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Segmentation and object-oriented processing of single-season and multi-season 19 
Landsat-7 ETM+ data was utilized for the classification of wetlands in a 1560 km2 20 
study area of north central Florida.  This segmentation and object-oriented 21 
classification outperformed the traditional maximum likelihood algorithm (MLC) in 22 
accurately mapping wetlands, with overall accuracies of 90.2% (single-season 23 
imagery) and 90.8% (multi-season imagery), compared to overall accuracies for the 24 
MLC classifiers of 78.4% and 79.0%, respectively.  Kappa coefficients were over 25 
1.5 times greater for the segmentation/object-oriented classifications than for the 26 
MLC classifications and producer and user accuracies were also higher.  The 27 
producer accuracies of the segmentation/object-oriented classifications were 90.8% 28 
(single-season) and 91.6% (multi-season), compared to 70.6% and 74.4%, 29 
respectively, for the MLC classifications.  User accuracies were 73.9% and 73.5% 30 
for the single-season and multi-season segmentation/object-oriented classifications, 31 
respectively, compared to 54.1% (single-season) and 55.0% (multi-season) for the 32 
MLC classifications.  The use of multi-seasonal data resulted in only a slight 33 
increase in overall accuracy over the single-season imagery.  This small increase 34 
was primarily due to better discrimination of riparian wetlands in the multi-season 35 
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data.  Segmentation and object-oriented processing provides a low-cost, high 36 
accuracy method for classification of wetlands on a local, regional, or national basis. 37 
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 39 

1 Introduction 40 

Wetlands are defined as areas that are transitional between terrestrial and aquatic 41 
systems, where the water table is usually at or near the surface or the land is covered by 42 
shallow water (Sugumaran et al. 2004).  Wetlands are more economically and ecologically 43 
valuable than many other natural land cover types and provide numerous and unique 44 
ecosystem functions, including storing flood waters (Ozesmi and Bauer 2002, Li and Chen 45 
2005, Toyra and Pietroniro 2005), minimizing sediment loss and controlling runoff volume 46 
(Tiner 2003), improving water quality (Ozesmi and Bauer 2002, Li and Chen 2005, Baker 47 
et al. 2006), and recharging groundwater aquifers (Ozesmi and Bauer 2002, Toyra and 48 
Pietroniro 2005, Baker et al. 2006).  Wetlands also provide unique and critical habitat to 49 
rare and endangered flora and fauna, support biodiversity (Li and Chen 2005), protect shore 50 
and coastlines (Ozesmi and Bauer 2002), and play an important role in global carbon and 51 
methane cycles (Li and Chen 2005).  In addition, the local economies of many countries 52 
depend on wetlands for fisheries, reed harvesting, grazing, and recreation (Ozesmi and 53 
Bauer 2002). 54 

The continental USA once had an estimated 221 million acres (89.5 million hectares) of 55 
natural wetlands.  Less than half of this original acreage remains today (Sugumaran et al. 56 
2004).  Extensive wetland loss is due to draining, dredging, filling, leveling, and flooding, 57 
especially in urban and agricultural areas where land use change is extensive (Sugumaran et 58 
al. 2004).  There has also been extensive loss of wetlands in many other countries 59 
throughout the world (Mitsch and Gosselink 2000).   60 

In order to prevent further loss of wetlands and conserve existing wetlands, it is 61 
important to inventory, map, and monitor them and their adjacent land use.  Accurate 62 
wetland mapping is also important to understanding wetland functioning and monitoring 63 
wetland response to natural and anthropogenic change.  In addition, wetland mapping can 64 
be used to evaluate land use decisions and monitor the effects of mitigating measures 65 
(Baker et al. 2006).  There are three basic techniques for wetlands monitoring and mapping: 66 
(1) on-site evaluations, (2) airphoto interpretations, and (3) satellite remote sensing.  On-67 
site assessments provide detailed information about flora and fauna, water chemistry, and 68 
soil data (Baker et al. 2006).  However, because of the high cost of equipment, personnel, 69 
and time, on-site evaluations are not feasible for wetland monitoring and mapping on a 70 
local or regional scale.  In addition, wetlands are often located in remote areas, making 71 
access difficult.  Aerial photos allow a more synoptic view of wetlands and can be used in 72 
mapping them at local and regional scales.  However, airphoto interpretation is limited by 73 
the amount of time required to map wetlands over larger areas and the lack of continuous 74 
coverage needed to update wetland maps (Baker et al. 2006).  Aerial photography is 75 
perhaps best used for assessing the accuracy of wetland maps, as opposed to creating and 76 
updating these maps.  Satellite remote sensing is arguably the only practical method for 77 
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accurately mapping and monitoring wetlands on a regional basis, in a timely manner.  78 
Satellite remote sensing provides synoptic views of wetlands consistently over time and at 79 
low cost.   80 

Satellite remote sensing analysis has had a long and successful history in accurately 81 
mapping wetlands (Hutton and Dincer 1979, Jensen et al. 1984, Palylyk et al. 1987, Sader 82 
et al. 1995, Ozesmi and Bauer 2002, Hess et al. 2003, Toyra and Pietroniro 2005, Li and 83 
Chen 2005, Baker et al. 2006, Shanmugam et al. 2006).  Nearly all types of wetlands have 84 
been studied with satellite remote sensing using a wide variety of sensors, including 85 
Landsat Multispectral Scanner (MSS; Palylyk et al. 1987), Landsat Thematic Mapper (TM; 86 
Sader et al. 1995, Shanmugam et al. 2006), Landsat-7 Enhanced Thematic Mapper Plus 87 
(ETM+; Baker et al. 2006), Advanced Spaceborne Thermal Emission and Reflection 88 
Radiometer (ASTER, Kato et al. 2001), Systeme Probatoire d'Observation de la Terre 89 
(SPOT; Jensen et al. 1993), Advanced Very High Resolution Radiometer (AVHRR; 90 
Ramsey et al. 1997), the Indian Remote Sensing Satellite (IRS-1B; Chopra et al. 2001), the 91 
Japanese Earth Resources Satellite (JERS-1; Hess et al. 2003), the European Remote 92 
Sensing Satellite (ERS-1; Kushwaha et al. 2000), and Canada’s Radar Remote Sensing 93 
Satellite (RADARSAT; Li and Chen 2005, Toyra and Pietroniro 2005).  Several wetland 94 
studies have suggested that Landsat-based classifications provide greater overall accuracies 95 
than other space-borne studies (Civco 1993, Bolstad and Lillesand 1992, Baker et al. 2006).  96 
Landsat TM and ETM+ data are ideal for wetland mapping, because these data have a 97 
middle-infrared (IR) band that is sensitive to wetness (band 5), and red (band 3) and near-98 
IR (band 4) bands, which are sensitive to vegetation.  In addition, Landsat data provide 99 
continuous coverage every 16 days and the Landsat TM data dates back to 1984.  Many 100 
studies have been successful in utilizing Landsat TM and ETM+ data for wetland mapping 101 
(Jensen et al. 1993, Sader et al. 1995, Sugumaran et al. 2004, Li and Chen 2005, Baker et 102 
al. 2006, Shanmugam et al. 2006). 103 

Various types of classification algorithms have been applied to Landsat data for 104 
mapping wetlands, including unsupervised clustering, maximum likelihood, hybrid 105 
classifiers, regression analysis, fuzzy classifiers, linear mixture modelling, subpixel 106 
estimators, rule-based classifiers, and decision trees (Ozesmi and Bauer 2002).  The 107 
traditional maximum likelihood classifier, used in such studies as Palylyk et al. (1987) and 108 
Shanmugam et al. (2006), is by far the most commonly used classification technique in 109 
wetlands mapping.  However, fuzzy classifications, subpixel classifications, and spectral 110 
mixture estimates appear to provide more detailed information on wetlands, and rule-based 111 
and hybrid classifiers may give more accurate results than traditional classifiers (Ozesmi 112 
and Bauer 2002).  One relatively new classification technique that has not been used 113 
extensively in wetlands mapping, but shows great promise, is segmentation and object-114 
oriented processing. 115 

Image segmentation is a commonly applied technique in the fields of machine vision 116 
and pattern recognition (Pekkarinen 2002, Schiewe 2003) and is gaining popularity in the 117 
field of remote sensing.  The basic processing units of object-oriented image analysis are 118 
objects, rather than individual pixels (Benz et al. 2004).  Initial image segmentation uses 119 
low-level information (pixel-based features) to create higher-level contiguous regions or 120 
image objects.  These higher-level objects have spectral, textural, contextual, and shape 121 
characteristics that can be used for classification (Benz et al. 2004).  Image segmentation/ 122 
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object-oriented processing has a number of advantages over conventional per-pixel spectral 123 
classifiers, including the ability to: (1) incorporate spectral, textural, contextual, and shape 124 
information (Shackelford and Davis 2003),  (2) provide classification results with higher 125 
accuracy (Stuckens et al. 2000, Geneletti and Gorte 2003), (3) reduce local spectral 126 
variation (Hill 1999), (4) provide classification results in a form that is immediately useable 127 
in a geographic information system (GIS; Geneletti and Gorte 2003), (5) reduce occurrence 128 
of smaller mapping units, resulting in a more attractive classification map (Stuckens et al. 129 
2000), (6) create objects from segmentation that are more visually recognizable than pixels, 130 
and (7) ecologically speaking, provide image objects that are more similar to landscape 131 
patches than are pixels (Laliberte et al. 2004).  132 

Segmentation/object-oriented processing has shown excellent potential for land cover 133 
mapping, and may be particularly useful in classifying wetland land cover, yet few studies 134 
have used it in wetlands mapping (e.g., Costa et al. 2002, Atunes et al. 2003, Burnett et al. 135 
2003, Hess et al. 2003, Stankiewicz et al. 2003, Sugumaran et al. 2004, Hurd et al. 2006).  136 
Hess et al. (2003) used segmentation of JERS-1 radar data to delineate wetland extent in 137 
the central Amazon basin with 95.0% accuracy.  Costa et al. (2002) used segmentation to 138 
map Amazon floodplain communities with RADARSAT and JERS-1 data.  Antunes et al. 139 
(2003) used segmentation on IKONOS® imagery to identify riparian areas in Parana, 140 
Brazil.  Burnett et al. (2003) used a segmentation/object-based analysis of color-infrared 141 
aerial photography for mapping a bog in Estonia.  Stankiewicz et al. (2003) used object-142 
oriented classification of optical and microwave satellite images to map vegetation in a 143 
wetland ecosystem in the northeast part of Poland.  In a technical report to the Iowa Space 144 
Grant, Sugumaran et al. (2004) found that segmentation and object-oriented processing of 145 
Landsat-7 ETM+ data had much higher accuracies for wetland classification (90.7%) than 146 
maximum likelihood classification (64.0%) and ISODATA clustering (59.7%).  More 147 
recently, Hurd et al. (2006) reported at the American Society of Photogrammetry and 148 
Remote Sensing (ASPRS) Annual Conference on the use of segmentation and object-based 149 
classification of Landsat data to classify tidal wetlands throughout Long Island Sound.  We 150 
have found no published studies in refereed journals that have applied segmentation and 151 
object-oriented processing to Landsat data for the classification of wetlands.   152 
 The goal of this project was to apply segmentation and object-oriented processing to 153 
Landsat ETM+ imagery for the classification of wetlands in Alachua County, a 2510 km2 154 
area in north-central Florida, USA.  Two objectives for this project were (1) to determine 155 
the accuracy of segmentation and object-oriented classification of wetlands compared to 156 
that of the traditional maximum likelihood algorithm, and (2) to determine if classification 157 
of multi-season Landsat imagery provided higher accuracies than that of a single-season 158 
Landsat image. 159 

2 Methodology 160 

2.1 Study area and data acquisition 161 

The study area covers the eastern portion of Alachua County, Florida, USA, that lies within 162 
the St. Johns River Water Management District (SJRWMD) and occupies an area of 163 
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approximately 1560 km2 (figure 1).  Wetlands are abundant in this area and consist of at 164 
least 17 different wetland types, including cypress domes, sinkhole wetlands, pond pines, 165 
freshwater marshes, wet prairies, and wetland hardwoods.  The SJRWDM has detailed land 166 
use and land cover data (including wetland types) digitized from colour-IR aerial photos 167 
from 2000 for this area; these data were acquired through the SJRWMD website 168 
(http://sjr.state.fl.us/gisdevelopment/docs/themes.html, accessed 10/06) and used for 169 
training and accuracy assessment.  The wettest and driest Landsat-7 (Level 1G) images for 170 
the year, based on an analysis of band 5, were acquired from the University of Florida Map 171 
and Imagery Library (Path 17 and Row 39).  The wettest scene was a January 2, 2000 172 
image and the driest scene was an April 7, 2000 image (figure 2).  Each scene also 173 
corresponds to leaf-off and leaf-on data, respectively, for deciduous vegetation.  The 174 
Landsat-7 (UTM) data were geo-registered to the SJRWMD land cover data using 10–15 175 
ground control points and simple rotation, translation, and scaling.  The Landsat data values 176 
were unchanged by the georegistration process.  Two raw datasets were created from the 177 
imagery.  First, a single-season 6-band dataset was created using bands 1–5, and band 7 178 
from the January 2000 Landsat-7 image.  The second dataset consisted of a 12-band multi-179 
season dataset consisting of bands 1–5, and band 7 of both the January and April scenes.   180 

2.2 Landsat-7 image transformations 181 

Three different data transformations were applied to each georegistered dataset to improve 182 
the potential classification of wetlands.  These include (1) a minimum noise fraction (MNF) 183 
transformation, (2) a texture transformation based on mean co-occurrence in band 5, and 184 
(3) a pan-merge transformation to merge the 30-meter spectral data with the 15-meter 185 
panchromatic (pan)-band of Landsat-7 ETM+. 186 

The MNF was used to determine the inherent dimensionality of the data, to segregate 187 
noise in the data, and to reduce the complexity of the data. This transform, modified by 188 
Green et al. (1988), is essentially two cascaded principal components transformations. The 189 
first transformation, based on an estimated noise covariance matrix, decorrelated and 190 
rescaled the noise data. The first step resulted in transformed data in which the noise had 191 
unit variance and no band-to-band correlations. The second step was a standard principal 192 
components transformation of the noise-whitened data. The inherent dimensionality of the 193 
data was determined by examination of the final eigenvalues and the associated images. 194 

Haralick (1986) proposed a variety of measures to extract useful textural information 195 
from co-occurrence matrices.  In this study, the mean of the co-occurrence matrix based on 196 
a 3-pixel by 3-pixel moving window of band 5 was used.  During computation, four 197 
brightness value spatial-dependency matrices were derived for each pixel based on 198 
neighbouring pixel values. The average of these four measures was calculated as the texture 199 
value for the pixel under consideration.  The textural information significantly improved 200 
the general discrimination ability of wetlands. 201 

In order to merge the 30-meter spectral data with the 15-meter panchromatic data of 202 
Landsat-7 ETM+, a Gram-Schmidt sharpening algorithm (Research Systems, Inc 2005) was 203 
utilized. First, a panchromatic band was simulated from the lower spatial resolution spectral 204 
bands. Then the Gram-Schmidt algorithm was applied to the simulated panchromatic band 205 
and the rest of the 30-meter spectral bands.  The simulated panchromatic band became the 206 
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first band of the new dataset.  Then the 15-meter Landsat-7 panchromatic band was 207 
substituted for the first Gram-Schmidt band. The inverse Gram-Schmidt transform was then 208 
applied to the entire dataset, resulting in a 15-meter spectrally-merged dataset.  For the 209 
multi-season dataset, the spectral bands were pan-merged to the 15-meter panchromatic 210 
band of the January data. 211 

2.3 Segmentation and object-oriented classification 212 

The classification scheme consisted of two classes: (1) wetlands and (2) non-wetlands.  213 
Wetlands were defined as areas transitional between terrestrial and aquatic systems, where 214 
the water table was at or near the surface or the land was covered by shallow water.  All 215 
other areas were considered non-wetlands.  The single-season January 2000 georegistered 216 
dataset was an eight-band, 15-meter pan-merged image consisting of Landsat spectral 217 
bands 1–5 and 7, the first MNF band, and the co-occurrence texture of band 5.  The eight-218 
band dataset was converted to a GeoTiff for segmentation and object-oriented processing.  219 
The multi-season georegistered dataset consisted of a 16-band, 15-meter pan-merged image 220 
with Landsat spectral bands 1–5 and 7, the first two MNF bands of the combined January–221 
April dataset, and the co-occurrence texture of band 5 from both the January 2000 and 222 
April 2000 imagery.  223 

The segmentation and object-oriented classification was divided into two steps: (1) 224 
segmentation to create image objects at multiple scales, and (2) classification of the image 225 
objects as either ‘wetland’” or ‘non-wetland’.  All segmentation and object-based 226 
classification was performed using eCognition software (Definiens Imaging, München, 227 
Germany, version 4.0).  All other image processing was performed using ENVI and IDL 228 
4.2 software (ITT Corporation, Boulder, CO, USA).   229 
 230 
2.3.1 Image segmentation.  There are many types of segmentation algorithms that can be 231 
applied to remotely sensed imagery, including measurement-space guided spectral 232 
clustering, hybrid linkage region growing, centroid linkage region growing, split and merge 233 
methods, and area and edge-based methods (Laliberte et al. 2004).  In general, 234 
segmentation algorithms can be divided into two types: (1) global, behaviour-based, and (2) 235 
local, behaviour-based (Kartikeyan et al. 1998).  Global methods are based on an analysis 236 
of data in feature space; the objective is to identify clusters in the histogram of the data and 237 
form segments from these clusters.  Local based methods are more common and focus on 238 
the variation of tone or colour in a small neighbourhood (Kartikeyan et al. 1998).  There are 239 
two types of local behaviour-based segmentation methods: (1) edge-detection and (2) 240 
region growing methods.  Edge-based methods find boundaries between pixels by detecting 241 
edges; image regions completely surrounded by edge pixels become segments. Thus, pixels 242 
either belong to an edge to form a boundary or belong to a segment (Geneletti and Gorte 243 
2003).  One disadvantage of edge-based methods is that small terrain objects are 244 
completely obscured by boundary pixels (Geneletti and Gorte 2003).  In region growing 245 
segmentation a small neighbourhood of pixels is tested for homogeneity criteria.  246 
Neighbouring pixels that have similar properties are merged to form a larger segment.  A 247 
split and merge technique can be used to create regions of constant tone.  Regions can also 248 
be grown from seed pixels (Kartikeyan et al. 1998, Makela and Pekkarinen 2001, Geneletti 249 
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and Gorte 2003).  One disadvantage of region-growing methods is that results can be 250 
affected depending on the order the image is processed (Geneletti and Gorte 2003).  The 251 
choice between segmentation methods depends on the application, and hybrids of these 252 
methods can been used (Kartikeyan et al. 1998). 253 

The segmentation method chosen in this study was a bottom-up region-merging 254 
approach starting with single pixel objects.  In an optimization pair-wise clustering process, 255 
smaller objects were merged into larger objects based on heterogeneity criteria of colour 256 
and shape (Benz et al. 2004): 257 

 258 
(1) 259 

 260 
where f is the threshold fusion value for merging segments, hcolor is the heterogeneity 261 
criterion for colour, defined in equation (2), and hshape is the heterogeneity criterion for 262 
shape, defined in equation (3).  The user-defined weight parameter w was set to 0.9, a 263 
conservative value that decreases the influence of colour, which can vary phenotypically 264 
within taxa, and increases the influence of shape.  265 

The heterogeneity criterion for colour (hcolor) was calculated before and after potential 266 
merging of each adjacent object as: 267 

 268 
            (2) 269 

 270 
where nmerge is the number of pixels within a merged object, nobj1 is the number of pixels in 271 
object 1, nobj2 is the number of pixels in object 2, σc is the standard deviation within object 272 
of band c. Subscripts merge refer to merged objects and obj1 and obj2 refer to the objects 273 
prior to a merge. 274 

The heterogeneity criteria for shape describe the improvement of shape with respect to t 275 
smoothness and compactness: 276 

 277 
(3)  278 

 279 
The user defined weight parameter wcmpct was set to 0.5, the median value for 280 

integrating smoothness and compactness in determining heterogeneity criteria.  The change 281 
in smoothness (hsmooth) and compactness (hcmpct) were calculated before and after a potential 282 
merging of objects: 283 

 284 
 285 
 286 
 287 

     (4) 288 
 289 
 290 

           (5) 291 
 292 

 293 
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where n is the object size, l is the object perimeter, and b is the perimeter of a bounding 294 
rectangle.  With each iteration, the pair of adjacent objects with the smallest growth from 295 
the defined heterogeneity criteria was merged.  The process stopped when the smallest 296 
growth for merging of adjacent objects exceeded a pre-defined scale parameter described 297 
below.  This procedure simulated the simultaneous growth of segments during each step so 298 
that output objects were of comparable size and scale (Benz et al. 2004).   299 

A scale parameter is defined in the segmentation process to set a threshold for the 300 
maximum increase in heterogeneity of two merging segments.  When this parameter is 301 
reached, the segmentation process ends.  The larger the scale parameter, the larger the 302 
segmented objects grow (Baatz and Schape 2000, Benz et al. 2004).  Both datasets in this 303 
study were segmented at three different scale parameters (50, 10, and 7), chosen to provide 304 
a range of classification scales for iterative accuracy assessment.  For the single-season 305 
data, a scale parameter of 50 yielded 2875 objects, a scale parameter of 10 yielded 63 874 306 
objects, and a scale parameter of 7 resulted in 133 884 image objects.  A comparison of two 307 
scale parameters is shown in figure 3.  For the multi-season dataset, a scale parameter of 50 308 
yielded 3872 objects, a scale parameter of 10 yielded 93 647 objects, and a scale parameter 309 
of 7 resulted in 192 666 image objects.  The coarser scale parameter (50) was used 310 
primarily for data masking, while the finer scale parameters of 10 and 7 were used for 311 
direct classification of objects. 312 

2.3.2 Object-oriented classification.  The segmented image objects were classified at three 313 
different scales as either (1) wetland or (2) non-wetland.  For the single-season data, all 314 
eight 15-meter pan-merged bands were used in the classification.  For the multi-season 315 
data, all sixteen 15-meter pan-merged bands were used in the classification. The 316 
classification of individual objects was based on a number of decision rules determined 317 
according to feature attributes of the objects.  These attributes were determined through a 318 
process of trial and error, until a combination of parameters was found to produce an 319 
acceptable accuracy.  In this study, the mean values in bands 4 and 5, the mean values of 320 
MNF band 1, the ratio of band 4 to the overall brightness, shape and size parameters, and 321 
texture calculations were all feature attributes used in the classification of isolated wetland 322 
objects. 323 

Each decision rule was determined from a fuzzy set consisting of membership functions 324 
of the object features.  A membership function ranged from 0 to 1 for each object’s feature 325 
values with respect to its membership to an assigned class.  The output classification was 326 
determined by assigning each object to the class with the highest degree of membership, 327 
based on all membership features used.  A classification-based segmentation was 328 
performed to fuse all adjacent objects that were assigned the same land cover category.  329 

2.4 Maximum likelihood classification 330 

The maximum likelihood classifier (MLC) is the most widely used method for the 331 
classification of land cover (Ediriwickrema and Khorram 1997, Jensen 2005).  This spectral 332 
classifier has been used by numerous researchers as a benchmark from which to compare 333 
the performance of other classifiers (Bastin 1997, Ediriwickrema and Khorram 1997, 334 
Stuckens et al. 2000, Hunter and Power 2002, Liu et al. 2002, Emrahoglu et al. 2003, 335 
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Erbeck et al. 2004, Lo and Choi 2004, South et al. 2004).  Several factors have contributed 336 
to the perceived high standard of MLC (Ediriwickrema and Khorram 1997), including the 337 
number, size, and location of training sites, the nature of discriminant variables, and the 338 
meaningful evaluation of the classification method (Foody 1992).  MLC has been 339 
recognized as a stable, robust, and accurate method in standard digital image processing 340 
software systems (Ediriwickrema and Khorram 1997). 341 

MLC incorporates both the variance and covariance matrix of the dataset into the 342 
classification decision rule.  To accurately estimate the covariance matrix, a sufficient 343 
number of training samples must be selected and each training class assumed to be 344 
normally distributed.  With this assumption, the statistical probability of a pixel being a 345 
member of a given training class can be computed from the mean vector and the covariance 346 
matrix, using a probability density function (Lillesand et al. 2004).  The assumption of 347 
normality is often violated in multispectral datasets, however (South et al. 2004).  Even 348 
minor deviations from normality can severely disrupt the classification (Foody 1992).  349 
Land cover categories with multi-modal histograms should have multiple, individual 350 
training samples for each mode to fulfil the normal distribution requirement (Jensen 2005). 351 

MLC was applied to both the 30-meter data and the 15-meter pan-merged data.  It was 352 
determined from initial accuracy assessments that the MLC performed better for the 15-353 
meter pan-merged data than the 30-meter non-merged data; therefore, only the single-354 
season and multi-season 15-meter results are presented in this paper and used as reference 355 
for comparison to the segmentation-based classifications. 356 

2.5 Accuracy assessment 357 

To assess the accuracy of the remote sensing analyses, a dataset developed by the third 358 
author was used.  Five 7.5-minute quarter-quadrangles (quarter-quads) within the study 359 
area were randomly selected using a stratified sampling approach (figure 4).  Colour, 360 
infrared, digital aerial photographs (years 1999–2004) obtained from the Land Boundary 361 
Information System (http://www.labins.org, accessed 02/07) were photointerpreted, and 362 
heads-up digitized isolated wetlands within the selected quarter-quads using ArcGIS 363 
software [Environmental Systems Research Institute (ESRI), Redlands, CA, versions 9.0 364 
and 9.2].  In addition to the aerial photographs, ancillary data sources such as the U.S. Fish 365 
and Wildlife Service National Wetlands Inventory (NWI), the U.S. Geological Survey 366 
(USGS) National Hydrography Dataset (NHD), the USGS Digital Raster Graphics (DRGs), 367 
and the St. Johns River Water Management District land use and land cover data, were 368 
sometimes used to aid in the photointerpretation process.  A contingency matrix was 369 
constructed to compare the reference data to the land cover classification.  Overall accuracy 370 
was calculated by dividing the total correct pixels by the total number of pixels in the error 371 
matrix.  Individual class user accuracy (error of commission) and producer accuracy (error 372 
of omission) were calculated following Story and Congalton (1986).  The Kappa coefficient 373 
was also calculated to compare the accuracy of the classification to that of a random 374 
classification (Congalton et al. 1983). 375 
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 3 Results and discussion 376 

The results of the segmentation/object-oriented classification accuracies are presented in 377 
table 1 for both the single- and multi-season datasets.  Table 1 also compares the 378 
segmentation results to those for the traditional maximum likelihood classifications.  The 379 
overall accuracies of the single-season and multi-season segmentation classifications were 380 
90.2% and 90.8%, respectively.  These accuracy numbers are very promising in light of a 381 
recent recommendation by the Federal Geographic Data Committee (FGDC) that all 382 
wetlands 0.5 acres (0.20 ha) or larger in the lower 48 states should be mapped using 1-383 
meter aerial photography with an accuracy of 98% (Heber 2008).  In this study, we have 384 
nearly achieved this accuracy using a spatial resolution that is 900 times coarser than that 385 
recommended. 386 

The overall accuracies of the single-season and multi-season segmentation 387 
classifications are much higher than the overall accuracies for the maximum likelihood 388 
classifiers, which were 78.4% for the single-season dataset and 79.0% for the multi-season 389 
dataset.  Kappa coefficients, which represent how well the classifications performed 390 
compared to that of a random classification, were also much higher for the segmentation 391 
classifications than for the maximum likelihood classifications.  Kappa was 0.75 for both 392 
the single-season and multi-season segmentation classifications compared to only 0.47 393 
(single-season) and 0.49 (multi-season) for the maximum likelihood classifications. 394 

Producer and user accuracies were also calculated for all four classifications.  The 395 
producer accuracy represents the probability of a reference pixel being correctly classified 396 
as a wetland and is a measure of omission error.  User accuracy is the probability that a 397 
pixel classified as a wetland actually represents that category in the reference data and is a 398 
measure of commission error.  For example, if the entire image were classified as wetlands 399 
then the producer accuracy would be 100% and the user accuracy would be 0%.  However, 400 
if zero pixels in the image were classified as wetland then the producer accuracy would be 401 
0% and the user accuracy would be 100%.  The producer accuracies of the 402 
segmentation/object-oriented classifications were 90.8% and 91.6% for the single-season 403 
and multi-season datasets, respectively.  These producer accuracies are much higher than 404 
those for the maximum likelihood classifications, which were only 70.6% (single-season) 405 
and 74.4% (multi-season).  User accuracies for both classification methods were lower than 406 
producer accuracies, indicating that wetland areas were more likely overestimated than 407 
underestimated.  User accuracies for the segmentation/object-oriented approach were 408 
73.9% and 73.5% for the single-season and multi-season datasets, respectively.  These 409 
accuracies were still much higher than those for the maximum likelihood classifications, 410 
which had user accuracies of 54.1% (single-season) and 55.0% (multi-season). 411 

Figure 5 shows a direct overlay of the multi-season wetlands classification resulting 412 
from segmentation/object-oriented processing, with one of the photo-interpreted accuracy 413 
assessment quads.  Areas in pink are agreements between the reference data and the 414 
classified data.  Areas in white are wetlands that the classification missed, but are found in 415 
the reference data (errors of omission).  Areas that are red are areas that were classified as 416 
wetlands, but not present in the reference data (errors of commission).  Most of the 417 
commission errors are simply boundary mismatches between the reference data and 418 
classifications.  Very few wetlands were missed in the classification and most of these 419 
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consisted of small isolated wetlands.  Figure 6 displays a side by side comparison of the 420 
segmentation multi-season classification and a photo-interpreted accuracy assessment quad. 421 
Overall the same pattern, shape, and size of wetlands are found in both the wetland 422 
classification and the reference data. 423 

It is clear that the segmentation and object-oriented classifiers outperformed the 424 
traditional pixel-based spectral maximum likelihood classifier.  There are several reasons 425 
that account for the superiority of the segmentation/object-oriented approach.  First, the 426 
segmentation algorithm is capable of extracting the boundaries of wetlands from the 427 
adjacent upland areas.  This allows the wetland areas to be processed as homogeneous 428 
objects, instead of individual pixels.  The objects then have spectral, textural, spatial, and 429 
contextual patterns that can be used to aid in the classification.  Pixels, on the other hand, 430 
are limited to the spectral characteristics alone.  A pixel-based spectral approach can only 431 
classify the physical cover on the ground that creates the signature.  Thus, it ignores the 432 
textural, contextual, and pattern components which are very important in distinguishing 433 
wetlands from the adjacent upland areas. 434 

It is a bit surprising that the use of multi-season data had a minimal increase in the 435 
accuracy of the wetlands classification.  Other researchers have found greater increases in 436 
accuracy when using multi-season versus single-season data for wetlands classification 437 
(Ozesmi and Bauer 2002).  For example, Lunetta and Balogh (1999) found that 438 
classification accuracy increased from 69% to 88% when using multi-date imagery instead 439 
of single-date imagery.  Two reasons may account for the relatively small increase in 440 
accuracy from single-season to multi-season data in this study.  First, the January scene was 441 
the wettest scene for the year; wetlands could be clearly delineated using this image, thus, a 442 
second scene wasn’t necessary to help delineate the wetlands.  Also, with an already high 443 
accuracy of approximately 90% using the segmentation/object-oriented method, there is 444 
little room for improvement.  Upon visual inspection of the two datasets, it was noticed that 445 
the multi-season data distinguishes riparian wetlands more clearly than the single-season 446 
data.  Figure 7 shows a comparison between the multi-season and single-season data for an 447 
area of the image that has numerous riparian wetlands.  It is obvious by comparing the two 448 
images that the riparian wetlands are better distinguished in the multi-season data than in 449 
the single-season data.  Despite the slight increase in detecting riparian wetlands using the 450 
multi-season data, it may not be worth the added cost to use multiple seasons for wetland 451 
classifications, especially on a regional basis.  The best approach for classifying wetlands is 452 
to acquire the wettest scene for a particular year and use segmentation and object-oriented 453 
processing for classifying wetlands in that scene. 454 

4 Summary and conclusion 455 

The goal of this project was to apply segmentation and object-oriented processing to 456 
Landsat-7 ETM+ imagery for the classification of wetlands in Alachua County, Florida.  457 
Two objectives were met: (1) to determine the accuracy of segmentation and object-458 
oriented classification of wetlands compared to that for the traditional maximum likelihood 459 
algorithm, and (2) to determine if classification of multi-season Landsat-7 imagery 460 
provided higher accuracies than that for a single-season Landsat-7 scene.  The 461 
segmentation/object-oriented classifiers outperformed the traditional maximum likelihood 462 
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classifiers for mapping wetlands.  The overall accuracy of the single-season and multi-463 
season segmentation classifications was 90.2% and 90.8%, respectively.  These accuracies 464 
were much higher than the overall accuracies for the maximum likelihood classifiers which 465 
were 78.4% for the single-season dataset and 79.0% for the multi-season datasets.  466 
Producer and user accuracies and Kappa coefficients were also much higher for the 467 
segmentation/object-oriented approach than for the maximum likelihood classifiers. Several 468 
conclusions with regard to remote sensing of wetlands can be made from the results of this 469 
study: 470 

(1) Segmentation and object-oriented processing outperformed the maximum likelihood 471 
classifier for satellite classification of wetlands; 472 

(2) Segmentation and object-oriented methods provided high classification accuracies 473 
in mapping wetlands due to their ability to delineate wetland boundaries and incorporate 474 
spectral, textural, contextual, and pattern information in the classification process; 475 

(3)  Wetland classification accuracies were higher when the wettest scenes for a 476 
particular time period were used in the classification process; and 477 

(4) The use of multi-season data improved the classification of riparian wetlands, but 478 
overall resulted in only slight increases in wetland classification accuracy and may not be 479 
worth the added cost. 480 

This research is one of the first to apply segmentation and object-oriented methods to 481 
Landsat imagery for the classification of wetlands.  With the high accuracies produced by 482 
segmentation and object-oriented processing, it is recommended that these methods be used 483 
on a regional or national basis for low-cost, high accuracy classification of all wetlands in 484 
the future. 485 
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