.

• Number of ions in each pulse is proportional to the mass of the element in the nanoparticle that produced the pulse.

 A conventional ICPMS analysis with standard of dissolved element (along with the particle proportionality determined above) establishes the proportionality.

• Shorter integration times per point improve nanoparticle concentration dynamic range, as well as nanoparticle elemental mass S/N.

Potential Applications of SP-ICPMS

• Characterizing metal-based ENMs in experimental test media.

- High particle concentration sensitivity allows characterizing ENMs at environmentally relevant concentrations.

 Elemental selectivity allows characterizing ENMs in presence of large amounts of background particles.

- Monitoring transformation processes.
 - Transformations at low particle concentrations can be monitored.
 - Rates of fast transformations can be monitored.
- Screening environmental waters for potential metal-based ENMs.
 - Cannot selectively identify ENMs.
 - Rapidly identifies "suspect" water samples for more definitive analysis.

Measuring low concentration ENMs

Replicate analyses of 50 nm Au - 4x10³ mL⁻¹ (5 ng L⁻¹)

mean # ions# particlesRep. 125.694Rep. 225.0105Rep. 326.487

Particle statistics

◆ Rep. 1 ■ Rep. 2 ▲ Rep. 3

Measuring low concentration ENMs in complex media

◆ Rep. 1 ■ Rep. 2 ▲ Rep. 3 × Rep. 4 * Rep. 5

	Particle statistics	
m	ean # ions	# particles
Rep. 1	25.6	94
Rep. 2	25.0	105
Rep. 3	26.4	87
Rep. 4	26.3	101
Rep. 5	25.9	115
Mean	25.8	101
%rsd	2.2 ¹	11

¹Corresponds to less than 0.8% rsd in diameter.

Replicates 4 & 5 analyzed in 5x10⁷ silver particles

Potential Applications of SP-ICPMS

•Characterizing metal-based ENMs in experimental test media.

-High particle concentration sensitivity allows characterizing ENMs at environmentally relevant concentrations.

-Elemental selectivity allows characterizing ENMs in presence of large amounts of background particles.

Monitoring transformation processes.

- -Transformations at low particle concentrations can be monitored.
- -Rates of fast transformations can be monitored.

•Screening environmental waters for potential metal-based ENMs.

-Cannot selectively identify ENMs.

-Rapidly identifies "suspect" water samples for more definitive analysis.

Monitoring aggregation of Ag by CaCl₂

4x10⁸ mL⁻¹ Ag (60 nm) + 200 mM CaCl₂

• 0 min.

Monitoring aggregation of Ag by CaCl₂

4x10⁸ mL⁻¹ Ag (60 nm) + 200 mM CaCl₂

♦ 0 min. ■ 8 min.

Monitoring aggregation of Ag by CaCl₂

4x10⁸ mL⁻¹ Ag (60 nm) + 200 mM CaCl₂

◆ 0 min. ■ 8 min. ▲ 14 minutes

Potential Applications of SP-ICPMS

•Characterizing metal-based ENMs in experimental test media.

-High particle concentration sensitivity allows characterizing ENMs at environmentally relevant concentrations.

-Elemental selectivity allows characterizing ENMs in presence of large amounts of background particles.

Monitoring transformation processes.

- -Transformations at low particle concentrations can be monitored.
- -Rates of fast transformations can be monitored.

•Screening environmental waters for potential metal-based ENMs.

-Cannot selectively identify ENMs.

-Rapidly identifies "suspect" water samples for more definitive analysis.

Feasibility study of screening Las Vegas Wash water for metal-based ENMs

- Filtering media evaluated.
- Las Vegas Wash sampled at 36°06.826' N, 115°08.741', ca. 1 mile downstream from Las Vegas Strip.
- 10 mL water filtered in the field and analyzed within 4 hours.

Effect of 0.45µfiltering on recovery of 50 nm Au in reagent water

Effect of 5µfiltering on recovery of 50 nm Au in reagent water

SP-ICPMS analysis of Las Vegas Wash water for 14 elements

SP-ICPMS analysis of Las Vegas Wash water for iron-containing nanoparticles

Silver-containing nanoparticles in Las Vegas Wash water

Gold-containing nanoparticles in Las Vegas Wash water

Conclusions and ongoing work

- SP-ICPMS holds promise for rapid screening of surface water for metalbased ENMs.
- Issues related to pre-filtration need to be investigated.
- SP-ICPMS alone is not a selective technique.
 - Coupling with flow-field flow fractionation is being studied.
- Faster dwell times yield superior S/N and dynamic range.
 - Limited by current commercial ICPMS architecture.

Acknowledgements

I thank Emily Siska for valuable assistance in the laboratory, and Charlita Rosal for helpful discussions and comments on this presentation